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Anatomy and efficiency of urban multimodal mobility

Riccardo Gallotti and Marc Barthelemy∗

Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France

The growth of transportation networks and their increasing interconnections, although positive,
has the downside effect of an increasing complexity which make them difficult to use, to assess, and
limits their efficiency. On average in the UK, 23% of travel time is lost in connections for trips with
more than one mode, and the lack of synchronization decreases very slowly with population size.
This lack of synchronization between modes induces differences between the theoretical quickest trip
and the ‘time-respecting’ path, which takes into account waiting times at interconnection nodes.
We analyse here the statistics of these paths on the multilayer, temporal network of the entire,
multimodal british public transportation system. We propose a statistical decomposition – the
‘anatomy’ – of trips in urban areas, in terms of riding, waiting and walking times, and which shows
how the temporal structure of trips varies with distance and allows us to compare different cities.
Weaknesses in systems can be either insufficient transportation speed or service frequency, but the
key parameter controlling their global efficiency is the total number of stop events per hour for all
modes. This analysis suggests the need for better optimization strategies, adapted to short, long
unimodal or multimodal trips.

INTRODUCTION

Although the coupling between different transportation networks is fundamental [1], most of the studies on Pub-
lic Transport Networks have been performed considering only one single transportation mode: private cars [2–4],
taxis [5–8], Subway [9–13], Train [15–20], Bus and Trams [18, 21–23], and at a worldwide scale, airline networks
(see [24] and references therein). However, most transportation systems are coupled to each other and as it was
recently shown in [25], interconnections can have dramatic consequences on the behavior of the whole system. This
finding triggered a wealth of studies [26–31] on multilayer networks — also coined multiplex networks — providing
a new paradigm for studying these coupled systems. Public Transport Networks belong to this class and provides a
paradigmatically example of spatial [32], temporal [33], and multilayer Network [30] where each layer corresponds to
a single transportation mode.
A few studies only considered many modes merged in an unique network [34], but this aggregation might hide

important structural features due to the intrinsical multilayer nature of the network [35]. In particular, in the case of
urban transport, not considering the connection times can lead to unprecise estimates for the network’s navigability[36].
We note also that interchanges are not symmetrical: rail-to-bus and bus-to-rail waiting time are different and are
independent from the actual traffic volume [37] (at least as long as capacity limits are not taken into account [14]). In
addition, the existence of alternative trajectories on different transportation modes enhance the system resilience [36].
Inter- and intra-modal connections can be intensively optimized just through modifications and offsetting of the

existing timetables, allowing to reduce waiting times at transfer points of a city like Washington D.C. of about
26% [38]. A better knowledge of the structure and layout of the Public Transport System would impact a wide range
of areas. Indeed, mode choice is one of the fundamental steps in transportation forecasting [39] and has represented in
the past a perfect experimental field for the study of individual choice behavior [40]. Developments in the availability
of urban public transport has the potential to improve significantly the air quality in metropolitan areas [41] and
directly influences the social geography of a city [42]. However, multi-modality not only means the existence of more
and better alternative options, but having to deal with all these alternatives at the same time. From the users point
of view, the difficulty of dealing with the enormous amount of information needed for describing and taking advantage
of the public transport of a city is such that it is no more managed by personal experience and habits, but by services
offered by major information technology companies. From the transport agencies point of view, the managing task
becomes significantly harder because: i) different modes are run by separate agencies and both data handling and
optimization tasks have to cross high organizational barriers; ii) it is not trivial to identify aspects of the system that
are relevant for service optimization.
Therefore, in order to help decision makers, new quantitative approaches are needed to highlight the limits of the

system and to assess the impact of new infrastructural development. Our capacity to understand transfer behavior
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and to evaluate transfer improvements are indeed limited by the lack of proper analytical tools, as we have to take
into account many important aspects simultaneously [43]. If we want the public transit system to become a viable
alternative to automobile, it is crucial to design cost-competitive and reliable public transportation systems that
guarantees both short travel times and a travel experience comparable to those of car trips [44].
Another important difficulty in the study of transportation systems is the data availability. In particular, it is

usually very difficult to obtain traffic related data, and we take advantage here of the availability of another type of
data which will enable us to assess the structural efficiency of the system. This open-data information consists in
the set of timetables for all transportation modes in the United Kingdom, except for Northern Ireland (see Methods
and the Supplementary Information for more details). We will focus on the urban scale and identify key quantities
characterizing the efficiency of the system, providing directions to improve urban Public Transport Systems. More
precisely, our goal is to determine:

• how far is an urban, multimodal public transportation system from optimum,

• how the temporal aspects impact the structure of quickest paths,

• how important are the multilayer aspects,

• the key differences between transportation systems in different cities.

Our study is based on the statistical analysis of the quickest paths on the multimodal transportation networks.
We assume that origins and destinations are uniformly and independently distributed on the location served by the
transport system and we do not take into account access time at the departure location. This uniform demand does
not take into account how flows are actually allocated over the network (a piece of information that is usually not
directly available) but allows us to focus directly on the structural features of the network, and not on its actual use
and on the qualities perceived by the average user. In this sense, the weaknesses and optimization that we discuss
here, concern an ideal optimum where all possible routes with all possible origins and destinations would be improved.
The methodology developed here can however be very easily adapted to the case where origin-destination matrices
are known.

RESULTS

We first define different types of paths in these systems. In particular, in order to understand how far are urban
transportation systems from an ideal optimum, we compare the quickest time-respecting paths with the minimal path.
The minimal path is the quickest one, computed by using the largest speed observed on each link and by neglecting
waiting times, and represents an unreachable condition, equivalent to having all the existing transportation systems
perfectly synchronized for the specific trip under consideration. In contrast, the time-respecting path is the quickest
path but where we use the real timetable and where walking and waiting times are taken into account. The time-
respecting path is by definition longer than the minimal path and as we can see on an example shown in figure 1, they
can be extremely different from each other. In addition, real trips are bound to the transportation system and do
not follow a straight line of euclidean distance d(a, b) from the origin a to the destination b. The topographical and
infrastructural constraints induce differences of the transportation network topology between cities. A consequence
of this is that the length ℓ(a, b) of the quickest (time-respecting and minimal) trips on the network might be very

different from d(a, b), and this difference can be measured by the detour r(a, b) = ℓ(a,b)
d(a,b) − 1 that can be interpreted

as a cost-benefit ratio [45]. In order to compare the availability of routes in different networks, we use the quantity
R = maxd>1 r(d) for a fixed d subset (see Supplementary Information). The values of R in different cities are strongly
anti-correlated (-0.95) with the static network normalized cyclomatic number [46] MN = (E − N − 1)/N , reflecting
the fact that the more loops are present in the network and the less the detour. In the following, we would like to
exclude this topological influence and in order to compare various cities, we will use as a spatial metric the effective
length ℓ on the network.
Only large cities can afford significant rail-based elements (trains, metro, tram) in their public transport systems

and therefore can have a high propensity to interchange [47]. Other transportation modes such as ferries and coaches,
play a secondary role at an urban level (and air transportation is naturally out of the game). Coaches emerge for
minimal paths in certain cities, but their low frequencies are completely excluding them from time-respecting paths.
Other forms of road transportation are usually more accessible and, for this reason, bus is the dominant layer for
short distances. If cities have enough suitable street space dedicated to Bus and Bus Rapid Transit systems, they are
even able to outperform metro and rail systems [44].
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Each transportation mode is characterized by its cruise speed, departure frequencies and accessibility. A consequence
of these peculiarities is that, depending on the length of the trip, the public transport system offers different optimal
time-respecting solutions. At the national scale (Figure 2, Left), different strategies emerge at different spatial scales.
We will not consider very short trips for which the origin and destination are closer than 1km, because distances so
short could be easily covered by walking and usually do not rely on transportation systems. Above this scale, the vast
majority of short trips are made within the bus layer, and the rail system becomes dominant for inter-urban trips of
length larger than approximately 40 kms. Air transportation emerges naturally for longer distances above 200kms,
and its importance increases significantly for distances of order 400 kms (e.g. Glasgow-Birmingham) and d ≈ 500 kms
(e.g. Glasgow-London Luton), and becomes finally dominant for trips longer than 700 kms, connecting for example
the southern part of England with the northern part of Scotland.
At the urban level, transportation modes that capture a significant fraction of the time-respecting paths are Bus,

Railways and, when available, the Metro and Tramway layer (Figure 3). The bus stops represent the vast majority
of the possible origins and destinations and are almost always used in our paths. This bus layer contains in general
the largest part of both minimal and time-respecting paths. The use of the fast transportation modes emerges
progressively with increasing ℓ (Figure 2, right), with a higher rate in larger cities such as London, Manchester and
Birmingham, where the Metro-Tramway systems are present. As this transportation mode has a high frequency and a
fast speed, and is not affected by congestion, it is naturally used as a quickest alternative to buses across city centres.
Nevertheless, due to its limited accessibility, the largest fraction of short trips are done in the bus layer, also in cities
where the system has an extended offer of metro lines (Figure 3). The metro layer is in competition with the rail
layer, which has higher speed but lower departure frequencies. In cities with high multi-modality (i.e. high average
number of modes used per trip), the rail network attracts the largest part of the mobility at distances much lower
than at the national level. Indeed, for London (Figure 3, left) and Manchester (Figure 3, right), the length done by
train overcomes the one by buses at ℓ ≈ 20 and ℓ ≈ 30 kms.

Comparing minimal with Time-Respecting Paths

We first analyze the multi-modal aspect of trips, quantified by the numbers Λm(t) which represent the number of
different modes for the minimal (m) or time-respecting (t) paths. For some cities, the time-respecting paths display
a larger Λt than for minimal paths, while for others, it is the opposite (Fig.4a-b). The relative loss in multi-modality
due to synchronization can be measured by

∆ =
〈Λm − Λt〉

〈Λm − 1〉
(1)

The larger ∆ and the larger the difference between minimal and time-respecting paths. We see in Fig. 4c that ∆ is
positive when the average speed of the alternative (ie. non-bus) layers Vnb is sensibly larger (> 2.5 times) than the
average speed Vb of the bus layer (see Supplementary Information for more details). The quicker the rail and metro
layers are, the more multimodal the minimal path would tend to be. Indeed, for minimal path, the use of fast non-bus
layers is only limited by their accessibility, i.e. by the extra-time needed for reaching the inter-layer connection point.
For time-respecting paths, multi-modality also implies the importance of synchronization, and it appears that in cities
where metro or rail are sensibly faster, their frequency is also lower (Fig. 4d). In other words, in cities where the fast
layers are extremely advantageous in term of speed, the system suffers from synchronization problems. This empirical
finding suggests the existence of a structural limit to transportation systems’ possibilities that policy makers should
take into account in the search of a efficient optimization strategy.
As a consequence, if the rail and metro layers are relatively quick, they are used for minimal paths while additional

waiting times due to mode change can be too costly for the time-respecting paths. On the other hand, in cities where
the bus layer is fast but with a frequency as low as for faster layers (eg. London, Liverpool, Cardiff), minimal paths
tend to use buses only, while the time-respecting paths face the synchronization limits of the bus layer itself (see
for example figure 1). More generally, the factors responsible for the time difference between time-respecting and
minimal paths are: (i) waiting times (both intra- and inter-layer); (ii) the fact that the optimal riding times used to
compute minimal paths may differ from the riding times at a particular hour; (iii) a long walking time for connecting
different modes in a wide stop area. In order to quantify the differences between minimal and time-respecting paths,
we introduce the synchronization inefficiency δ, computed as the ratio of time-respecting travel time τt and minimal
travel time τm

δ =
τt
τm

− 1 (2)
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For all cities, δ reaches its maximum δmax for short trips, where waiting times are long compared to the travel time,
and then decreases with the distance ℓ according to the following function, valid for all cities (see Fig. 5, left)

δ ≈ δmin +
δmax − δmin

ℓν
(3)

where ν ≈ 0.5. The collapse observed for δ for all cities suggests that there is an underlying process describing the
accumulation of waiting and walking times along time-respecting paths. The specifics of the different cities appear in
the system efficiency in both the worst δmax and best δmin limits. We note here that this Eq. 3 is consistent with a
simple argument based on the central limit theorem leading to ν = 1/2.
Time-respecting paths are however not completely different from the minimal ones and we can measure the similarity

of two paths by using their spatial overlap q, defined as the fraction of length of edges they have in common. The
overlap is q = 1 for extremely short trips (if a single edge is used, waiting times are not playing any role), and then
decreases with ℓ for all cities as (Fig 5, right)

q ≈ qmin + (1− qmin)e
−ℓ/ℓq (4)

where ℓq is the scale parameter for each city. The function q(ℓ) converges to a limiting value qmin in the range
[0.15, 0.33]. This minimal overlap is due to the limited number of good options available, especially close to the origin
and the destination. The constraints due to the local connectivity and optimal cruise speeds make the minimal path
the best option also when time causality starts playing a role. The exponential decay of the overlap with ℓ suggests
that there is a typical ‘branching’ length ℓq for each city, which sets the probability of having alternate routes. In
other words, the probability for the time-respecting path to deviate at each dℓ from the minimal path is proportional
to ℓ−1

q .

Anatomy of a trip

We have seen so far that the length ℓ governs the behavior of most quantities characterizing a trip. In order to
identify the role of the temporal and multilayer aspects of the network in the structure of the time-respecting paths,
we detail how the total travel time can be decomposed into different components: the riding time (with any mode),
and waiting and walking times at interchanges. In addition, in order to take into account the multi-modal aspect of
the network, we discriminate riding times per layer and we separate intra-layer from inter-layer waiting time. This
wide spectrum of temporal quantities forms what we call the ‘anatomy’ of a trip, and is represented in Figure 6 a-c
for different cities. This figure allows for a quick understanding of how the temporal structure of trips varies with
distance.
We first note that the travel speed grows with ℓ (see Supplementary Information) which implies that travel time

for time-respecting paths grows sub-linearly with the distance covered. Another important contribution in trips is
due to walking between modes in the multilayer network, which represents a fixed cost of multi-modality (in addition
to inter-layer waiting times). We naturally expect walking times to grow with ℓ as the number Λt of layers used in
time-respecting paths (see Supplementary Information for more details). Finally, waiting times are one of the two
main contributions to the synchronization inefficiency δ, the other being the difference between optimal and actual
edges’ riding times. These times will play a relatively minor role for long distances, as their relative importance
compared to riding times decreases.
The analysis of these anatomy plots shows the following. At short distance, in all cities but London, most of the

travel time is spent in intra-layer waiting time. Most trips start at the bus layer, and the first connections within this
layer are those that make the system extremely inefficient. We therefore define for each city a distance ℓw such that
for trips shorter than ℓw the waiting time represents more than 50% of the travel time. For 0 < ℓ < ℓw, the lack of
synchronization is dominant and the temporal network is far from being optimal. This distance interval corresponds
to values of ℓ where the overlap q is larger than 50% (Fig. 6d). For short trips, we have few alternative paths and
cannot avoid waiting times due to synchronization problems. Time-respecting paths are thus very similar to minimal
paths, and (large) waiting times are directly added to optimal riding times.
For long distances, we already saw that the multi-modal nature of the systems becomes important. The use of fast

transportation modes becomes advantageous only when the difference in speed compensates for the time necessary
to reach the rail or metro network. In order to measure this effect, we define the distance ℓnb such that for ℓ > ℓnb
the largest part of the trip is done with a transportation mode different from the bus. Trips with ℓw < ℓ < ℓnb are
then essentially made within the bus layer, and most of the travel time is due to actual transfer (walking or riding).
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We observe for large cities like London, Manchester, or Birmingham, a finite value of ℓnb indicating that at a certain
point the bus layer loses its dominant role. This is in contrast with smaller cities where ℓnb is larger than the city
radius, implying that fast layers always play a marginal role in these cases.
If we take into account time respecting paths with at least one inter-layer connections only, we find that on average

for all cities considered in this work, the time spent in connections (walking and inter-layer waiting times) represents a
significant fraction (23±6%, see Supplementary Information) of the total travel time. The different regimes identified
in figure 6d suggest that different strategies might have the better impact for each city for optimizing the transport
time of trips of specific distances. Short trips are indeed dominated by intra-layer waiting times, while long trips by
riding times. In the cases where the multimodality becomes dominant, inter-layer waiting and walking times, together
with the fast layers’ cruise speed, become instead the most relevant quantities for the optimization task.

The role of the total number of stop events

An interesting question concerns the characterization of a multilayer, temporal network such as the transportation
systems that we consider here. Obviously, the number of modes and their frequency play important roles in their
efficiency. A simple, natural quantity is then given by the average number of stop events per unit time

Ω =

∑
α Cα

∆t
(5)

where Cα is the number of stop events in the layer α and ∆t the duration of the time interval considered in the
analysis of the temporal network (see Methods). In this study, we considered a starting time of 8:00 am (monday)
and a duration ∆t = 16h which covers a whole day of mobility. The quantity Ω represents a global measure of the
transportation service offered in a city, of the infrastructural cost of the transport network, and is indeed proportional
to the cities population (Fig 7a). In order to improve the transportation system and to serve more people, one may
add new lines, new connections, increase the frequency of a line, or even introduce a new transportation mode in the
network, and the quantity Ω integrates all these modifications.
As we will see, it is actually remarkable and unexpected that a single network indicator such as Ω is enough

to explain the behavior of many key quantities characterizing the public transport network of different cities. For
example, the interplay between temporal and multilayer aspect of the public transport network is highlighted in Fig
7b, showing that the fraction λt of time-respecting paths using more than one mode [1] is larger for cities with a
larger number of stop events. If we assume that the average number of possible alternative to bus layer path (which
is always an available option) is aλ̄Ω, the expected fraction of unimodal trips is ω(Ω) = (1 + aλ̄Ω)

−1. The average
interdependency of the time-respecting paths is then 1− ω

λ̄t ≈
aλ̄Ω

1 + aλ̄Ω
(6)

Using this form to fit the data shown in Fig. 7b, we obtain aλ̄ = 1.65 10−5hour/stops
Similarly, Ω is related to the cruise speed Vcruise = ℓ/τcruise (where τcruise is the time spent in a moving vehicle)

and therefore also to the time respecting paths travel speed Vtravel = ℓ/τt (Fig.7c). Indeed, we can assume that the
fraction ω of unimodal paths is traveled at the average bus layer speed V̄b, while the fraction 1 − ω of multi-modal
paths is traveled at a speed V̄multi =

V̄b+kV̄nb

1+k , where k = ℓnb/ℓb represents the ratio of lengths on the non-bus and

bus layers (V̄nb is the average speed for the fast layers — see Supplementary Information). The average travel speed
V̄travel grows then with Ω as

V̄travel,th = (ω(Ω)V̄b + (1− ω(Ω))V̄multi)
τcruise
τt

(7)

Using the value for aλ̄ obtained above, we minimize the variance between the estimated and empirical values of V̄travel

and we find the optimal value: k ≈ 0.8 (see Fig. 7c). This result shows that for all cities considered here (and under
uniform demand), approximately 45% of time-respecting paths are on non-bus transportation modes.
In addition, the quantity Ω also characterizes the efficiency of a public transportation network in terms of synchro-

nization. Indeed, we observe that the average synchronization inefficiency measure δ̄ decreases with Ω as a power law
(see Fig. 7d)

δ̄ ≈ Ω−µ (8)
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where µ ≈ 0.3±0.1. The expected decrease is naturally due to the fact that larger values of Ω implies larger frequency
and thus a better synchronization between modes. The small value of µ is however bad news in terms of efficiency:
in order to divide δ by a factor 2 we need to multiply Ω by a factor of almost 10. We can however hope that when
exact origin-destination matrices are known, a better optimization of the system can be obtained through targeted
improvements. It is not unusual to observe power law behavior in urban systems [49][50], and although the fits are not
perfect (essentially due to the small number of available decades), this result Eq. 8 could be useful for constructing
coarse-grained models of transportation in cities. Besides this, we note here that the city of Edinburgh is an outlier
in all figures 7(a-d) and, for this reason, has been excluded from the best-fit of figures 7b and 7c. Indeed, even if Ω
is relatively high for this city, Edinburgh’s public transport system seems to use a significantly different strategy in
managing the mobility demand, characterized by an extremely high bus-frequency. The network is therefore extremely
efficient in terms of synchronization but not performant in terms of cruise speed (see fig 4d), as can be seen with
time-respecting paths that are mostly composed of slow unimodal bus trajectories (see figures 7b and 7c).

DISCUSSION

We identified the total number of stop events per hour Ω as the key quantity which characterizes the efficiency of a
transportation system and its efficiency in terms of speed, multimodality and synchronization. Naturally, Ω is not the
only parameter at play: multi-modality depends also on the different cruise speed and departure frequencies in the
different layer. In the UK transportation system, these two quantities are anti-correlated, as if a city system might
try to optimize rail and metro systems, with respect of the bus system, either making them faster or more frequent.
This relationship has important practical applications, as it constitute a limit that policy makers need to take into
account in their system optimization, and can serve as a support for evaluating alternative Public Transport Systems’
designs.
The temporal aspect of the Public Transport Networks appears to be influential for trips covering all distances.

Short time-respecting paths tend to be mostly similar to the minimal ones, and waiting times are directly added to
the riding times of the associated minimal paths. Waiting times then represent the largest fraction of the total travel
times, and at this scale an increase of bus departure frequency, or methods like timetables offsetting [37, 38] of the
bus service may represent a good optimization strategy. Longer time-respecting paths tend instead to diverge from
minimal ones, and very large waiting times can be avoided thanks to the availability of alternative routes, and when
it is possible, longer trips are progressively taking advantage of the multi-modality of the system. For cities with a
large level of multi-modality, as it is the case for London, Birmingham Manchester, it becomes hard to disentangle
the temporal and multilayer aspects of the system. Waiting time (together with walking time) does not represent a
simple cost to minimize, but a price to pay to access to fast transportation.
The value of waiting and walking times are perceived as higher than the time spent travelling [52], in particular

because walking demands a greater physical effort [51]. Waiting time has an higher perceived cost because of the
frustration due to the sheer inconvenience of waiting [52]. All these costs have to be integrated with those related to
the time needed for accessing the network [44], the stress of the transfer experience [43], breaking personal habits [53],
scheduling costs and those caused by the unreliability of arrival times [52]. In order to optimize the travel experience
and to minimize the perceived mobility cost, it is then necessary to consider the full anatomy of trips and to distinguish
between transportation modes and between the nature of time spent (riding, waiting, walking). In this respect, we
believe that the tools and the methodology developed here will allow for an integrated view of these systems and will
be helpful for testing and finding specific optimization strategies.

METHODS

Data

The land transport timetables used in these papers are provided by the National Public Transport Data Reposi-
tory [54] under Open Government licence. A snapshot of every public transport journey is recorded for all services
running in Great Britain (England, Scotland, Wales) during a full week in October 2010. The raw files contain
the information available in the travel-lines web sites and call-centres during the selected week. For road transport,
transportation agencies take into account the average traffic conditions at different hours and days for the design of
timetables, so that they implicitly contain congestion effects.
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The modes covered and identified are bus, coach, train (national rail), ferry and metro (including Underground,
tram, light rail and non-national rail trains). All routes are referenced to stops coded using the NaPTAN scheme
(National Public Transport Access Nodes) data [55]. In the NaPTAN scheme, every UK rail or metro station, coach
terminus, airport, ferry terminal, bus stop or taxi rank is associated to at least one Stop Point. Not all Stop Points are
actually used, so only those that were present in the timetables are considered active and have been taken into account.
Stop point are then organized in Stop Areas representing facilities (Airports, Bus/Metro/Coach/Railway Stations)
or possible interchange points. The definition of these Stop areas has been taken as a basis for defining a multilayer
network from the timetable data. A further process of data cleaning and aggregation has been performed to have a
consistent definition of inter-modal exchange points (see Supplementary Information). To complete the spectrum of
transportation modes, we use detailed schedules of all non-stop UK domestic flights, provided by Innovata LLC [56]
for the week of 18-24 October 2010. Each of these flights has been associated to the Stop Points of the arrival and
departure airport (and eventually to a specific terminal). The multilayer temporal network dataset derived from these
data is publicly available at http://www.quanturb.com/data.html

Multilayer temporal network

The inter-modal exchange points are identified by (i) original NaPTAN Stop Areas, (ii) new Stop Areas obtained by
a spatial aggregation of Stop Points (see Supplementary Information). To be an exchange point, journeys of different
transportation modes should stop in that Area and to correctly define a Multilayer network [30], we associate all Stop
Points to a layer α, representing a specific transportation mode. If a Stop Point belongs to a Stop Area, the point is
not represented in the network and all vehicle stops in that point are associated to the area. Both Areas and Points
are identified by an id i. As buses and coaches may stop in the same location, a copy of the same Stop Point can
be defined in two different layers, and thus associated to two different vertices viα and viβ in the multilayer network.
Similarly, if an Area i has associated points belonging to a set of layers α, β, γ, . . ., a vertex representing that Area
is defined in each of those layers (viα, viβ , viγ , . . . ). Inter-layer edges connects all couples of vertices associated to
the same Point or Area in different layers in both directions (iα, iβ) and (iβ, iα). If the connection from a layer α to
a layer β is performed by walking, a walking distance is assigned to each of these edges (iα, iβ) which is calculated
as the average distance between all couples of active Stops Points in i belonging to the two different layers α and β.
The travel time has been then computed using a standard walking speed of 5 km/h [44]. In addition to the walking
times, additional 30 minutes are added to the inter-links from the air-flights layer to all the others, in order to take
into account the characteristic waiting times in airports. Similarly, two hours of check-in and security control times
are added to the inter-links towards the airline layer (which corresponds to the time suggested by airlines to be at the
airport before departure time).
In each layer α, we thus have a set of Nα vertices, representing stops locations. The timetables define a set of

events occurring in these vertices. Each vehicle departure can be associated to a directed connection between two
vertices viα and vjα that occurs at a certain time. These events can be represented as Cα quadruplets (i, j, t, δt),
where i, j ∈ Vα, t denotes the departure time and δt the riding time for that specific trip [57]. Besides the temporal
network, we can also study the static topology of the public transport network by defining a set of E edges, where
the edge (iα, jα) exists if there is at any time at least a connection between viα and vjα. For each of these edges, we
compute the minimal riding time observed at any time δtmin. We define the minimal path as the shortest path on
this static network, where the cost associated to each link is the minimal riding times. We use these minimal paths
as a benchmark which represents the optimal mobility through the multi layer network. All the measures performed
in this paper are limited to the largest strongly connected component [46] of the static network associated to the
corresponding area.

Time-Respecting Paths

Paths performed through the network must respect the time-ordered sequences of contacts. For this reason, a
journey has to follow causal temporal paths defined as a sequence of connections with non-decreasing times [33]. We
define the travel duration τab(t) as the shortest time needed to reach b starting from a connection from a departing
at a time t′ ≥ t. The duration is not static but depends upon t. In this paper, we focus on the morning rush hour,
and thus we chose t0 = Monday, 8:00 am. The temporal distance is measured starting from the actual beginning of
the trip, without taking into account the first waiting time t′ − t. Furthermore, to limit the contribution of a small
number of location from where connections are extremely rare, we introduce a waiting time cutoff ∆c = 2h limiting

http://www.quanturb.com/data.html
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the maximum delay allowed for a single connection [57]. Even while working on a static connected component, this
cutoff limits the number of allowed paths. At a national scale, approximately 16% of the trips in the largest strongly
connected component of the static network have been excluded because unreachable with this choice of t0 and ∆c.
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[30] Kivelä, M., et al., Multilayer networks. Journal of Complex Networks 2, 203-271 (2014).
[31] Boccaletti, S., et al., The structure and dynamics of multilayer networks, Phys. Rep. In Press (2014)
[32] Barthelemy, M., Spatial networks. Phys. Rep. 499, Issues 1-3: 1-101 (2011).
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FIG. 1: Example of the difference between a time-respecting path (solid line) and a minimal path (dashed line). Here, we
show a trip from Twickenham to Camden Town in London, and the minimal path would use only buses (marked in Blue). The
optimal time-respecting path in this case is remarkably multi-modal: the bus layer is still used for the final segment, which is
the same as for the minimal path, while the Rail layer (Red) and then the Metro layer (Green) are used for approaching the city
center. [Figure created with Basemap Matplotlib Toolkit for Python using map tiles from openstreetmap.org ( c©OpenStreetMap
contributors[48], licensed as CC BY-SA).]
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FIG. 2: (Left) Fraction of distance covered by the different modes for time-respecting paths through the whole Great Britain.
Short trips are mostly done by bus. Rail becomes then dominant at 40kms and air travel is dominant for trips of distance of
order 700kms. Other transportation modes play a secondary role, with peaks at 22kms for the Metro, 40kms for Ferries and
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sytem of this area. (d) We condense in a single plot some information of the anatomy curves for all cities. We represent with
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(R2 = 0.80), consistent with the hypothesis that the number of possible alternative to exclusive bus layer path is proportional
to Ω. (c) The average travel velocity is consistent with Eq. (7) characterized by the parameter k = 0.80 (R2 = 0.87). (d) The
synchronization inefficiency δ decreases Ω as a power law δ ∝ Ω−µ, where µ ≈ 0.3 ± 0.1 (R2 = 0.91): time-respecting travel
times in larger cities with larger Ω are closer to the infrastructural limit of minimal travel times.
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SUPPLEMENTARY INFORMATION

Data Filtering and Elaboration

Not all Stop Points are actually used, so only those that were present in the timetables are considered active
and have been taken into account. Stop points are then organized into Stop Areas representing facilities (Airports,
Bus/Metro/Coach/Railway Stations) or possible interchange points. The definition of these Stop areas has been
taken as a basis for defining a multi-layer network form the timetable data. A further process of data cleaning and
aggregation has been performed to have a consistent definition of inter-modal exchange points.
Inconsistent stop times have been corrected by temporal interpolation whenever possible. In the other cases, the

stop has been excluded from the dataset. In particular: i) Many inconsistencies were found in bus stop times: they
have been considered wrong whenever two following stops happened more than 2 hours one from another (this applies
also the case of decreasing times) ii) In the original rail timetables, many stop time were erroneously recorded as
‘0000’: temporal interpolation solved this problem almost entirely.
Inconsistent NaPTAN Stop Areas have been corrected, using as a reference parameter a Walking Distance wd =

500m. The procedure follow those steps:

i) the Center of an Area, identified by Latitude and Longitude, are corrected with the Stop Points center of mass
if before the corrections not all Points were within a distance wd from the Center and after they were;

ii) Points where Air, Ferry, Rail, Metro and Coach stops happen are always kept in the Area, Bus stops Points
further than wd from the Center are removed;

iii) Areas containing only Bus stops Points are corrected by removing the further stops (and recalculating the center
of mass) until they become contained in a circular area of radius wd/2 (thus a maximal distance between two
points of wd);

iv) Airports Stop Points and Areas are joined together if they share the same first 6 letters in atcocode;

v) All Air Stop Points are “promoted” to Areas;

vi) The Heathrow Airport stop Area is reconstructed “by hand” as the Stop Area was incorrectly defined;

vii) After imposing a hierarchy [A > F > R > M > C > B], all Areas include other Areas and non-bus stops Points
of lower rank within a distance wd from its Center (distance between Areas is defined as the distance between
their center);

viii) All remaining non-bus stops Points are “promoted” to Areas;

ix) Rail ,Metro and Ferry Areas of same rank are merged if their distance were under wd (Rail) or wd/2
(Ferry,Metro). The choice of wd/2 is to avoid joining together following Stops of London Tub and Ferries
lines;

x) All Areas can absorb a Bus stop Point if it is within a distance wd/2. In case of conflict, the Point is assigned
to the closest;

xi) Areas containing only one Point are “declassed” to Points;

xii) A stop Point can absorb lower rank Areas/Points if it is within a distance wd/2 and become an Area (C and B
Points cannot absorb in this step);

xiii) To each Area is assigned a representing Point, chosen at random between those with higher rank.

The so-defined Areas become the inter-layer point for the Multi-layer network. The distance assigned as a inter-
layer weight is then computed as the average distance between all Points of the first layer and all Points of the second
layer.
A copy of this dataset is publicly available at http://www.quanturb.com/data.html

http://www.quanturb.com/data.html
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Cities

In this paper, we identify as a city a circular area roughly containing the borders of the associated urban
area. Each circle is defined by the latitude and the longitude of its center and by its radius (see table be-
low). The value of the population for the relative Morphological Urban Areas, obtained from wikipedia.org
[http://en.wikipedia.org/wiki/List of metropolitan areas in the United Kingdom (Date of access:06/05/2014)] is
associated to each of these areas. For London, two different areas have been studied. The first one is larger and
corresponds to the whole Greater London, while a second, smaller, only the group of inner boroughs commonly
named Inner London [http://en.wikipedia.org/wiki/Inner London (Date of access:06/05/2014)]. Due to our rough
selection of the urban area surface, the value of population used is to be considered only an approximation of the
real population of the selected surface.

City Name Lat Lon Radius (km) Population Ω (trips/hour)

Greater London 51.51 -0.12 28 8,265,000 196,594

Inner London 51.51 -0.12 14 3,232,000 120,937

Manchester 53.48 -2.24 18 2,207,000 51,974

Birmingham 52.48 -1.89 18 2,363,000 61,225

Glasgow 55.86 -4.26 15 1.228,000 35,446

Leeds 53.80 -1.55 10 534,000 15,158

Liverpool 53.40 -2.98 13 1.170,000 26,444

Bristol 51.45 -2.58 12 568,000 9,583

Sheffield 53.38 -1.42 12 693,000 26,243

Edinburgh 55.95 -3.18 10 478,000 37,942

Cardiff 51.48 -3.18 8 353,000 6685

Not all transportation modes are available in every city. Naturally, air transport is not playing any role and the
water transport is available only in London, Liverpool and Bristol. Moreover, the mode of transport associated to
the Metro layer may be different from a city to another. In London two types of transportation networks can be
associated to the M-layer: the Underground and Tram. A circular line of Subways is available also in Glasgow, while
in Manchester, Birmingham and Sheffield the Metro Layer represents the Tram network. In the other cities considered
here, there are no Metro layer.

http://en.wikipedia.org/wiki/List_of_metropolitan_areas_in_the_United_Kingdom
http://en.wikipedia.org/wiki/Inner_London
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Detour

In both time-respecting paths (figure 8 Left) and minimal paths, the detour r(d) = ℓ(d)/d, where ℓ is the effective
path’s length and d the euclidean distance between origin and destination, is a decreasing function of d. In our
analysis, we exclude trips where origin and destination are less than 1 km apart, and the quantity R = maxd>1 r(d)
corresponds in our case to the detour for the shortest considered path r(1km). In figure 8 Right, we see that R
decreases when the average cyclomatic number MN = (E−N − 1)/N grows, where E is the number of directed edges
and N the number of nodes of the network. This suggests that the availability of more alternatives, characterized by
a larger number of cycles per node in the network, makes straighter trajectories possible.
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the average cyclomatic number MN .
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Connection times in multi-modal trajectories
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FIG. 9: The average inter-layer connection time for a city, defined as the sum of the walking time and the inter-

layer waiting time τ̄walk+inter over the total traveltime τ̄ clearly depends upon the fraction λ̄t of trajectories

that have inter-layer connections. Dividing by λ̄t, we estimate the average fraction of inter-layer connection

time, restricted to the interdependent trajectories. We notice that, for cities of different size and offer for

transport service, this value is relatively stable and all values can be found in the interval 23% ± 6%.

Time-respecting Paths Travel Speeds
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FIG. 10: The travel speed Vtravel = ℓ/τt grows with the trip’s length ℓ and seem not to reach any saturation value within the
urban areas’ radios. In the main paper, we show that the average value V̄travel is linked to the interdependency λ and, as a
consequence, to the average number of stop events per hour Ω or to the urban area population.
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Average speeds and frequencies

Let eαk = (i, j) be a directed edge from a vertex i to a second vertex j, both belonging to layer α. The edge is identified
by the index k = 1 . . . Eα. Each edge is characterized a the speed V (eαk ) and the frequency f(eαk ) = C(eαk )/∆t, where
C(eαk ) is the number of departure events through the edge eαk in the time interval ∆t. As our study is focussed on the
mobility starting at 8:00 of a working Monday, we chose as extremes of the time interval tend = 24:00 t0 = 08:00 of
Monday, and thus ∆t = 16h.
For every city, we may define the average speed of a layer α as the average over all edges’s speed for that layer:

V̄α =

Eα∑

k=1

V (eαk )/Eα (9)

and, similarly, the average frequency is:

f̄α =

Eα∑

k=1

f(eαk )/Eα (10)

In figures and we see how these quantities differ significantly between the considered cities.
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FIG. 11: Average layer edges’ speed Vα in the different Public Transport Networks: F=Ferry, C=Coach, M-Metro, R=Rail,
B=Bus. Note that the Ferry and Metro layer are not available in all cities.

In our time-respecting paths, only the Bus, Rail and, when available, Metro layer play a major role. To compare
the results of cities where the Metro layer is available with cities where it is not, we introduce the average non-bus
speed V̄nb and frequency f̄nb defined as:



21

F C M R B
0

5

10

15
T

rip
s/

h

Greater London

F C M R B
0

5

10

15

T
rip

s/
h

 Inner London

F C M R B
0

5

10

15

T
rip

s/
h

Manchester

F C M R B
0

5

10

15

T
rip

s/
h

              Birmingham

F C M R B
0

5

10

15

T
rip

s/
h

Glasgow

F C M R B
0

5

10

15
T

rip
s/

h

Leeds

F C M R B
0

5

10

15

T
rip

s/
h

           Liverpool

F C M R B
0

5

10

15

T
rip

s/
h

Bristol

F C M R B
0

5

10

15

T
rip

s/
h

Sheffield

F C M R B
0

5

10

15

T
rip

s/
h

Edinburgh

F C M R B
0

5

10

15

T
rip

s/
h

Cardiff

FIG. 12: Average layer edges’ frequencies fα in the different Public Transport Networks: F=Ferry, C=Coach, M-Metro, R=Rail,
B=Bus. Note that the Ferry and Metro layer are not available in all cities.

V̄nb =
ℓ̄m

ℓ̄
Vm +

ℓ̄r

ℓ̄
Vr (11)

and the average frequency:

f̄nb =
ℓ̄m

ℓ̄
fm +

ℓ̄r

ℓ̄
fr (12)

where ℓ̄m
ℓ̄

and ℓ̄r
ℓ̄

are, for each city, the average on all trips of the fraction of the total length ℓ that is covered on
the Metro (m) or Rail (r) layer respectively. As we see in figure 13, this simple proportion permits us to reconstruct
reasonably well the differences of cruise speed Vcruise = 〈ℓ/τride〉 in different cities.

Average interdependency and speed

Hypothesis: the number of possible alternative to exclusive bus layer path (which is always an available option) is
∝ Ω. Thus, fraction of paths using only the bus layer is

1− λt =
1

1 + aλΩ

and conversely

λt =
aλΩ

1 + aλΩ
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FIG. 13: (Left) The average cruise speeds can be estimated by knowing for each layer: i) the average link’s speeds; ii) the
fraction of length covered in that layer. (RIght) The ratio f̄nb/f̄b grows with Ω. The solid line is a guide for the eye suggesting
a direct proportion.

Hypothesis: once the non-bus layers are involved, there is a proportion between the distance covered in the bus ℓb
ant the distance covered in the non-bus ℓnb

k =
ℓnb
ℓb

With this assumption, Vcruise reads

Vcruise = Vb(1− λt) +
Vbℓb + Vnbℓnb

ℓb + ℓnb
λt

=
Vb +

Vb
Vnb

+k

1+k VnbaλΩ

1 + aλΩ

Contributions to the inefficiency

In our paper, we show that the average synchronization inefficiency δ = τt/τm − 1 decreases when Ω grows. More
specifically, there are two factors contributing to a lower inefficiency: cruise speeds in the time-respecting paths
become progressively closer to those of minimal paths (fig. 14 Left), and a lower relative contribution of the waiting
times (inter- and intra-layer) to the total travel time (fig. 14 Right).

Walking time and Multi-modality

Anatomies

Here below we complete the overview of the Anatomy of the transport networks described in figure 6 of the Paper.
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FIG. 14: (Left) The ratio between the average cruise speed in time-respecting paths V t
cruise and in minimal pathsV m

cruise falls
with Ω as V t

cruise/V
m
cruise ∝ Ω−0.19±0.06 (R2 = 0.87). (Right) The relative weight of waiting times τwait over the total travel

times τt for time-respecting paths decreases also as τwait/τt ∝ Ω−0.19±0.08 (R2 = 0.76).
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FIG. 15: As one may expect, the fraction of travel time spent walking grows with the average number Λ̄t of layers (and thus of
connections) involved in the time-respecting paths. The growth is consistent with a direct proportionality: τwalk/τt ∝ Λ−0.9±0.2

(R2 = 0.92)
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FIG. 16: The Anatomy of the transport networks in: (a) Birmingham; (b) Bristol; (c) Cardiff; (d) Glasgow
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FIG. 17: The Anatomy of the transport networks in: (a) Leeds; (b) Liverpool; (c) Sheffield; (d) Inner London


	 Introduction
	 Results
	 Comparing minimal with Time-Respecting Paths
	 Anatomy of a trip
	 The role of the total number of stop events


	 Discussion
	 Methods
	 Data
	 Multilayer temporal network
	 Time-Respecting Paths

	 Acknowledgments
	 Author Contributions Statement
	 References
	 Supplementary Information
	 Data Filtering and Elaboration
	 Cities
	 Detour
	 Connection times in multi-modal trajectories
	 Time-respecting Paths Travel Speeds
	 Average speeds and frequencies
	 Average interdependency and speed
	 Contributions to the inefficiency
	 Walking time and Multi-modality
	 Anatomies


