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Abstract

We write the loop equations for the β two-matrix model, and we propose a topological

recursion algorithm to solve them, order by order in a small parameter. We find that

to leading order, the spectral curve is a “quantum” spectral curve, i.e. it is given by a

differential operator (instead of an algebraic equation for the hermitian case). Here,

we study the case where that quantum spectral curve is completely degenerate, it

satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.
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1 Introduction: Generalization of the two-matrix

model

Random matrix models have played a very important role in physics and mathematics

[9, 26, 36–38, 50, 62, 67]. The eigenvalue statistics of large random matrices tend to

universal statistical laws, which can be observed in many systems in nature, ranging

from nuclear physics to finance and biology. Moreover, random matrices, treated as

formal series, provide generating functions for counting discretized surfaces [14, 22, 25,

26, 44, 55], and are a very useful tool for string theory [30–33, 57–60, 64].

So far, the random matrices studied were mostly hermitian matrices, because it

was the easiest case. From the beginning, Wigner [62, 67, 69] introduced 3 ensembles

of matrices, classified by an exponent 2β, Hermitian: 2β = 2, real–symmetric: 2β = 1,

and quaternionic: 2β = 4. However, it is rather easy to analytically extend the joint

eigenvalue distribution to arbitrary values of β [15, 24, 35].
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The case of one random matrix belonging to an arbitrary β ensemble, although less

studied than the hermitian case, has received lot of attention, and many works were

done. In particular loop equations have been known for a long time, and their recursive

solution was recently proposed in [17–19, 46].

For the hermitian case, it turned out that a 1-matrix model was not general enough,

for instance the spectral curve for 1-matrix model is always quadratic, it can’t have

higher degree, the critical behaviors are related to only a small subset of all possible

conformal field theories. A 2-matrix hermitian model turns out to be much more

general, it allows to reach spectral curves of any degrees, and any conformal minimal

model [21, 26, 27, 56]. Moreover, as applications to counting discretized surfaces, a

2-matrix model allows to count discrete surfaces carrying colors [25, 54].

Unfortunately, trying to generalize the 2-matrix model to arbitrary β seemed very

difficult, and was almost never studied. One reason, is that the joint eigenvalue dis-

tribution was not known, because the integration over the angular parts of the matrix

was not known (properties of angular integrals for hermitian matrix models can be

found for example in [68]).

Recently, some progress was made [6] in those angular integrals, and although we

don’t know yet how to compute angular integrals for arbitrary β, we know already

that those angular integrals have to satisfy some differential equations, and this is

sufficient to derive loop equations. This is what we do in this article, we derive the

loop equations, and solve them perturbatively by expanding in some small parameter.

1.1 The hermitian two-matrix model

The hermitian two-matrix model is given by the partition function:

ZHerm = eF =

∫

dM1 dM2 e
−N

T
tr [V1(M1)+V2(M2)−M1M2] (1.1)

where M1 and M2 are N × N hermitian matrices and the measure dMi is the corre-

sponding Lebesgue measure associated with all independent entries of the matrices.

V1 and V2 are called the potentials, we shall assume in this article that V1 and V2 are

polynomials. The parameter T , often called the temperature, is redundant, it can be

absorbed by a change of variableM2 → TM2 and a redefinition of V2, however, we pre-

fer to keep it for convenience, and because of its future geometric interpretation. The

hermitian 2-matrix model was introduced in particular as a formal series to study the

Ising model on a random surface, i.e. the Ising model coupled to 2D gravity [26,44,54].

It is very well known [61] now that this integral can be rewritten in term of its

eigenvalues problem as:

ZHerm =

∫

dXdY∆(X)2∆(Y )2e
−N

T

[

N
∑

i=1
V1(xi)+

N
∑

j=1
V2(yj)

]

I(X, Y ) (1.2)
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where X = diag(x1, . . . , xN ) and Y = diag(y1, . . . , yN) are diagonal matrices rep-

resenting the eigenvalues of M1 and M2, ∆(X) =
∏

i<j

(xj − xi) is the Vandermonde

determinant, and I(X, Y ) is the Itzykson-Zuber integral [51, 52] which corresponds to

the integration about the angular variables:

I(X, Y ) =

∫

UN

dUe
N
T

Tr (XUY U−1) (1.3)

where UN is the unitary group equipped with the Haar measure. Relatively to the

Itzykson-Zuber integral, one can also define the quantities:

Mi,j =

∫

UN

dU‖Ui,j‖2e
N
T

Tr (XUY U−1) (1.4)

which can be used to determine the Itzykson-Zuber integral by the formula:

I(X, Y ) =
N∑

i=1

Mi,j =
N∑

j=1

Mi,j (1.5)

Note in particular that the r.h.s. does not depend on the second index i or j. Tech-

nically, the last formulas are obvious since
N∑

i=1

‖Ui,j‖2 = 1 =
N∑

j=1

‖Ui,j‖2 in the unitary

group. Eventually, in the hermitian case, it is also known that the Mi,j ’s satisfy the

Dunkl equation [15, 16, 24], namely:

∀ 1 ≤ i, j ≤ N :
∂

∂xi
Mi,j +

∑

k 6=i

Mi,j −Mk,j

xi − xk
= yjMi,j (1.6)

We will see in the next sections that these properties can be extended uniquely in

the case of the β-deformation of the hermitian two-matrix model case.

1.2 Generalization to arbitrary β two-matrix models

Similarly to what happens in the one-matrix model, we would like to generalize the

hermitian two-matrix model to other β–ensembles of matrices. As in the case of one-

matrix models, the usual generalization is made from the diagonalized version of the

problem (1.2) by:

Zβ
def
=

∫

dXdY∆(X)2β∆(Y )2βe
−Nβ

T

[

N
∑

i=1
V1(xi)+

N
∑

j=1
V2(yj)

]

Iβ(X, Y ) (1.7)

where Iβ(X, Y ) is a generalized version of the Itzykson-Zuber integral that we will

describe later. Note that with our convention, the hermitian case corresponds to β = 1

(notation used by people working on AGT conjecture [2], and Laughlin wave function),

whereas sometimes in the literature it is normalized to β = 2 (Wigner’s notation
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[62, 67]). We prefer to use the first notation in order to avoid unnecessary powers of 2

in all formulas.

The diagonalized version (1.7) corresponds to the idea of the generalized matrix

integral:

Zβ“ = ”

∫

EN,β

dM1 dM2 e
−Nβ

T
tr [V1(M1)+V2(M2)−M1M2] (1.8)

where EN,β would be an ensemble of matrices such that the diagonalization of M1 and

M2 gives (1.7). Note that this definition is only formal since apart from β = 1, 0, 1
2

or 2 where EN corresponds to hermitian, diagonal, real-symmetric or quaternionic

matrices, no other ensemble is known presently (it would be interesting to see if the

β-matrix ensemble introduced by [35] also reproduces the Iβ term).

1.3 The angular integral

We shall now define the Iβ(X, Y ) angular integral, so that it coincides with the actual

angular integral for the matrix cases β = 1, 0, 1
2
, 2, and in fact we shall use the angular

matrix integral defined in [6].

Following [6], we first define a good generalization of the Mi,j and from (1.5) we

will define the generalized version of the Itzykson-Zuber integral. In [6], the authors

claim that the natural generalization of the Mi,j , noted here M
(β)
i,j is the following:

1. The M
(β)
i,j ’s satisfy the generalized Dunkl-Calogero-Moser equations:

∀ 1 ≤ i, j ≤ N :
∂

∂xi
M

(β)
i,j + β

∑

k 6=i

M
(β)
i,j −M

(β)
k,j

xi − xk
=
Nβ

T
yjM

(β)
i,j (1.9)

(The factor Nβ
T

comes from the same factor in the exponential term of the parti-

tion function which can be absorbed by the change Y ↔ Nβ
T
Y )

2. M
(β)
i,j must be stochastic matrices, i.e. Iβ =

N∑

i=1

M
(β)
i,j must be independent from j

and Iβ =
N∑

j=1

M
(β)
i,j must be independent from i

3. They must have the symmetry M
(β)
i,j (X, Y ) = M

(β)
j,i (Y,X). In particular, this

implies that Iβ(X, Y ) =
N∑

i=1

M
(β)
i,j (X, Y ) must be symmetric in the exchange X ↔

Y .

4. They must also have the symmetry M
(β)
σ(i),j(Xσ, Y ) = M

(β)
i,j (X, Y ) where σ ∈ ΣN

is a permutation. This implies that Iβ(Xσ, Y ) = Iβ(X, Y ).

5. They are normalized so that Iβ(IdN×N , Y ) = e
Nβ

T
tr Y .
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These conditions define the M
(β)
i,j ’s uniquely making the previous set of conditions a

proper definition (in [6], an explicit solution for those M
(β)
i,j is provided as an integral,

or is given by a recursion on N). Moreover all these properties are standard results in

the hermitian case β = 1 and hold for β = 1, 1
2
, 2. In particular note thatM

(β)
i,j (X, Y ) =

M
(β)
j,i (Y,X) gives another formulation of (1.9) as:

∀ 1 ≤ i, j ≤ N :
∂

∂yj
M

(β)
i,j + β

∑

k 6=j

M
(β)
i,j −M

(β)
i,k

yj − yk
=
Nβ

T
xiM

(β)
i,j (1.10)

Similarly to what happens in the hermitian case, it is logical to define the generalized

Itzykson-Zuber integral by:

Iβ(X, Y )
def
=

N∑

i=1

M
(β)
i,j (X, Y ) =

N∑

j=1

M
(β)
i,j (X, Y ). (1.11)

Note again that this definition recovers the known cases when β = 1, 1
2
, 2. Eventually,

from this definition we can prove (see [6]) that the generalized Itzykson-Zuber integral

Iβ(X, Y ) satisfies the following Calogero-Moser equation [16]:

H
(β)
X Iβ

def
=

N∑

i=1

∂2Iβ
∂x2i

+ β
∑

i 6=j

1

xi − xj

(
∂Iβ
∂xi
− ∂Iβ
∂xj

)

=

(
Nβ

T

)2
(

N∑

j=1

y2j

)

Iβ (1.12)

where H
(β)
X is the Calogero-Moser Hamiltonian. Note again that Iβ(X, Y ) is well known

to satisfy (1.12) in the β = 1, 1
2
, 2 cases.

Now that we have introduced a proper generalized two-matrix model, we can try

to solve it in the large N limit and in various regimes of the parameters. In particular,

since no (bi)-orthogonal polynomials techniques are known in the case of an arbitrary

exponent β in the Vandermonde determinant (although some work has been done

in [34]), we will use in this article the method of the loop equations to determine the

correlation functions of the models.

2 Summary of the main results

Our goal is to compute the asymptotic (possibly formal) expansion of the 2-matrix

model integral and its correlation functions.

Zβ” = ”

∫

EN,β

dM1 dM2 e−
Nβ

T
tr [V1(M1)+V2(M2)−M1M2]

and the cumulants (subscript c) of expectation values of products of traces of resolvents

Wn(x1, . . . , xn) =

〈

Tr
1

x1 −M1

. . .
1

xn −M1

〉

c

.
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We want to expand them in powers of a small parameter ǫ as

lnZ =
∑

g

ǫ2g−2 Fg

Wn =
∑

g

ǫ2g−2+nW (g)
n .

The small parameter ǫ is a combination of 1
N

and β. There can be several asymptotic

regimes of interest, which we discuss in detail in section 4.

Main results

• In section 3 we derive the loop equations for the 2-matrix model with arbitrary

β.

• In section 5 we solve the loop equation to leading order for the resolvent W1, i.e.

we compute W
(0)
1 . We show that

W
(0)
1 (x) =

T

N

ψ′(x)

ψ(x)

where ψ(x) is solution of a linear differential equation with polynomial coefficients

E
(

x,
T

N

∂

∂x

)

.ψ(x) = 0

where E(x, y) is a polynomial in 2 variables.

• This equation for ψ can be thought of as a ”quantum spectral curve”. We remind

that for β = 1 one gets an algebraic equation E(x,W (0)
1 (x)) = 0. Here, we replace this

algebraic equation by a linear operator E(x, ŷ) where

ŷ =
T

N

∂

∂x
, [ŷ, x] =

T

N
,

i.e. the non-commutative version of the algebraic equation E(x, y) = 0.

• This equation can also be seen as a Baxter T-Q equation where ψ(x) is the

Q function. Its zeros si’s (ψ(si) = 0) are thus the Bethe roots, and the equation

E(x, ŷ).ψ = 0 can be translated into a Bethe Ansatz equation for the si’s. We do it

in 6.17. The Bethe equation for S = diag(s1, . . . , sN) can be written in the following

way: find a matrix B such that:

(V ′
2(B)− S)e = 0 , et(V ′

1(S)−B) = 0 , [S,B] =
T

N
(Id− e et)

where e = (1, 1, . . . , 1)t.

• In section 6.6 we show that this Bethe ansatz equation can also be written as the

extremization of a Yang-Yang action:

N

T
S(S, S̃, A, ~u) = tr V1(S) + tr V2(S̃)− tr (SAS̃A−1)− T

N
ln(∆(S))
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− T
N

ln(∆(S̃)) +
T

N
ln det(A)− T

N
~ut (A~e− ~e)

At the extremum of S we have S = diag(s1, . . . , sN).

The leading order F0 of lnZ is the value of the Yang-Yang action at its extremum,

and the first subleading term F1 is half the log of the determinant of the Hessian of S:

lnZN =

∞∑

g=0

ǫ2g−2Fg , F0 = −S(extremum) , F1 = −
1

2
ln detS ′′

• In section 6.7.1 we compute the leading order of the 2-point function W
(0)
2 in

terms of the Hessian H = S ′′ of the Yang-Yang action:

W
(0)
2 (x, x′) =

N∑

i,j=1

(H−1)i,j
(x− si)2 (x′ − sj)2

.

In a similar way, we compute the leading order of the 3-point function W
(0)
3 in terms

of H = S ′′ and S ′′′ in (6.7.2).

• In section 7 we provide a “topological recursion” algorithm to compute every

subleading correction to any n-point function, i.e. W
(g)
n , in the form:

W
(g)
n+1(x0, x1, . . . , xn) =

N∑

i=1

Res
x→si

K(x0, x)
(

combination ofW (h)
m

′s with 2h+m < 2g+n
)

However, in contrast with [48], the recursion kernel K(x0, x) is here a matrix of di-

mensions d2 = deg V ′
2 . We derive the topological recursion in section 7.4, and then we

describe the kernel K(x0, x) in more details in section 7.5 and in appendix.

3 Loop equations for the β-deformed two-matrix

model

The loop equations, also called “Schwinger–Dyson” equations, are a very powerful tool

to study random matrices, perturbatively in the expansion in some small parameter

(for the hermitian case, the small parameter is usually 1/N in the large N limit),

see [3, 23, 26, 40, 53, 66]. In short, Schwinger–Dyson equations exploit the fact that an

integral is invariant by change of variable, or an alternative way to obtain the same

equations is doing integration by parts.

3.1 Notations for correlation functions

For the hermitian two-matrix models, the loop equations are well known [20,41–43,47,

48, 56, 65] and they are very useful to compute the large N expansion of correlations

functions,W
(g)
n and symplectic invariants Fg presented in a more general context in [48].
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In the one-matrix model, it is also known [46] that the loop equations method can be

generalized for arbitrary β quite directly from the hermitian case. Indeed, we remind

the reader that we can see loop equations as integration by part or Schwinger-Dyson

equations of the diagonalized problem (1.7). In the present β-deformed two-matrix

model case, we will see that we can get also some loop equations by following the same

approach. Before writing down these equations, we need to introduce some notations

(the same as in [20, 41, 42]):

• The potentials are assumed to be polynomials:

V ′
1(x) =

d1∑

k=0

tkx
k , V ′

2(x) =

d2∑

k=0

t̃kx
k (3.1)

• The correlation functions are defined by:

Wn(z1, . . . , zn) =

〈
N∑

i1,...,in=1

1

z1 − xi1
. . .

1

zn − xin

〉

c

(3.2)

where the brackets 〈 〉 indicates that we take the expectation value relatively to

the measure defined by (1.7) for the random variables X = diag(x1, . . . , xn) and

Y = diag(y1, . . . , yN , namely:

〈A(X, Y )〉 def= 1

Zβ

∫

dXdY A(X, Y )e−
Nβ
T

( tr V1(X)+V2(Y ))∆(X)2β∆(Y )2βIβ(X, Y )

(3.3)

The index c stands for the connected component (also called cumulant) of the

correlation function that is to say:

< A1 > = < A1 >c

< A1A2 > = < A1A2 >c + < A1 >c< A2 >c

< A1A2A3 > = < A1A2A3 >c + < A1A2 >c< A3 > + < A1A3 >c< A2 >

+ < A2A3 >c< A3 > + < A1 >< A2 >< A3 >

< A1 . . . An > = < AJ >=
n∑

k=1

∑

I1⊎I2···⊎Ik=J

k∏

i=1

< AIi >c

(3.4)

In order to have more compact notations, we will sometimes simply denote

W (x) =W1(x) for the first correlation function.

• We can define similarly the second type of correlation functions:

W̃n(z1, . . . , zn) =

〈
N∑

i1,...,in=1

1

z1 − yi1
. . .

1

zn − yin

〉

c

(3.5)

and denote W̃ (y) = W̃1(y) for the first correlation function.
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• To close the loop equations we will need to introduce the following functions:

Un(x, y; z1, . . . , zn) =
N∑

i,j,i1,...,in=1

〈

1

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj
1

z1 − xi1
. . .

1

zn − xin

〉

c

(3.6)

Note that they are polynomials in the variable y, and remember thatM
(β)
i,j (X, Y )

depends on X and Y and is also a random variable. In a similar way, we also

introduce:

Pn(x, y; z1, . . . , zn) =
N∑

i,j,i1,...,in=1

〈

V ′
1(x)− V ′

2(xi)

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj
1

z1 − xi1
. . .

1

zn − xin

〉

c

(3.7)

Note that this time Pn(x, y; z1, . . . , zn) are polynomials in both x and y.

The loop equations method is a powerful method of deriving an infinite set of

equations connecting the correlation functions and the functions Pn and Un introduced

before. There are several ways to derive the loop equations and we choose here to use

the integration by part way which is the most convenient in our setting. In the case

of hermitian, real-symmetric or quaternionic matrix models, these loop equations are

already known and can be derived directly from the matrix integral settings (before

any diagonalization). They can be found in many different places in the literature

[13,20,21,26,41–43,48,54,56,65]. In our arbitrary β setting, we do not have the initial

matrix integral model properly defined, thus we must adapt the derivation of the loop

equations with our definitions (1.9) and (1.11). This is done in different successive

steps that are fully detailed in the next sections.

3.2 First step: deriving an auxiliary result

We start by evaluating the following integral:

0 =
N∑

i,j=1

∫

dXdY
∂

∂yj

(

e−
Nβ

T
tr (V1(X)+V2(Y ))∆(X)2β∆(Y )2β

1

x− xi
M

(β)
i,j

)

(3.8)

The result is clearly null if we choose an integration path which goes to∞ in directions

in which e −N
T
V1(X) and e −N

T
V2(Y ) vanish exponentially, because we integrate a total

derivative. The right hand side yields 3 different contributions:

• Acting on the exponential we find:

−Nβ
T

N∑

i,j=1

〈

V ′
2(yj)

1

x− xi
M

(β)
i,j

Iβ

〉

(3.9)

11



• Acting on the Vandermonde determinant, we find:

2β

〈
N∑

i,j=1

∑

k 6=j

1

yj − yk
1

x− xi
M

(β)
i,j

Iβ

〉

(3.10)

• Eventually, acting on M
(β)
i,j and using the Dunkl differential equation satisfied by

the M
(β)
i,j ’s (1.10) we find:

〈
N∑

i,j=1

1

x− xi

(

Nβ

T
xiM

(β)
i,j − β

∑

k 6=j

M
(β)
i,j −M

(β)
i,k

yj − yk

)

1

Iβ

〉

(3.11)

Then we see that (3.10) cancels with the last part of (3.11) so that we have our

first equation:

N∑

i,j=1

〈

V ′
2(yj)

1

x− xi
M

(β)
i,j

Iβ

〉

=

N∑

i,j=1

〈

xi
x− xi

M
(β)
i,j

Iβ

〉

(3.12)

Remembering now that
N∑

j=1

M
(β)
i,j = Iβ gives:

N∑

i,j=1

〈

V ′
2(yj)

1

x− xi
M

(β)
i,j

Iβ

〉

= −N + xW (x)

(3.13)

3.3 Second step: finding the loop equations

Then consider:

0 =
N∑

i,j=1

∫

dXdY
∂

∂xi

(

e−
Nβ

T
tr (V1(X)+V2(Y ))∆(X)2β∆(Y )2β

1

x− xi
M

(β)
i,j

V ′
2(y)− V ′

2(yj)

y − yj

)

(3.14)

whose r.h.s. yields 4 contributions:

• Acting on the exponential, we find:

−Nβ
T

N∑

i,j=1

〈

V ′
1(xi)

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(i) (3.15)

• Acting on the Vandermonde determinant we find:

2β

N∑

i,j=1

〈
∑

k 6=i

1

xi − xk
1

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(ii) (3.16)

12



• Acting on 1
x−xi we find:

N∑

i,j=1

〈

1

(x− xi)2
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(iii) (3.17)

• Acting on M
(β)
i,j and using (1.9) we find:

N∑

i,j=1

〈

1

x− xi
1

Iβ

(

Nβ

T
yjM

(β)
i,j − β

∑

k 6=i

M
(β)
i,j −M

(β)
k,j

xi − xk

)

V ′
2(y)− V ′

2(yj)

y − yj

〉

(iv)

(3.18)

Now we observe the following identities: first in (3.15) we can perform V ′
1(xi) = V ′

1(xi)−
V ′
1(x) + V ′

1(x) so that we have (using the notations U0 and P0 introduced in (3.6) and

(3.7)):

(i) ⇔ −Nβ
T

(V ′
1(x)U0(x, y)− P0(x, y)) (3.19)

Secondly we can split (ii) in the following form:

(ii) = β
N∑

i,j=1

〈
∑

k 6=i

1

xi − xk
1

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

+β

N∑

i,j=1

〈
∑

k 6=i

1

x− xi
1

x− xk
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

+β
N∑

i,j=1

〈
∑

k 6=i

1

x− xk
1

xi − xk
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

= β

N∑

i,j=1

〈
∑

k 6=i

1

x− xi
1

x− xk
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(ii)′

+β

N∑

i,j=1

〈
∑

k 6=i

M
(β)
i,j −M

(β)
k,j

(xi − xk)(x− xi)
V ′
2(y)− V ′

2(yj)

y − yj

〉

(ii)′′

(3.20)

Note that (ii)′′ is the same as the last terms of (iv) so that it cancels out. We can also

split (ii)′ into a sum over i, k minus the case i = k which is identical to (iii) except as

a factor β. Therefore we can regroup (ii), (iii) and (iv) to get:

(ii) + (iii) + (iv) = (1− β)
N∑

i,j=1

〈

1

(x− xi)2
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(1)

+β
N∑

i,j,k=1

〈

1

x− xi
1

x− xk
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(2)

+
Nβ

T

N∑

i,j=1

〈

yj
x− xi

M
(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

(3) (3.21)
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Observe now, that we have:

(1) = (1− β)
N∑

i,j=1

〈

1

(x− xi)2
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

= (β − 1)
∂

∂x
U0(x, y) (3.22)

Then we have also:

T

Nβ

〈
∂

∂V1(x)
U0(x, y)

〉

c

=

N∑

i,k,j=1

〈

1

x− xi
1

x− xk
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

−
N∑

i,j=1

〈

1

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉〈

1

x− xk
M

(β)
i,j

Iβ

〉

=

N∑

i,k,j=1

〈

1

x− xi
1

x− xk
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj

〉

−W (x)U0(x, y) (3.23)

We recognize here one the second term of (3.21):

(2) ⇔ T

N

〈
∂

∂V1(x)
U0(x, y)

〉

c

+ βW (x)U0(x, y)

⇔ βU1(x, y; x) + βW (x)U0(x, y) (3.24)

Eventually, we are left with (3). We perform the change yj ↔ yj − y + y and split it

into two parts:

(3) ⇔ Nβ

T
yU0(x, y)−

Nβ

T
V ′
2(y)

N∑

i,j=1

〈

1

x− xi
M

(β)
i,j

Iβ

〉

+
Nβ

T

N∑

i,j=1

〈

V ′
2(yj)

x− xi
M

(β)
i,j

Iβ

〉

(3.25)

But remember that
N∑

j=1

M
(β)
i,j = Iβ . and that from our first step we have (3.13) so

that eventually:

(3)⇔ Nβ

T
yU0(x, y)−

Nβ

T
V ′
2(y)W (x) +

Nβ

T
(−N + xW (x)) (3.26)

Now we can put everything back together to get the loop equation:

0 = −Nβ
T

(V ′
1(x)U0(x, y)− P0(x, y))− (1− β) ∂

∂x
U0(x, y)

+βU1(x, y; x) + βW (x)U0(x, y) +
Nβ

T
yU0(x, y)

−Nβ
T
V ′
2(y)W (x) +

Nβ

T
(−N + xW (x))

(3.27)
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which can be rewritten (performing a multiplication by − T
Nβ

) as the master loop

equation:

(

y − V ′
1(x) +

T

N
W (x) + ~∂x

)

U0(x, y) = (V ′
2(y)− x)W (x)− P0(x, y)

+N − T

N
U1(x, y; x)

(3.28)

where we have defined ~ = T
N
(1− 1

β
) which we prefer to write

~ =
T

N
√
β

(
√

β − 1√
β

)

.

(3.29)

3.4 Higher order loop equations

With the same approach as before, one can deduce higher order loop equations for

Un(x, y, ξ1, . . . , , ξn). Indeed, if one look at the auxiliary integral:

0 =
N∑

i,j=1

∫

dXdY
∂

∂yj

(

e−
Nβ

T
tr (V1(X)+V2(Y ))

[

∆(X)2β∆(Y )2β
1

x− xi
M

(β)
i,j (X, Y )

(
n∏

p=1

tr
1

ξp −X

)

c

− Cp(ξ1, . . . , ξp)∆(X)2β∆(Y )2β
1

x− xi
M

(β)
i,j

])

(3.30)

with

Cp(ξ1, . . . , ξp) =

∫

dXdZe−
Nβ

T
tr (V1(X)+V2(Z))∆(X)2β∆(Z)2βIβ(X,Z)

(
n∏

p=1

tr
1

ξp −X

)

c
(3.31)

One finds:

N∑

i,j=1

〈

V ′
2(yj)

1

x− xi
M

(β)
i,j

Iβ

n∏

p=1

tr
1

ξp −X

〉

c

= xWn+1(x, ξ1, . . . , ξn) (3.32)

Then the second step can be carried out using the integral:

0 =

N∑

i,j=1

∫

dXdY
∂

∂xi

(

e−
Nβ

T
tr (V1(X)+V2(Y ))∆(X)2β∆(Y )2β

1

x− xi

M
(β)
i,j

V ′
2(y)− V ′

2(yj)

y − yj

n∏

p=1

tr
1

ξp −X
)

(3.33)
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First, we find the same terms as before (the new term
n∏

p=1

tr 1
ξp−X being treated as a

constant). This gives:

−Nβ
T

(

V ′
1(x)Un(x, y, ξ1, . . . , ξn)− Pn(x, y, ξ1, . . . , ξn)

)

−(1− β) ∂
∂x
Un(x, y, ξ1, . . . , ξn) + βUn+1(x, y; x, ξ1, . . . , xin)

+βW (x)Un(x, y, ξ1, . . . , ξn) +
Nβ

T
yUn(x, y, ξ1, . . . , ξn)

+β
∑

I⊔J={ξ1,...,ξn}, I 6=∅
W1+|I|(x, I)U|J |(x, y; J)

−Nβ
T
V ′
2(y)Wn+1(x, ξ1, . . . , ξn) + xWn+1(x, ξ1, . . . , ξn)

)

(3.34)

However, the main difference is that now the derivative will also act on
n∏

p=1

tr 1
ξp−X .

This gives an additional contribution:

∑

i,j,k,iK

〈 1

x− xi
M

(β)
i,j

Iβ

V ′
2(y)− V ′

2(yj)

y − yj
1

ξ1 − xi1
. . .

1

ξk−1 − xik−1

1

(ξk − xi)2
1

ξk+1 − xik+1

. . .
1

ξn − xin

〉

(3.35)

Then observe the two identities:

1

(ξk − xi)2
= − ∂

∂ξk

1

ξk − xi
(3.36)

and:
1

x− xi
1

ξk − xi
=

1

x− ξk

(
1

ξk − xi
− 1

x− xi

)

(3.37)

Therefore the action of the derivative can be rewritten as:

n∑

k=1

∂

∂ξk

(
Un−1(x, y, ξ1, . . . , ξk−1, ξk+1, . . . , ξn)− Un−1(ξk, y, ξ1, . . . , ξk−1, ξk+1, . . . , ξn)

x− ξk

)

(3.38)

Eventually, adding (3.34) and (3.38) to get (3.33) we get the higher order loop
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equations:

(

y − V ′
1(x) +

T

N
W (x) + ~∂x

)

Un(x, y; ξ1, . . . , ξn) +
T

N
Un+1(x, y; x, ξ1, . . . , ξn)

+
T

N

∑

I⊔J={ξ1,...,ξn}, I 6=∅
W1+|I|(x, I)U|J |(x, y; J) +

T

Nβ

n∑

k=1

∂

∂ξk
(
Un−1(x, y, ξ1, . . . , ξk−1, ξk+1, . . . , ξn)− Un−1(ξk, y, ξ1, . . . , ξk−1, ξk+1, . . . , ξn)

x− ξk

)

= (V ′
2(y)− x)Wn+1(x, ξ1, . . . , ξn)− Pn(x, y; ξ1, . . . , ξn)

(3.39)

These loop equations (3.28), (3.39) are exact equations satisfied by the correlation

functions, they hold for every N and every β. Now, in order to solve them, we want

to consider some limit and expansion around that limit, in which they can be solved

order by order.

3.5 Relationships between correlators

The loop equations which we have written, involve the resolventW (x), as well as higher

correlation functions Wn, and also some auxiliary functions Un and Pn. However all of

them are related.

First, notice that Pn is the large x polynomial part of V ′
1Un:

Pn(x, y; x1, . . . , xn) = (V ′
1(x) Un(x, y; x1, . . . , xn))+ (3.40)

Second, notice that the large y behavior of Un is related to Wn+1:

Un(x, y; x1, . . . , xn) ∼
y→∞

t̃d2 y
d2−1 Wn+1(x, x1, . . . , xn) +O(yd2−2) (3.41)

And then, the loop insertion operators allow to increase the index n by 1. Define:

∂

∂V1(x)
:= −

∞∑

k=1

1

xk+1
k

∂

∂tk−1

∂

∂V2(x)
:= −

∞∑

k=1

1

yk+1
k

∂

∂t̃k−1

(3.42)

These operators, called loop-insertion-operators, are formal and they have the property

that:
∂Vj(x)

∂Vl(x′)
= δj,l

1

x− x′ ,
∂V ′

j (x)

∂Vl(x′)
= −δj,l

1

(x− x′)2 (3.43)
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The main interest of these operators is that they can be used to connect the correlation

functions Wn(x1, . . . , xn) to the next correlation functions Wn+1(x1, . . . , xn+1):

Nβ

T
W (x) =

∂F

∂V1(x)
Nβ

T
Wn(x1, . . . , xn) =

∂Wn−1(x1 . . . , xn−1)

∂V1(xn)
Nβ

T
Un(x, y; x1, . . . , xn) =

∂Un−1(x, y; x1 . . . , xn−1)

∂V1(xn)
(3.44)

We also have

Nβ

T
Pn(x, y; x1, . . . , xn) =

∂Pn−1(x, y; x1 . . . , xn−1)

∂V1(xn)

+
∂

∂xn

Un−1(x, y; x1 . . . , xn−1)− Un−1(xn, y; x1 . . . , xn−1)

x− xn
(3.45)

4 Topological expansion(s)

One sees, that the loop equation (3.28) involves U0 and U1, and similarly (3.39) involves

Un and Un+1. This is why loop equations can only be solved perturbatively, order by

order in some small parameter, in a regime where the Un+1 term is subleading compared

to the Un term.

We thus need to expand all our observables in powers of some parameter, and this

expansion is usually called topological expansion. Most often for hermitian matrices,

the small parameter is chosen to be 1/N where N is the size of the matrices, i.e. the

topological expansion is an asymptotic expansion for large random matrices.

Such a power series expansion does not always exist for convergent matrix models,

but by definition it does for formal matrix models which is our context here (we do not

interest ourselves in convergence here). For the subtle differences between convergent

and formal matrix models in the hermitian case, we invite the interested reader to refer

to [11, 39].

We thus need a small parameter in which to compute an expansion. For the her-

mitian case, the good choice is an expansion into powers of 1/N in the large N limit.

However, for β 6= 1, we can already see on loop equations, that the most interest-

ing regime (in which loop equation are most conveniently solved) is a regime where

~ = O(1), and so is not simply N → ∞. In fact, depending on which application of

random matrices one is interested in, several limit regimes can be interesting. Fortu-

nately, all of them are related together, and knowing one expansion allows to recover

the others. Let us present 3 main regimes:
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Before presenting those regimes, let us introduce some usual notations:

gs =
T

N
√
β

gs = string coupling constant

ǫ1 = gs
√

β 1st equivariant parameter

ǫ2 = −
gs√
β

2nd equivariant parameter

~ = ǫ1 + ǫ2
g2s = −ǫ1ǫ2
β = − ǫ1

ǫ2
(4.1)

Those notations are those used in different applications of matrix models, in particular

string theory [10, 28, 29] and in relationship to the now famous AGT conjecture [2].

4.1 Topological regime

This is the regime where we expand in powers of gs at fixed ~. This regime is the

one interesting for applications to geometry and topological strings. In this regime, we

wish to expand:

F = lnZ =

∞∑

g=0

g2g−2
s Fg(~) =

∞∑

g=0

∞∑

k=0

g2g−2
s ~

k Fg,k (4.2)

Each coefficient Fg(~) =
∑

k=0

~
kFg,k have a geometric interpretation. Notice that Fg,k

depends neither on N nor on β (but of course it depends on the potentials V1, V2 and

on T ).

In topological strings, Fg,k is the generating function for counting equivariant

Gromov-Witten numbers [12].

4.2 Large N regime

This is an expansion in powers of N , at fixed β. This is the regime interesting for large

random matrices. Most often, one is interested in specific values of β, like β = 1/2 or

β = 2. We shall write:

F = lnZ =

∞∑

l=0

(N/T )2−l F̂l(β) (4.3)

This expansion is related to the topological expansion by

F̂l(β) =

E( l
2
)

∑

g=0

β1+g−l(β − 1)l−2gFg,l−2g. (4.4)

For example

F̂0(β) = β F0,0 , F̂1(β) = (β − 1)F0,1 (4.5)
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F̂2(β) = F1,0 +
(β − 1)2

β
F0,2 , F̂3(β) =

β − 1

β
F1,1 +

(β − 1)3

β2
F0,3 (4.6)

and more generally by (4.4)

4.3 WKB large β regime

This is an expansion in powers of β at fixed N . This is the regime we shall consider

below. It can be computed with standard WKB techniques, but we shall analyze it

here with loop equations.

We expand in powers of gs =
T

N
√
β
at fixed N :

F = lnZ =
∞∑

h=0

g2h−2
s fh(N) (4.7)

This regime can be related to the topological regime as follows:

fh(N) =

h∑

g=0

(−1)g
g!

∞∑

k=0

(
T

N

)k−g
(k + g)!

k!
Fh−g,g+k (4.8)

For example

f0(N) =
∑

k

(
T

N

)k

f0,k = F0(T/N) , f1(N) = F1(
T

N
)− N

T
F ′
0(
T

N
).

4.4 Notations for the expansion

In this article, we want to study perturbatively the BKW regime where β → ∞, N

fixed, and we write gs =
T

N
√
β
. We thus expand all our correlation functions as:

Wn(x1, . . . , xn) =

(
N

T

)n ∞∑

g=0

g2g−2+2n
s W (g)

n (x1, . . . , xn)

U0(x, y) =
N

T

(

U
(0)
0 (x, y)− x+ V ′

2(y)
)

+
N

T

∞∑

g=1

g2gs U
(g)
0 (x, y)

Un(x, y; x1, . . . , xn) =

(
N

T

)n+1 ∞∑

g=0

g2g+2n
s U (g)

n (x, y; x1, . . . , xn)

Pn(x, y; x1, . . . , xn) =

(
N

T

)n+1 ∞∑

g=0

g2g+2n
s P (g)

n (x, y; x1, . . . , xn)

(4.9)

Note that the functions W
(g)
n , U

(g)
n , and P

(g)
n are only functions of N (and

of course of their corresponding xi, of T and of the potentials V1, V2) but

not of gs, β or ~.
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Eventually, we define the numbers fg by the expansion of the logarithm of the

partition function itself:

Z = eF , F =
∞∑

g=0

g2g−2
s fg(N). (4.10)

Again, fg(N) is also implicitly a function of T , V1 and V2, and we recall that fg(N) is

related to Fg(~) which is the usual topological expansion.

As we will see in the next sections, most of the formulas get nicer if we shift the first

correlation function by the derivative of the potentials. Therefore, for convenience, we

introduce the shifted functions:

Y (x) := (V ′
1(x)−W

(0)
1 (x)) , X(y) := (V ′

2(y)− W̃
(0)
1 (y)) (4.11)

It is also useful to redefine a shifted version of the polynomial P (0)(x, y) as:

E(x, y) := (V ′
1(x)− y)(V ′

2(y)− x)− P
(0)
0 (x, y) + T +

T

N
, (4.12)

which is a polynomial in both x and y (and it depends on T , N , V1, V2 but not on β).

5 Spectral curve and Loop equations as an ODE

In this section, we shall see that the loop equation satisfied by the leading order W
(0)
1

of the resolvent W1(x) =
〈

tr 1
x−M1

〉

can be written as an ODE

E
(

x,
T

N

∂

∂x

)

.ψ(x) = 0 (5.1)

where E(x, y) is up to some shifts, the polynomial E(x, y) introduced above in (4.12).

This ODE is called the “spectral curve” and plays a central role.

5.1 Loop equations in gs expansion

The leading order at large β and fixed N of loop equation (3.28) (notice that we have

W
(0)
1 (x) = V ′

1(x)− Y (x) and U
(0)
0 (x, y) includes a shift by x− V ′

2(y)) is:

(

y − Y (x) + T

N
∂x

)

U
(0)
0 (x, y) = (V ′

1(x)− y)(V ′
2(y)− x)− P

(0)
0 (x, y) + T +

T

N
(5.2)

which is equivalent to (See (4.12)):

(

y − Y (x) + T

N
∂x

)

U
(0)
0 (x, y) = E(x, y)

(5.3)
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This is the master loop equation, also called the “spectral curve”. It generalizes the

hermitian 2-matrix models’s spectral curve [13, 41, 54, 56, 65].

If we expand in powers of y:

U
(0)
0 (x, y) =

d2∑

k=0

yk U
(0)
0,k (x) , E(x, y) =

d2+1∑

k=0

yk Ek(x) (5.4)

equation (5.2) reads:

U
(0)
0,k−1(x) +

(

−Y (x) + T

N
∂x

)

U
(0)
0,k (x) = Ek(x)

(5.5)

Remark: equation (5.5) with k = d2 + 1 gives us that:

U
(0)
0,d2

(x) = −t̃d2
(5.6)

In the same way, since P
(0)
0 (x, y) is only a polynomial in y of degree d2 − 1 we have

also:

U
(0)
0,d2−1(x) = t̃d2(V

′
1(x)− Y (x))− t̃d2−1

(5.7)

5.2 The linear differential system

In order find the lower coefficients U
(0)
0,k (x) with k = 0, . . . , d2 − 2 we introduce for

convenience the functions ψk(x) (0 ≤ k ≤ d2) defined by:

U0,k(x)
def
=
ψk(x)

ψ(x)
, W

(0)
1 (x)

def
=

T

N

ψ′(x)

ψ(x)
=
T

N

∂

∂x
lnψ(x) (5.8)

which is equivalent to say that:

ψ(x) = e
N
T

∫ xW
(0)
1 (z)dz , ψk(x) = ψ(x)U

(0)
0,k (x) (5.9)

By definition, the function ψ(x) is only determined up to a global multiplicative con-

stant which can be fixed by specifying the lower bound of the integral in the last

formula.

The first loop equation (5.5) can now be rewritten into a linear differential equation

(ODE):

ψk−1(x) +

(
T

N
∂x − V ′

1(x)

)

ψ
(0)
k (x) = Ek(x)ψ(x) (5.10)
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and using ψd2(x) = −t̃d2ψ(x), this leads to a set of linear equations that can be written

into a matrix form: (equivalent to (5.10))

T

N

d

dx








ψd2(x)
ψd2−1(x)

...
ψ0(x)








=














t̃d2−1

t̃d2
−1 0 . . . 0

−Ed2−1(x)

t̃d2
V ′
1(x)

. . .
. . .

...
... 0

. . .
. . . 0

−E1(x)

t̃d2

...
. . .

. . . −1
−E0(x)

t̃d2
0 . . . 0 V ′

1(x)





















ψd2(x)
ψd2−1(x)

...
ψ0(x)








= C(x)








ψd2(x)
ψd2−1(x)

...
ψ0(x)








(5.11)

Therefore, we have obtained a system of first order linear ordinary differential

equations given by a companion-like matrix. The determinant of the matrix

C(x) is given by the standard formula for the determinant of a companion matrix:

−t̃d2 det((y − V ′
1(x))Id+ C(x)) = E(x, y)

(5.12)

That is to say that the characteristic polynomial of the matrix C(x) is exactly our

function E(x, y).

There is no known notion of integrable system associated to the arbitrary β two

matrix model, but the fact that the spectral curve turns out to be a characteristic

polynomial (also called spectral determinant), is very suggestive from the point of

view of integrability [4, 7, 8], this could be a promising route, and needs to be further

investigated...

5.3 ODE satisfied by ψ(x)

The matrix equation (5.11) can be used to find a linear ODE satisfied by the function

ψ(x). Indeed we can rewrite it in following way:

(

V ′
1(x)−

T

N
∂x

)

ψd2(x) =
Ed2(x)

t̃d2
ψd2(x) + ψd2−1(x)

(

V ′
1(x)−

T

N
∂x

)

ψd2−1(x) =
Ed2−1(x)

t̃d2
ψd−1(x) + ψd2−2(x)

. . .(

V ′
1(x)−

T

N
∂x

)

ψ1(x) =
E1(x)

t̃d2
ψd2(x) + ψ0(x)

(

V ′
1(x)−

T

N
∂x

)

ψ0(x) =
E0(x)

t̃d2
ψd2(x)
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(5.13)

Multiplying line k on the left by (V ′
1(x)− ~∂x)

d2−k and summing the whole set of

equations give that:

(

V ′
1(x)−

T

N
∂x

)d2+1

ψ(x)−
d2∑

k=0

(V ′
1(x)− ~∂x)

k
(Ek(x)ψ(x)) = 0 (5.14)

which can be rewritten as:

ŷ =
T

N
∂x : (E(x, V ′

1(x)− ŷ))ψ(x)
def
=

(
d2+1∑

k=0

(V ′
1(x)− ŷ)k Ek(x)

)

ψ(x) = 0

(5.15)

Note in particular that since x and ŷ do not commute ([ŷ, x] = T
N
), we must specify

the position of the ŷ compared to x. In the last formula, it is implicitly assumed that

powers of V ′
1 − ŷ are always to the left of all powers of x, and:

(V ′
1(x)− ŷ)

k
= (V ′

1(x)− ŷ) (V ′
1(x)− ŷ) . . . (V ′

1(x)− y)
︸ ︷︷ ︸

k times

(5.16)

Eventually we find that ψ(x) must satisfy a linear ODE of order d2 + 1, with

polynomial coefficients, given by the quantized spectral curve E(x, ŷ). This generalizes

the Schrödinger equation in the case of the arbitrary-β one-matrix model [46].

5.4 Quantum spectral curve

The spectral curve E(x, Y (x)) = 0 in the hermitian case, gets replaced by

[ŷ, x] =
T

N
, E(x, V ′

1(x)− ŷ) . ψ(x) = 0. (5.17)

This can be interpreted as having now a quantum spectral curve.

5.5 Non-unicity of the solutions of the loop equations

In order to identify a solution of loop equations, it remains to compute the polynomial

coefficients Ek(x) of this ODE, and choose a solution ψ.

Then, as soon as ψ(x) is chosen, we can find ψd2(x) by using ψd2(x) = −t̃d2ψ(x).
The other functions ψk(x) follow by a descending recursion with the help of (5.10).

Eventually, the connection between ψk(x) and U
(0)
k (x) is given by (5.8) so that the

polynomial U (0)(x, y) is known.

One may think that the knowledge of the loop equations would be enough to deter-

mine all the correlation functions by solving them properly. But we remind the reader
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here that in general the loop equations (even in the hermitian case) have infinitely

many solutions.

Even if (5.11) gives us some linear differential equations with polynomial coef-

ficients, the main problem, also present in the hermitian case, is that the function

E(x, y) is not known at the moment. Indeed, in the definition of E(x, y), we face the

polynomial P
(0)
0 (x, y) whose coefficients are unknown. The coefficients of the polyno-

mial P
(0)
0 (x, y) are not given by the loop equations, they have to be determined by

some other informations which we have not used so far.

Therefore, in order to pick the proper solution of the loop equations one need

to understand the missing information in the loop equations. When dealing with

convergent matrix models, the answer is quite simple: the missing information is about

the choice of the contour of integration of the model. Indeed, we have assumed here

that the eigenvalues of the matrices were real, but one could take a different one-

dimensional contour and get the same loop equations as the ones we have derived here

(as soon as there is no hard edges, i.e. no boundary terms in integration by parts).

Nevertheless, different integration paths would lead to different correlation functions

and thus to different solutions of the loop equations. In the case of formal matrix

models, the path of integration and the associated convergence is pointless and some

other considerations have to fix the choice of the solution of the loop equations (in the

hermitian case it is the notion of “filling fractions”). In this article we will restrict

ourselves (specifically at equation (6.5)) to a specific kind of solutions of the loop

equations because it corresponds to the less technical possible case.

Let us just mention that, in the hermitian case, the homology space of possible inte-

gration paths, has exactly the same dimension as the number of unknown coefficients

of the polynomial P
(0)
0 (x, y), and basically, every choice of P

(0)
0 (x, y) is acceptable,

and corresponds to a given integration path for the eigenvalues. However, finding the

integration path from the knowledge of P
(0)
0 (x, y) is not so easy in general.

In the non-hermitian case β 6= 1, it is not even clear what the homology space of

possible integration paths is, and a good understanding of the missing information,

its connections to the initial model and of the generalization of the notion of “filling

fractions” for our case is still missing and is postponed for a future article.

6 The Bethe ansatz

6.1 WKB approximation

Here, we work at large β and fixed N (working at large β or small gs when N is fixed

is completely equivalent since they are related by gs =
T

N
√
β
), so that our integral:

Z =

∫

dx1 . . . dxN dy1 . . . dyN e
− 1

g2s
A[X,Y ]

(6.1)
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where X = diag(x1, . . . , xN), Y = diag(y1, . . . , yN), with the action

A[X, Y ] =
T

N
( Tr V1(X) + Tr V2(Y ))− 2

T 2

N2
ln∆(X)− 2

T 2

N2
ln∆(Y )

− lim
β→∞

g2s ln (Iβ(X, Y )) +O(gs) (6.2)

can be computed by standard saddle point approximation, and in particular, we find

that
N

T
W

(0)
1 (x) = lim

β→∞ , N fixed
W1(x) =

N∑

i=1

1

x− x̄i
(6.3)

i.e. it is a rational fraction with N poles x̄i which are the saddle points for X , i.e. the

points such that

∂

∂xi

∣
∣
∣
∣
xi=x̄i

Aβ=∞[X, Y ] = 0 ,
∂

∂yi

∣
∣
∣
∣
yi=ȳi

Aβ=∞[X, Y ] = 0. (6.4)

Therefore, W
(0)
1 (x) = T

N
ψ′

ψ
must be a rational function with N poles, i.e. ψ(x) is a

polynomial of degree N . This is the case we will develop below and that corresponds

to the generalization of the solution presented in [46] in the case of a Schrödinger

equation.

However, we would like to stress again that this is not the only possible regime.

Indeed, we could also try to study directly the “topological regime” where N → ∞,

T fixed, and β → 0 in such a way that ~ = T
N

(

1− 1
β

)

remains finite. This regime is

more interesting for applications to string theory and AGT conjecture [1, 2, 10, 28, 29].

In this case, ψ(x) would not be a polynomial, instead, the coefficients of E(x, y), i.e.

the choice of W
(0)
1 (x) would be dictated by asymptotic behaviors in accordance with

the regime studied. This is more challenging, we have done it for the 1-matrix model

case [18, 19], and we plan to do it for multi-matrix models in the near future.

Therefore in the rest of the article, we restrict ourselves to the “Dirac”

case (the terminology “Dirac” is used here to remind that the density of

eigenvalues is a discrete measure, i.e. a sum of δ-functions, i.e. a “Dirac

comb”), where N is fixed and β →∞. In particular it correspond to assume

that ψ(x) is a polynomial (whose degree is the number N of eigenvalues).

6.2 Introduction of the ansatz in the equations

So, let us look for a solution where ψ(x) is polynomial in x. Then it is clear from

the recursion relation (5.10) that all the ψk(x)’s are also polynomials. We will use the

following notation:

ψ(x) =
N∏

i=1

(x− si)

(6.5)
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So that:

Y (x) = V ′
1(x)−

T

N

N∑

i=1

1

x− si
(6.6)

Here we have simply assumed that ψ(x) is a monic (remember that ψ(x) is only deter-

mined up to a multiplicative constant) polynomial of degree N and labeled (si)i=1,...,N

its complex zeros. Note that this ansatz is very restrictive, since usually a linear ODE of

the kind (5.15) does not admit polynomial solution if the coefficients Ek(x) are generic.

Then, from the definition of U0(x, y), it is also trivial that U
(0)
0,k (x) can only have simple

poles at the si’s. Taking into account the term in V ′
2(y)− x in the definition we have:

∀ 0 ≤ k ≤ d2 : U
(0)
0,k (x) =

N∑

i=1

uk,i
x− si

− t̃k + δk,0x

(6.7)

where the uk,i are at the moment unknown coefficients.

6.3 Computation of the si’s and of the uk,i’s

Putting this ansatz back into the recursion relations (5.10) for the U
(0)
0,k (x) and identi-

fying the coefficient in 1
x−si , we get for all k and i: (Note that the double poles cancel)

uk−1,i − (V ′
1(si)−

T

N

∑

j 6=i

1

si − sj
)uk,i +

T

N

(
∑

j 6=i

uk,j
si − sj

− t̃k + δk,0si

)

= 0 (6.8)

In order to solve this recursion we introduce the following matrices of size N ×N :

S = diag(s1, . . . , sN) , B =







Bi,i = V ′
1(si)− T

N

∑

j 6=i
1

si−sj

Bi,j = − T
N(si−sj)

(6.9)

and define the vectors :

~e =








1
1
...
1








, ~uk =








uk,1
uk,2
...

uk,N








(6.10)

Then the previous set of equations turns into:

~uk−1 − B~uk =
T

N
(t̃k − δk,0S)~e (6.11)
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Remember again that we have some extra knowledge for k = d2 and k = d2 − 1 (Cf.

(5.6) and (5.7)):

~ud2 = ~0 , ~ud2−1 =
T

N
t̃d2~e. (6.12)

Starting from ~ud2−1 =
T
N
t̃d2~e and using the recursion relation, we have:

~ud2−2 = B~ud2−1 +
T

N
t̃d2−1~e =

T

N

(
t̃d2B~e + t̃d2−1~e

)

~ud2−3 = B~ud2−2 +
T

N
t̃d2−2~e =

T

N

(
t̃d2B

2~e + t̃d2−1B~e + t̃d2−2~e
)

down to

~u0 = B~u1 +
T

N
t̃1~e =

T

N

(
t̃d2B

d2−1~e+ t̃d2−1B
d2−2~e+ · · ·+ t̃1~e

)

−B~u0 =
T

N
(t̃0 − S)~e

In fact all the previous relations can be summarized into the matrix form:

~uk =
T

N

d2−k−1∑

p=0

t̃k+p+1B
p~e (6.13)

or else in components:

uk,i =
T

N

N∑

j=1

d2−k−1∑

p=0

t̃k+p+1(B
p)i,j (6.14)

Eventually using the fact that −B~u0 = T
N
(t̃0 − S)~e we eventually get:

(V ′
2(B)− S)~e = 0 (6.15)

On the other hand, from the definition of B we have:

0 = ~e t(V ′
1(S)− B) , [B, S] =

T

N
(~e~e t − Id) (6.16)

Therefore we obtain a system of equations determining the roots (si)1≤i≤N :

(V ′
2(B)− S)~e = 0 , ~e t(V ′

1(S)− B) = 0 , [S,B] =
T

N
(Id− ~e~e t)

(6.17)

The last system of equations (6.17) gives us a complete set of equations to compute

all the si’s. In fact, this corresponds to a Bethe ansatz [5] found in [46] for the arbitrary-

β one-matrix model (where the authors got in the same context: V ′(si) =
T
N

∑

j 6=i
1

si−sj ).

Remark: (6.17) is a set of algebraic equations which determine the si’s, and the

solution is in general not unique. The choice of a solution, is also a choice of a saddle

point for computing our eigenvalue integral at large β, and thus it is related to a choice

of integration path for the eigenvalue integral. The number of solutions of (6.17),

coincides with the dimension of the homology space of all possible integration paths.
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6.4 Rewriting U
(0)
0 (x, y) in terms of S and B

With the previous results, we have that:

U
(0)
0 (x, y) = x− V ′

2(y) +
d2∑

k=0

N∑

i=1

uk,i
x− si

yk

= x− V ′
2(y) +

T

N

d2∑

k=0

N∑

i,j=1

d2−k−1∑

p=0

t̃k+p+1
1

x− si
(Bp)i,jy

k

(6.18)

Moreover we have:

d2∑

k=0

d2−k−1∑

p=0

t̃k+p+1B
pyk =

d2∑

k=0

k−1∑

p=0

t̃ky
pBk−1−p =

V ′
2(y)− V ′

2(B)

y −B (6.19)

so that:

U
(0)
0 (x, y) = x− V ′

2(y) +
T

N

N∑

i,j=1

(
V ′
2(y)− V ′

2(B)

y −B

)

i,j

1

x− si
(6.20)

Hence in the context of the Bethe ansatz, we can express easily the function U
(0)
0 (x, y)

by:

U
(0)
0 (x, y) =

T

N
~e t

1

x− S
V ′
2(y)− V ′

2(B)

y − B ~e+ x− V ′
2(y)

(6.21)

6.5 Rewriting P
(0)
0 (x, y) in terms of S and B

We start with equation (5.2) giving that:

(

y − V ′
1(x) +W (x) +

T

N
∂x

)

U
(0)
0 (x, y) = (V ′

1(x)− y)(V ′
2(y)− x)− P

(0)
0 (x, y) + T +

T

N
(6.22)

We can compute the l.h.s. with the help of the definition (6.7):

(

y − V ′
1(x) +W (x) +

T

N
∂x

)

U
(0)
0 (x, y) = (V ′

1(x)− y)(V ′
2(y)− x) +

T

N

+(y − V ′
1(x))

d2∑

k=0

N∑

i=1

uk,i
x− si

yk − T

N

d2∑

k=0

N∑

i=1

uk,i
(x− si)2

yk

+
T

N

d2∑

k=0

N∑

i=1

uk,i
(x− si)(x− sj)

yk +
T

N
(x− V ′

2(y))
N∑

j=1

1

x− sj

= (V ′
1(x)− y)(V ′

2(y)− x) +
T

N
+

d2∑

k=0

N∑

i=1

uk−1,i

x− si
yk −

d2∑

k=0

N∑

i=1

uk,iV
′
1(x)

x− si
yk
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− T
N

d2∑

k=0

N∑

i=1

uk,i
(x− si)2

yk +
T

N

d2∑

k=0

N∑

i=1

uk,i
(x− si)(x− sj)

yk

+T +
T

N

N∑

i=1

(si − V ′
2(y))

x− si
(6.23)

Note that we have used the fact that ud2,i = 0. With the help of the recursion relation

for the uk,i’s (6.8) we find:
(

y − V ′
1(x) +W (x) +

T

N
∂x

)

U
(0)
0 (x, y) = (V ′

1(x)− y)(V ′
2(y)− x) +

T

N
+ T

+

d2∑

k=0

N∑

i=1

(V ′
1(si)− V ′

1(x))uk,i
x− si

yk −
d2∑

k=0

N∑

j 6=i

uk,i + uk,j
(x− si)(si − sj)

yk

+
T

N

d2∑

k=0

N∑

j 6=i

uk,i
(x− si)(x− sj)

yk (6.24)

Observe now that we have the identity:

∀ 0 ≤ k ≤ d2 : −
N∑

j 6=i

uk,i + uk,j
(x− si)(si − sj)

+

N∑

j 6=i

uk,i
(x− si)(x− sj)

= 0 (6.25)

Moreover we have also (using (6.19)):

d2∑

k=0

N∑

i=1

(V ′
1(si)− V ′

1(x))uk,i
x− si

yk = − T
N
~e t
V ′
1(x)− V ′

1(S)

x− S
V ′
2(y)− V ′

2(B)

y − B ~e (6.26)

so that we are left with:

P
(0)
0 (x, y) =

T

N
~e t
V ′
1(x)− V ′

1(S)

x− S
V ′
2(y)− V ′

2(B)

y −B ~e

(6.27)

Eventually, we can summarize the results in the following way. With (6.17) we can

compute all the si’s and then using the relations (6.13) we can get every uk,i (0 ≤ k ≤ d2
and 1 ≤ i ≤ N). Hence we have found an algorithm to compute explicitly all U

(0)
k (x)’s

or equivalently every ψk(x)’s (and ψ(x)), that is to say that we have the solution of

the loop equation at the dominant order in the studied limit. In particular, assuming

that ψ(x) is polynomial in x is sufficient to determine it completely which indicates

that the structure of the loop equations are very rigid and hides integrable structure.

6.6 Yang-Yang Variational approach of the Bethe ansatz

The Bethe ansatz equation (6.17) can also be obtained from a variational approach

with a Yang–Yang action. Consider the following functional :

N

T
S(S, S̃, A, ~u) = tr V1(S) + tr V2(S̃)− tr (SAS̃A−1)− T

N
ln(∆(S))
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− T
N

ln(∆(S̃)) +
T

N
ln det(A)− T

N
~ut (A~e− ~e) (6.28)

where S and S̃ are diagonal matrices of size N ×N , A is a N ×N invertible matrix, ~u

is an N -dimensional vector, and remember that ~e t = (1, . . . , 1). We now look for the

extremal values of S. First taking the derivative relatively to ~u gives:

∂S
∂~u

= 0⇔ A~e = ~e⇔ A−1~e = ~e (6.29)

Performing the derivative relatively to S = diag(s1, . . . , sN) yields:

∂S
∂si

= 0⇔ V ′
1(si)−

(

AS̃A−1
)

i,i
− T

N

∑

j 6=i

1

si − sj
= 0 (6.30)

Performing the derivative relatively to S̃ = diag(s̃1, . . . , s̃n) is the same:

∂S
∂s̃i

= 0⇔ V ′
2(s̃i)− (A−1SA)i,i −

T

N

∑

j 6=i

1

s̃i − s̃j
= 0 (6.31)

Performing the derivative relatively to A = (Ai,j)i,j is more difficult, consider an in-

finitesimal variation A→ A + δA, that yields:

δS = − tr (SδAS̃A−1) + tr (SAS̃A−1δAA−1)− T

N
tr (AδA) +

T

N
~u tδA~e

= − tr ((δA)A−1

(

[AS̃A−1, S] +
T

N
(Id− A~e~u t)

)

)

(6.32)

thus since A is invertible and A~e = ~e:

∂S
∂A

= 0⇔ [AS̃A−1, S] +
T

N
(Id− ~e~u t) = 0 (6.33)

But since S and S̃ are diagonal we have [AS̃A−1, S]i,i = 0, and the diagonal term of

(6.33) gives ∀i : 1 = (~e~u t)i,i i.e. we have ∀i : ui = 1 that is to say

~u = ~e.

Then a non diagonal element of the relation (6.33) gives:

∀i 6= j :
(

AS̃A−1
)

i,j
=

T

N(si − sj)
(6.34)

Combining (6.30) and (6.34) gives that at the extremum we must have AS̃A−1 =

B. Then, we can rewrite (6.32) as:

δS = − tr (SδAS̃A−1) + tr (SAS̃A−1δAA−1)− T

N
tr (AδA) +

T

N
~u tδA~e
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= − tr (A−1(δA)

(

[S̃, A−1SA] +
T

N
(Id− ~e~u tA)

)

)

(6.35)

Therefore the extremum equation δS
δA

= 0 gives also that

[S̃, A−1SA] +
T

N
(Id− ~e~u tA) = 0 (6.36)

Again, since S and S̃ are diagonal, we have [S̃, A−1SA]i,i = 0, which implies that

∀i : (~e~u tA)i,i = 1. Since at the extremum ~u = ~e, the last equation gives us that at the

extremum:
N∑

k=1

Ak,j = 1 ⇔ ~e tA = ~e t (6.37)

Let’s now introduce the matrix B̃ = A−1SA. Then taking a non-diagonal element of

(6.36), we find:

∀j 6= i : B̃i,j = (A−1SA)i,j =
T

N(s̃i − s̃j)
(6.38)

We can now rewrite (6.30) as:

B̃~e = A−1SA~e = V ′
2(S̃)~e

⇒ AB̃~e = AV ′
2(S̃)~e

⇒ AB̃A−1~e = AV ′
2(S̃)A

−1~e

⇒ S~e = V ′
2(B)~e

(6.39)

Therefore if we combine all previous results we find that an extremum

of S must satisfies the following identities:

• ~u = ~e

• A~e = ~e and ~e tA = ~e t

• [AS̃A−1, S] = T
N
(−Id+ ~e~e t) and [S̃, A−1SA] + T

N
(Id− ~e~e t) = 0

• AS̃A−1 = B and S~e = V ′
2(B)~e

We recover all the equations of (6.17) giving us a variational way of deriving all quan-

tities. Note also that by using (6.30) and (6.34) we have: B = A−1S̃A leading to

S̃~e = V ′
1(B̃)~e where remember that B̃ = A−1SA. The last relations show that the

system is completely symmetric in tilde quantities and non-tilde quantities. Eventu-

ally the relation S̃~e = V ′
1(B̃)~e allows to determine directly the s̃i similarly to the fact

that S~e = V ′
2(B)~e determines the si at the extremum. The determination of A at the

extremum is unfortunately more complicated. Indeed, S~e = V ′
2(B)~e and S̃~e = V ′

1(B̃)~e

determines the si and the s̃j at the extremum and then the matrices B and B̃ at the
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extremum. The matrix A can then be computed by the relations B = A−1S̃A and

A~e = ~e or equivalently by B̃ = A−1SA and A~E = ~e. This leads to the system of

equations:

∀ i, j : 0 =
∑

k 6=j

Ai,k −Ai,j
sk − sj

+ Ai,j (V
′
1(sj)− s̃i)

1 =

N∑

k=1

Ai,k (6.40)

Remark 6.1 It looks like the Yang–Yang action should be the β → ∞ limit of the actual
action A[X,Y ] defined in (6.2). Unfortunately, since the angular integral Iβ(X,Y ) is not
very well known, this cannot be proved at the moment. But vice versa, that would give us
some knowledge of the angular integral Iβ.

6.7 Computation of W
(0)
2 (x, x′) and W

(0)
3 (x, x′, x′′) via the varia-

tional approach

Since W
(0)
n+1 = dW

(0)
n

dV1
, and since we know W

(0)
1 (x) = T

N

∑

i
1

x−si where the si’s are

obtained by the Bethe ansatz i.e. from the extremization of the Yang-Yang action S,
we can easily findW

(0)
2 andW

(0)
3 . We will see later 7 another way of getting formulas for

these functions which can be extended by recursion but having the main disadvantage

that the symmetry of the functions is not obvious at all.

6.7.1 Computation of W
(0)
2 (x, x′) via the variational approach

Starting from

W
(0)
1 (x) =

N∑

i=1

1

x− si
, W

(0)
2 (x, x′) =

∂

∂V1(x′)
W

(0)
1 (x)

we get:

W
(0)
2 (x, x′) =

∑

i

1

(x− si)2
∂si

∂V1(x′)
.

It remains to compute the quantities ∂si
∂V1(x′)

. For that we use that the si’s are the

extrema of the functional S(s, s̃, A, u).
We introduce the variable R = (s, s̃, A, u) as a “global” variable to avoid detailing

each of the cases. It is a vector of dimension N +N +N2 +N = 3N +N2. Therefore,

the functional S(R) is a functional of R whose extremum Rextr gives us the solution of

our model. Thus we have for every variation δ and every component i:

0 = δ

((
∂S
∂Ri

)

|R=Rextr

)
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=

(

δ
∂S
∂Ri

)

|R=Rextr

+

3N+N2
∑

j=1

(
∂2S

∂Ri∂Rj

)

|R=Rextr

δ ((Rextr)j)

(6.41)

The first equality comes from the fact that ∂S
∂Ri

(R = Rextr) = 0 since we place ourselves

at the extremum. Let’s introduce the Hessian of the functional at the extremum point:

Hr,s
def
=

(
∂2S

∂Rr∂Rs

)

|R=Rextr

(6.42)

It is a 3N+N2×3N+N2 matrix whose shape is given in appendix A. The last identity

gives us that:

(

δ
∂S
∂Ri

)

|R=Rextr

= −
3N+N2
∑

j=1

(
∂2S

∂Ri∂Rj

)

|R=Rextr

δ ((Rextr)j)

⇔

δ ((Rextr)i) = −
3N+N2
∑

j=1

(
H−1

)

i,j

(

δ
∂S
∂Rj

)

|R=Rextr

(6.43)

Let’s now specialize the last formula for the case when the variation δ is ∂
∂V1(x)

.

Since the potential V1 only appears in the term Tr V1(S) in the functional S it gives:

∂S
∂V1(x)

= −Tr
1

x− S (6.44)

Since it only depends on S (and not S̃, T or u), we see that in the last sum of (6.43), j

only varies from 1 to N , corresponding to the variables sj ’s (i.e.
∂
∂sj

∂
∂V1(x)

S = − 1
(x−sj)2

and ∀ j > N : ∂
∂Rj

∂
∂V1(x)

S = 0). Therefore we find (taking 1 ≤ i ≤ N):

∂si
∂V1(x)

=
N∑

k=1

(
H−1

)

i,k

1

(x− sk)2
(6.45)

Note that this last result is only a small fraction of the results contained in the formula:

δ ((Rextr)i) = −
3N+N2
∑

j=1

(
H−1

)

i,j

(

δ
∂S
∂Rj

)

|R=Rextr

(6.46)

depending on the choice of variation δ and the component i you take. With the help

of formula (6.45), it is straightforward to compute W
(0)
2 (x, x′):

W
(0)
2 (x, x′) =

T

N

N∑

i,j=1

(H−1)i,j
(x− si)2(x′ − sj)2

(6.47)
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In particular, in this formalism, it is clear that (x, x′) 7→ W
(0)
2 (x, x′) is a symmetric

function since H and its inverse are symmetric matrices.

6.7.2 Computation of W
(0)
3 (x1, x2, x3) via the variational approach

We use the same method:

W
(0)
3 (x, y, z) =

∂

∂V1(z)
W

(0)
2 (x, y)

For any variation δ and every component k, we have:

δ

((

H−1
|extr

)

i,j

)

=
3N+N2
∑

k=1

∂ (H−1)i,j
∂Rk

δ((Rextr)k) +
(

δ
(
H−1

)

i,j

)

=

3N+N2
∑

k=1

∂ (H−1)i,j
∂Rk

δ((Rextr)k)−
((
H−1 (δH)H−1

)

i,j

)

(6.48)

We choose δ = d
dV1(x′′)

and thus

δHi,j =
∂

∂Ri

∂

∂Rj

∂

∂V1(x′′)
S = − ∂

∂Ri

∂

∂Rj

Tr
1

x′′ − S

i.e.

δHi,j =

{

− 2δi,j
(x′′−si)3 if i ≤ N, j ≤ N

0 otherwise, i.e. i > N or j > N.
(6.49)

Moreover, we have

∂ (H−1)i,j
∂Rk

= −
3N+N2
∑

p,q=1

(
H−1

)

i,p

∂3S
∂Rp ∂Rq ∂Rk

(
H−1

)

q,j

and

∂Rk

∂V1(x′′)
= −

3N+N2
∑

l=1

(
H−1

)

k,l

∂2S
∂Rl ∂V1(x′′)

=
N∑

l=1

(
H−1

)

k,l

1

(x′′ − sl)2

Then we easily find:

W
(0)
3 (x, x′, x′′) = 2T

N

N∑

i,j,k=1

(H−1)
i,j
(H−1)

i,k

(x−si)3(x′−sj)2(x′′−sk)2 +
2T
N

N∑

i,j,k=1

(H−1)
i,j
(H−1)

j,k

(x−si)2(x′−sj)3(x′′−sk)2

+2T
N

N∑

i,j,k=1

(H−1)
i,k
(H−1)

k,j

(x−si)2(x′−sj)2(x′′−sk)3 −
T
N

N∑

i,j,k=1

Ci,j,k

(x−si)2(x′−sj)2(x′′−sk)2

(6.50)

35



where the Ci,j,k’s are linked with the third derivative of the functional S:

Ci,j,k
def
=

3N+N2
∑

α,β,γ=1

(
H−1

)

i,α

(
H−1

)

j,β

(
H−1

)

k,γ

∂3S
∂Rα∂Rβ∂Rγ |R=Rextr

(6.51)

It is again clear that (x, x′, x′′) 7→ W
(0)
3 (x, x′, x′′) is a symmetric function of its

variables.

7 The topological recursion

In the last sections we have seen how to compute U
(0)
0 (x, y), P

(0)
0 (x, y) and W

(0)
1 (x) in

the context of the Bethe ansatz. Then by a recursive application of the loop insertion

operators ∂
∂V1(z)

we can compute easily all the W
(0)
n ’s U

(0)
n ’s and P

(0)
n ’s. Thus, for now

we have all desired quantities at the dominant order (i.e. gs = 0) but we still miss the

subleading corrections g ≥ 1. It is the purpose of this section to present a recursive

algorithm to get all the subleading corrections.

The algorithm is very similar to the “topological recursion” considered in [40,45,48],

and is in fact more comparable to another version of the topological recursion for the

hermitian 2-matrix model, described in [49].

7.1 Higher loop equations

Evaluating the coefficients of g2gs in (3.28) gives the higher loop equations for g ≥ 1:

(
y − Y (x) + T

N
∂x
)
U

(g)
0 (x, y) +W

(g)
1 (x)U

(0)
0 (x, y) = −

g−1∑

h=1

W
(g−h)
1 (x)U

(h)
0 (x, y)

−U (g−1)
1 (x, y; x) + N

T
∂xU

(g−1)
0 (x, y)− P (g)

0 (x, y)− N
T
δg=1

(7.1)

We can also project the higher order loop equations (3.39) onto g2gs (with n ≥ 1)

to find (we note ~ξ = {ξ1, . . . , ξn} for short):

(

y − Y (x) + T

N
∂x

)

U (g)
n (x, y; ~ξ) + U (0)

n (x, y; ~ξ)W
(g)
1 (x)

= −
g−1
∑

h=1

U (h)
n (x, y; ~ξ)W

(g−h)
1 (x) +

N

T
∂xU

(g−1)
n (x, y; ~ξ)− U (g−1)

n+1 (x, y; x, ~ξ)

−
g
∑

h=0

∑

I⊂~ξ, I 6=∅

W
(g−h)
1+|I| (x, I)U

(h)
n−|I|(x, y;

~ξ \ I)− P (g)
n (x, y; ~ξ)−

n∑

k=1

∂

∂ξk
(

U
(g)
n−1(x, y; ξ1, . . . , ξk−1, ξk+1, . . . , ξn)− U (g)

n−1(ξk, y; ξ1, . . . , ξk−1, ξk+1, . . . , ξn)

x− ξk

)

(7.2)
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We shall also write those equations for each power of yk, using

U (g)
n (x, y; ~ξ) =

d2−1∑

k=0

yk U
(g)
n,k(x;

~ξ) (7.3)

P (g)
n (x, y; ~ξ) =

d2−1∑

k=0

yk P
(g)
n,k(x;

~ξ) (7.4)

7.2 Matrix form of the loop equations for g ≥ 1

The goal of this subsection is to rewrite the loop equations (7.1) (0 ≤ k ≤ d2 + 1)

U
(g)
0,k−1(x) +

(

−Y (x) +
T

N
∂x

)

U
(g)
0,k (x) = −

g−1
∑

h=0

W
(g−h)
1 (x)U

(h)
0,k (x)− P

(g)
0,k (x)

−U (g−1)
1,k (x; x) +

N

T
∂xU

(g−1)
0,k (x)− N

T
δg=1δk=0

(7.5)

into a matrix form suitable for our algorithm.

First by taking the case k = d2 + 1 and k = d2 we obtain that:

∀ g > 0 : U
(g)
0,d2

(x) = 0 , U
(g)
0,d2−1(x) = t̃d2W

(g)
1 (x) (7.6)

Now let’s introduce the following d2 × d2 matrix:

D(x) =












−Y (x) 0 . . . 0
U

(0)
0,0 (x)

t̃d2

1 −Y (x) . . . 0
U

(0)
0,1 (x)

t̃d2
. . .

. . . . . .

0 . . . 1 −Y (x) +
U

(0)
0,d2−1(x)

t̃d2












(7.7)

Then we can rewrite the loop equations (7.5) into the following matrix form:

(
T

N
∂x +D(x)

)









U
(g)
0,0 (x)

U
(g)
0,1 (x)
...

U
(g)
0,d2−1(x)









= −









P
(g)
0,0 (x)

P
(g)
0,1 (x)
...

P
(g)
0,d2−1(x)









−









U
(g−1)
1,0 (x; x)

U
(g−1)
1,1 (x; x)

...

U
(g−1)
1,d2−1(x; x)









−
g−1
∑

l=1

U
(l)
0,d2−1(x)

t̃d2









U
(g−l)
0,0 (x)

U
(g−l)
0,1 (x)

...

U
(g−l)
0,d2−1(x)









+
N

T
∂x









U
(g−1)
0,0 (x)

U
(g−1)
0,1 (x)

...

U
(g−1)
0,d2−1(x)









− N

T
δg=1








1
0
...
0








(7.8)
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In the same way, we can also rewrite the projection of the higher loop equations

7.2 onto yk as:

U
(g)
n,k−1(x;

~ξ) +

(
T

N
∂x − Y (x)

)

U
(g)
n,k(x;

~ξ) = −
g−1
∑

h=0

U
(h)
n,k(x;

~ξ)W
(g−h)
1 (x)

−
g
∑

h=0

∑

I⊔J=~ξ, I 6=∅

W
(g−h)
1+|I| (x, I)U

(h)
|J |,k(x; J)− P

(g)
n,k(x;

~ξ)

+
N

T
∂xU

(g−1)
n,k (x; ~ξ)− U (g−1)

n+1,k(x; x,
~ξ)−

n∑

j=1

∂

∂ξj
(

U
(g)
n−1,k(x, ξ1, . . . , ξj−1, ξj+1, . . . , ξn)− U (g)

n−1,k(ξj, ξ1, . . . , ξj−1, ξj+1, . . . , ξn)

x− ξj

)

(7.9)

Evaluating the coefficients in k = d2 + 1 and k = d2 leads to:

∀n ≥ 1 , ∀ g ≥ 0 : U
(g)
n,d2

(x, ~ξ) = 0 , U
(g)
n,d2−1(x,

~ξ) = t̃d2W
(g)
n+1(x,

~ξ)
(7.10)
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and thus leads to the linear system:

(
T

N
∂x +D(x)

)









U
(g)
n,0(x;

~ξ)

U
(g)
n,1(x;

~ξ)
...

U
(g)
n,d2−1(x;

~ξ)









= −









U
(g−1)
n+1,0(x; x,

~ξ)

U
(g−1)
n+1,1(x; x,

~ξ)
...

U
(g−1)
n+1,d2−1(x; x,

~ξ)









+
N

T
∂x









U
(g−1)
n,0 (x; ~ξ)

U
(g−1)
n,1 (x; ~ξ)

...

U
(g−1)
n,d2−1(x;

~ξ)









−









P
(g)
n,0(x;

~ξ)

P
(g)
n,1(x;

~ξ)
...

P
(g)
n,d2−1(x;

~ξ)









−
g
∑

h=0

∑

I⊔J=~ξ, / (I,h)6={(∅,g)∪(~ξ,0)}

W
(g−h)
1+|I| (x, I)









U
(h)
|J |,0(x; J)

U
(h)
|J |,1(x; J)

...

U
(h)
|J |,d2−1(x; J)









−
n∑

j=1

∂

∂ξj











U
(g)
n−1,0(x,ξ1,...,ξj−1,ξj+1,...,ξn)−U (g)

n−1,0(ξj ,ξ1,...,ξj−1,ξj+1,...,ξn)

x−ξj
U

(g)
n−1,1(x,ξ1,...,ξj−1,ξj+1,...,ξn)−U (g)

n−1,1(ξj ,ξ1,...,ξj−1,ξj+1,...,ξn)

x−ξj
...

U
(g)
n−1,d2−1(x,ξ1,...,ξj−1,ξj+1,...,ξn)−U (g)

n−1,d2−1(ξj ,ξ1,...,ξj−1,ξj+1,...,ξn)

x−ξj











(7.11)

Observe now that the r.h.s. of the last two systems (7.8) (7.11) is composed of

lower orders in g and an unknown polynomial vector P
(g)
n,k . The l.h.s. is always the

same at every order in g and for every n. Therefore, if we can find a way to get

rid of the unknown polynomials P
(g)
n,k ’s in the inversion of the system, we see that we

can perform a recursion and get all the corrections recursively. We will do so in the

following sections by introducing a suitable kernel K(x0, x) and using some residue

methods (which will automatically get rid of the polynomials).

7.3 Inversion of the linear system: kernels K(x0, x) and G(x0, x)

Suppose that we can find matrices K(x0, x) and G(x0, x) of size d2 × d2 such that:

• They satisfy the relation:

(

Dt(x)− T

N
∂x

)

K(x0, x) = G(x0, x) (7.12)
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• The function G(x0, x) has the form:

G(x0, x) =
IdN
x0 − x

+
N∑

j=1

Aj(x0)

x− sj
(7.13)

where the Aj(x0)’s are d2 × d2 matrices.

• The function x 7→ K(x0, x) is analytic at every x = si

If we can find such matrices, then we claim that we can invert any system of the

form (7.8):
(
T
N
∂x +D(x)

)
~u(x) = ~v(x), where ~v(x) is assumed to be known up to a

polynomial and ~u(x) is assumed to have only poles at the si’s and behaves like O
(
1
x

)

when x→∞. Indeed under these assumptions we have:

~u t(x0) = − Res
x→x0

~u t(x)G(x0, x)

=

N∑

i=1

Res
x→si

~u t(x)G(x0, x)

=
N∑

i=1

Res
x→si

~u t(x)

(

Dt(x)− T

N
~∂x

)

K(x0, x)

=

N∑

i=1

Res
x→si

~u t(x)

(

Dt(x) + T

N

←−
∂x

)

K(x0, x)

=
N∑

i=1

Res
x→si

~v t(x)K(x0, x)

(7.14)

Note that in the last equality, the polynomial part of v(x) does not contribute only

the terms in ~v(x) which have poles at the si’s contribute. Hence we have successfully

inverted our system:

~u(x0) =

N∑

i=1

Res
x→si

Kt(x0, x)~v(x)

(7.15)
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7.4 The topological recursion

Therefore with the help of the results in the last section we can compute all correlation

functions by the recursion:









U
(g)
0,0 (x0)

U
(g)
0,1 (x0)
...

U
(g)
0,d2−1(x0)









=
N∑

i=1

Res
x→si

Kt(x0, x)
[ g−1
∑

l=1

U
(l)
0,d2−1(x)

t̃d2









U
(g−l)
0,0 (x)

U
(g−l)
0,1 (x)

...

U
(g−l)
0,d2−1(x)









+









U
(g−1)
1,0 (x; x)

U
(g−1)
1,1 (x; x)

...

U
(g−1)
1,d2−1(x; x)









− N

T
∂x









U
(g−1)
0,0 (x)

U
(g−1)
0,1 (x)

...

U
(g−1)
0,d2−1(x)









]

(7.16)

or more generally for higher order correlation functions:









U
(g)
n,0(x0,

~ξ)

U
(g)
n,1(x0,

~ξ)
...

U
(g)
n,d2−1(x0,

~ξ)









=

N∑

i=1

Res
x→si

Kt(x0, x)
[









U
(g−1)
n+1,0(x; x,

~ξ)

U
(g−1)
n+1,1(x; x,

~ξ)
...

U
(g−1)
n+1,d2−1(x; x,

~ξ)









− N

T
∂x









U
(g−1)
n,0 (x; ~ξ)

U
(g−1)
n,1 (x; ~ξ)

...

U
(g−1)
n,d2−1(x;

~ξ)









+

g
∑

h=0

∑

I⊔J=~ξ, / (I,h)6={(∅,g)∪(~ξ,0)}

W
(g−h)
1+|I| (x, I)









U
(h)
|J |,0(x; J)

U
(h)
|J |,1(x; J)

...

U
(h)
|J |,d2−1(x; J)









+
n∑

j=1

1

(x− ξj)2









U
(g)
n−1,0(x, ξ1, . . . , ξj−1, ξj+1, . . . , ξn)

U
(g)
n−1,1(x, ξ1, . . . , ξj−1, ξj+1, . . . , ξn)

...

U
(g)
n−1,d2−1(x, ξ1, . . . , ξj−1, ξj+1, . . . , ξn)









]

(7.17)
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7.5 Determination of the kernel K(x0, x)

The determination of the kernels K(x0, x) and G(x0, x) is presented in appendix B.

We present in details some recursive formulas to obtain the various K(x0, si) and the

derivatives K ′(x0, si), . . . , K(n)(x0, si) in the appendix. The results are the following.

If we define the following vectors (of size d2):

~r =








0
...
0
1








, ~wi =
1

t̃d2






u0,i
...

ud2−1,i




 (7.18)

Then the matrices Ai(x0) defining G(x0, x) are connected to the K(x0, si) by:

Ai(x0) =

(
T

N
+ ~r ~wti

)

K(x0, si)

(7.19)

The matrices K(x0, si) are determined as a solution of the following system:

M ~Kq = ~fq
(7.20)

where

~Kq =




























K(x0, s1)0,q
...

K(x0, sN)0,q
−−−−

K(x0, s1)1,q
...

K(x0, sN)1,q
−−−−

...
−−−−

K(x0, s1)d2−1,q
...

K(x0, sN)d2−1,q




























, ~fq =




































~0
−−−−

...
−−−−

~0
−−−−

1
x0−s1
...
1

x0−sN
−−−−

~0
−−−−

~0
−−−−

uq,1
(x0−s1)2

...
uq,N

(x0−sN )2




































, ~fd2−1 =
T

N
t̃d2



















~0
−−−−

...
−−−−

~0
−−−−

1
(x0−s1)2

...
1

(x0−sN )2



















(7.21)
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where the 1
x0−si in ~fq are in position Nq + i. (Note that ~fd2−1 does not have these

terms).

M =










−Bt Id 0 . . . 0
0 −Bt Id 0
...

. . .
. . .

...
...

0 . . . −Bt Id
B0 B1 . . . Bd2−2 Bd2−1










(7.22)

where all the matrices Bk, Id and 0 are symmetric matrices of size N ×N given by:

B0 =
T

N










(B0)1,1
u0,1+u0,2
(s1−s2)2 . . .

u0,1+u0,N
(s1−sN )2

u0,1+u0,2
(s1−s2)2

. . .
. . .

...
...

. . . u0,N−1+u0,N
(sN−1−sN )2

u0,N+u0,1
(sN−s1)2 . . .

u0,N+u0,N−1

(sN−sN−1)2
(B0)N,N










(7.23)

with (B0)i,i = −N
T
V ′′
1 (si)u0,i −

∑

j 6=1

u0,i+u0,j
(si−sj)2 + 1.

And ∀k > 0:

Bk =










(Bk)1,1
T
N

uk,1+uk,2
(s1−s2)2 . . . T

N

uk,1+uk,N
(s1−sN )2

T
N

uk,1+uk,2
(s1−s2)2

. . .
...

...
. . .

. . . T
N

uk,N−1+uk,N
(sN−1−sN )2

T
N

uk,N+uk,1
(sN−s1)2 . . . T

N

uk,N+uk,N−1

(sN−sN−1)2
(Bk)N,N










(7.24)

with (Bk)i,i = −V ′′
1 (si)uk,i − T

N

∑

j 6=i

uk,i+uk,j
(si−sj)2 .

If we define

Ck =

d2−1∑

j=k

BjB
tj−k

we have

M−1 =














0 0 . . . 0

Id
. . .

...

Bt Id
. . .

...

Bt2 Bt Id
. . .

...
...

. . .
. . .

. . .
...

Btd2−2
. . . Bt2 Bt Id 0














−










Id
Bt

Bt2

...

Btd2−1










C−1
0

(
C1 C2 . . . Cd2−1 Id

)

(7.25)

That gives if q < d2 − 1:

Kp,q(x0, si) =
∑

j

θ(p > q) ((Bt)p−q−1)i,j
1

x0 − sj
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−
∑

j

(BtpC−1
0 Cq)i,j

1

x0 − sj
−
∑

j

(BtpC−1
0 )i,j

uq,j
(x0 − sj)2

(7.26)

where θ(p > q) is the heavyside function, equal to 1 if p > q and 0 otherwise. And

when q = d2 − 1:

Kp,d2−1(x0, si) = −
T

N
t̃d2

∑

j

(BtpC−1
0 )i,j

1

(x0 − sj)2
(7.27)

Eventually the higher derivatives in x of K(x0, x) evaluated at x = si are obtained

recursively with formulas (B.30), (B.32), (B.33), (B.39) and (B.40) derived in details

in appendix. Note also that to complete these formulas, we need to prove that the

system of equations is consistent. This involves a special identity which is proved

in appendix C. As a conclusion, we have obtained here a recursion to com-

pute all correlations functions U
(g)
n (x, y; ~x). This corresponds to a generalization

of the topological recursion [40,48] for the arbitrary-β two-matrix model studied here.

Moreover, when d2 = 2, one can recover the case of the arbitrary-β one-matrix model

developped in [46].

7.6 Leading free energy

We clearly have from the saddle-point approximation method, that

f0 = −
T

N
S. (7.28)

where the Yang–Yang action S

S = tr V1(S) + tr V2(S̃)− tr (SAS̃A−1)− T

N
ln(∆(S))

− T
N

ln(∆(S̃)) +
T

N
ln det(A)− T

N
~ut (A~e− ~e) (7.29)

is evaluated at its extremum.

The link (4.8) between the WKB expansion and the standard topological expansion

gives

F0(
T

N
) = f0(N) = −S (7.30)

7.7 Subleading g = 1

To the first subleading order, our topological recursion gives

~U
(1)
0 (x0) =

∑

i

Res
x→si

Kt(x0, x)

(

~U
(0)
1 (x; x)− N

T
∂x ~U

(0)
0 (x)

)

(7.31)

and we remind that the d2 − 1th component of the vector ~U
(1)
0 (x0) is the function

W
(1)
1 (x0).
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In order to perform the computation, we first need to compute ~U
(0)
1 (x; x), which is

also computed by the topological recursion and is worth

~U
(0)
1 (x0, ξ) =

N

T

∑

i

Res
x→si

1

(x− ξ)2 K
t(x0, x) ~U

(0)
0 (x) (7.32)

i.e.

U
(0)
1,k (x0, ξ) =

N

T

d2−1∑

l=0

N∑

i=1

1

(si − ξ)2
[K(x0, si)]l,k ul,i (7.33)

and we need it at x0 = ξ i.e.

U
(0)
1,k (x, x) =

N

T

d2−1∑

l=0

N∑

i=1

1

(si − x)2
[K(x, si)]l,k ul,i (7.34)

Notice that K(x, si) may have double poles at x = sj, and thus U
(0)
1,k (x, x) may have

poles of order up to 4. This implies that ~U
(1)
0 (x0) can be expressed in terms ofK(x0, si),

K ′(x0, si), K ′′′(x0, si).

From the WKB approximation, we know that we must have

f1 = −
1

2
ln detA′′, (7.35)

where A is the action (see (6.2)), which is approximated by the Yang-Yang action S
in the limit β →∞, and H is the Hessian of the Yang–Yang action S, so this leads us

to conjecture that

f1 = −
1

2
ln detH. (7.36)

We find that:

W
(1)
1 (x) =

Ud2−1

t̃d2
= −

∑

j

[

H−1
j,j

(x0 − sj)3
+

Bj

(x0 − sj)2

]

(7.37)

where we could explicitly verify the lack of a simple pole term. The coefficients Bj are

given by:

Bj =
∑

k

Z−1
j,k

[

− 1

2

∑

u,v

d2[V ′
2(B)]

dsudsv
Hu,v +

∑

i

V ′
1(si)Vk,i −

∑

i,n

Bk,iVi,n

+

d2∑

p=1

∑

q,n,m

[Bp−1]k,qQ
m
q,n

dΦm,p−1

dV ′
1(sn)

]

+2
∑

i,j 6=i,r

t̃d2
Z

−1

j,r
[Bd2−1]r,i (7.38)

The technical details (and the definitions of quantities involved in the last formula) of

this computation can be found in appendix E with other possible expressions for Bj

given in (E.68) or (E.68).
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7.8 Example

As an example, we present explicit computations of the method in the case when N = 1

in appendix (D). In particular in this case we are able to determine W
(1)
1 (x) explicitly

and to compute the corresponding F1. In particular we show in this case that it satisfies

the equation:

f1 = −
1

2
ln detH (7.39)

7.9 WKB computation

TheWKB approximation, consists in expanding the integrand in the vicinity of a saddle

point. To leading order, one gets a Gaussian integral, and corrections, are moments

of the Gaussian integral, and they are computed by Wick’s theorem. In principle, one

can write:

Z =

∫

dX dY e
− 1

g2s
A[X,Y ]

(7.40)

and expand:

X = X̄ + gsX , Y = Ȳ + gs Y (7.41)

and expand

A[X, Y ] = A[X̄, Ȳ ] + 1

2
g2s A′′[X ,Y ] + g3s δA[X ,Y ] (7.42)

where the Hessian A′′ is the quadratic form of second derivatives of lim
gs→0
A, and δA can

be computed by its Taylor expansion in gs.

We thus get

Z =

∫

dX dY e
− 1

g2s
A[X,Y ] ∼ e

− 1

g2s
A[X̄,Ȳ ]

√
detA′′

∫
dXdY e−

1
2
A′′[X ,Y ] e−gs δA[X ,Y ]

∫
dXdY e−

1
2
A′′[X ,Y ]

(7.43)

i.e. we recover

f0 = − lim
β→∞

A[X̄, Ȳ ] (7.44)

and

f1 = − lim
β→∞

1

2
det A′′, (7.45)

and in principle, a standard WKB approximation using Wick’s theorem, should allow

one to find f2, f3, . . . explicitly. Then,W
(g)
n can be recovered by applying d

dV1
repeatedly.

However, this is long and tedious, and difficult to do in a systematic way. One of the

difficulties, is that one has to compute the large β expansion of Iβ(X, Y ), which is not

very well known at the present time.

So, our loop equation method is an alternative to WKB, it can be performed in

a systematic way, and gives all orders in the gs expansion. Also, notice that Wick’s

theorem gives an expansion of Z in powers of gs, whereas our method gives directly

the expansion of lnZ.
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8 Conclusion

We have presented here the loop equations of the two-matrix arbitrary-β matrix models

and a recursive way to solve them for a specific polynomial Bethe ansatz. This work is

a generalization of the arbitrary-β one matrix model with the same kind of ansatz as

developed in [46]. This work is also part of the “quantum algebraic geometry” project

started for the one-matrix model in [18,19,46]. In particular, we have proved that in the

two-matrix arbitrary-β matrix model, we find a “quantum curve” (5.15) of arbitrary

degree. For now we have only solved this model under the assumption of a polynomial

ansatz for the solution corresponding to a specific limit of the model (N and T fixed

while gs → 0 (i.e. β → ∞)). However, we expect the notions developed in [18, 19]

to generalize well for the two-matrix arbitrary-β matrix model as it has been the case

here. This future work considering generic solutions of the “quantum curve” (5.15) is

under progress at the moment. Then one may wonder if properties of integrability and

of spectral invariants [8,20,48] known for the hermitian case can be generalized in the

arbitrary-β case.
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A Hessian matrix of the Yang–Yang function

Using the notation of the paragraph regarding the variational approach and using

(6.30), we have:

∀j 6= i :

(
∂2S
∂si∂sj

)

|extr
= − T

N

1

(si − sj)2
(A.1)

∀1 ≤ i ≤ N :

(
∂2S
∂si∂si

)

|extr
= V ′′

1 (si) +
T

N

∑

j 6=i

1

(si − sj)2
(A.2)

∀1 ≤ i, j ≤ N :

(
∂2S
∂si∂s̃j

)

|extr
= Ai,j(A

−1)j,i (A.3)

∀1 ≤ i, j ≤ N :

(
∂2S
∂si∂uj

)

|extr
= 0 (A.4)
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∀1 ≤ i, r, s ≤ N :

(
∂2S

∂si∂Ar,s

)

|extr
= δr,is̃s(A

−1)s,i −
N∑

p=1

Ai,ps̃p(A
−1)p,r(A

−1)s,i

= δr,is̃s(A
−1)s,i −

N∑

p=1

Bi,r(A
−1)s,i (A.5)

Where we have used here:

∂(A−1)p,q
∂Ar,s

= −(A−1)p,r(A
−1)s,q (A.6)

We can do the same kind of computation starting from (6.31):

∀j 6= i :

(
∂2S
∂s̃i∂s̃j

)

|extr
= − T

N

1

(s̃i − s̃j)2
(A.7)

∀1 ≤ i ≤ N :

(
∂2S
∂s̃i∂s̃i

)

|extr
= V ′′

2 (s̃i) +
T

N

∑

j 6=i

1

(s̃i − s̃j)2
(A.8)

∀1 ≤ i, j ≤ N :

(
∂2S
∂s̃i∂uj

)

|extr
= 0 (A.9)

∀1 ≤ i, r, s ≤ N :

(
∂2S

∂s̃i∂Ar,s

)

|extr
= δs,is̃r(A

−1)i,r −
N∑

p=1

Ap,is̃p(A
−1)s,p(A

−1)i,r

= δs,is̃r(A
−1)i,r −

N∑

p=1

B̃s,i(A
−1)i,r (A.10)

The computation relatively to u is easy:

∀1 ≤ i, r, s ≤ N :

(
∂2S

∂ui∂Ar,s

)

|extr
= − T

N
δr,i (A.11)

∀1 ≤ i, j ≤ N :

(
∂2S
∂ui∂sj

)

|extr
=

(
∂2S
∂ui∂s̃j

)

|extr
=

(
∂2S
∂ui∂uj

)

|extr
= 0 (A.12)

Eventually the most technical one is the double derivative relatively to A:

∀ 1 ≤ a, b, r, s ≤ N :

(
∂2S

∂Aa,b∂Ar,s

)

|extr
= −(A−1)s,a − (A−1)s,a

(

S̃A−1S
)

b,r

−(A−1)b,r
(
A−1SB

)

s,a
(A.13)

Eventually the shape of the matrix looks like:

H =







GN×N XN×N YN×N2 0N×N
X t G̃N×N ZN×N2 0N×N
Y t Zt TN2×N2 IN2×N

0N×N 0N×N I t 0N×N







(A.14)
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Where the matrix G is given by:

Gi,i = V ′
1(si) +

T

N

∑

j 6=i

1

(si − sj)2

Gi,j = − T

N(si − sj)2
(A.15)

and the matrix G̃ is its dual:

G̃i,i = V ′
2(s̃i) +

T

N

∑

j 6=i

1

(s̃i − s̃j)2

G̃i,j = − T

N(s̃i − s̃j)2
(A.16)

The matrix IN2×N is is a N2 × N matrix with N times − T
N

in each col-

umn and zeros elsewhere. If we sort the Ar,s’s in the following way:

(A1,1, . . . , A1,N , . . . , A2,1, . . . A2,N , . . . , AN,N) then the matrix looks like:

IN2×N = − T
N











~e ~0 . . . . . . ~0

~0 ~e ~0
. . . ~0

...
. . .

...
...

. . . ~e ~0
~0 . . . ~0 ~e











(A.17)

The other matrices X , Y and Z are expressed by the previous computations, but since

they do not have a compact or interesting form we do not mention them here.

B Finding kernels K(x0, x) and G(x0, x)

B.1 Decomposition of the matrix Dt(x)

Before presenting the way to find the kernels K(x0, x) and G(x0, x), we need to in-

troduce some notations. First, since Dt(x) is going to play an important role, we

decompose it in the following way:

Dt(x) = −Y (x)Id + Λ +
1

t̃d2
~r~U t(x)

(B.1)

where we have defined the vectors and matrices of dimension d2 by:

~r =










0
0
...
0
1










, ~U =











U
(0)
0,0 (x)

U
(0)
0,1 (x)
...

U
(0)
0,d2−2(x)

U
(0)
0,d2−1(x)











, Λ =








0 1 . . . 0
...

. . .
. . .

...
. . . 1

0 . . . 0








(B.2)
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Note here that all the matrices defined here are already known since they only

involve leading order quantities determined earlier. In particular we have:

Y (x) = V ′
1(x)−

T

N

N∑

i=1

1

x− si
(B.3)

and:

U
(0)
0,d2

(x) = −t̃d2 , U
(0)
0,d2−1(x) = t̃d2(V

′
1(x)−Y (x))−t̃d2−1 , U

(0)
0,k (x) =

N∑

i=1

uk,i
x− si

−t̃k+δk,0x

(B.4)

where the coefficients uk,i are known and satisfy (6.13). In the following equations, we

will also need to write down a series expansion of ~U around x = si. Therefore, it is

natural to introduce the following vectors:

~wi =
1

t̃d2






u0,i
...

ud2−1,i




 , ~Vi =

1

t̃d2











∑

j 6=i

u0,j
si−sj − t̃0 + si
∑

j 6=i

u1,j
si−sj − t̃1

...
∑

j 6=i

ud2−1,j

si−sj − t̃d2−1











(B.5)

~V 1
i =

1

t̃d2











−∑
j 6=i

u0,j
(si−sj)2 + 1

−
∑

j 6=i

u1,j
(si−sj)2

...
−
∑

j 6=i

ud2−1,j

(si−sj)2











, ~V 2
i =

1

t̃d2











∑

j 6=i

u0,j
(si−sj)3

∑

j 6=i

u1,j
(si−sj)3

...
∑

j 6=i

ud2−1,j

(si−sj)3











(B.6)

which correspond to the first terms of the expansion:

t̃d2 ~U =
~wi

x− si
+ ~Vi + ~V 1

i (x− si) + ~V 2
i (x− si)2 +O (x− si)3 (B.7)

Remember that ud2−1,i =
T
N
t̃d2 so that we have the following important relations:

~r t ~wi =
T

N
Id , ~wi

t~r =
T

N
Id

(B.8)

B.2 Solving the system: Finding G(x0, x) and K(x0, x)

In order to apply our scheme of recursion we do not need to compute explicitly K(x0, x)

but only to be able to determine K(x0, si), K
′(x0, si) and so on (where a prime means

a derivative relatively to the second variable: K ′(x0, x) = ∂xK(x0, x)). Indeed, if we

know this quantities then we can compute all the residues we need in our scheme and
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invert the differential system. This is reassuring since it was clear that K(x0, x) was not

uniquely defined since it is a solution of a differential equation. We will first determine

the kernel G(x, x0) by computing the matrices Ai(x0) presented in (7.13). Note that

in order to have simpler expressions, we will label the components of the

matrices K(x0, x) and G(x0, x) from 0 to d2 − 1 instead of the standard 1 to

d2.

The strategy is the following: we will identify the coefficients of order (x− si)k in

equation (7.12).

Terms in (x− si)−1:

A straightforward computation gives:

Ai(x0) =

(
T

N
+ ~r ~wi

t

)

K(x0, si)

(B.9)

Multiplying on the left by ~wi
t and using (B.8) we find that:

2
T

N
~wi
tK(x0, si) = ~wi

tAi(x0) (B.10)

so that:

T

N
K(x0, si) =

(

1− N

2T
~r ~wi

t

)

Ai(x0)

(B.11)

Therefore, we see that the knowledge of K(x0, si) is completely equivalent to the knowl-

edge of Ai(x0). In terms of components we see that only the last line is special:

∀q ≤ d2 , ∀p < d2 − 1 : (Ai(x0))p,q =
T

N
(K(x0, si))p,q (B.12)

∀q ≤ d2 : (Ai(x0))d2−1,q =
2T

N
(K(x0, si))d2−1,q +

1

t̃d2

d2−2∑

k=0

uk,i (K(x0, si))k,q (B.13)

We need to go to the next order in order to determine K(x0, si) or equivalently

Ai(x0):

Terms in (x− si)0:

Looking at the constant coefficient of the expansion gives:
(

Λ− V ′
1(si) +

T

N

∑

j 6=i

1

si − sj
+ ~r~Vi

t

)

K(x0, si)+~r ~wi
tK ′(x0, si) =

Id

x0 − si
+
∑

j 6=i

Aj(x0)

si − sj
(B.14)
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Terms in (x− si)1:

(

−V ′
1(si) +

∑

j 6=i

T

N(si − sj)
+ Λ + ~r~Vi

t

)

K ′(x0, si)

+

(

−V ′′
1 (si)−

∑

j 6=i

T

N(si − sj)2
+ ~r~V 1 t

i

)

K(x0, si)

− T

2N
K ′′(x0, si) + ~r ~wi

tK
′′(x0, si)

2
=

Id

(x0 − si)2
−
∑

j 6=i

Aj(x0)

(si − sj)2
(B.15)

We see that the first equation gives can determine the first lines of K(x0, si) as soon

as we know the last line of K(x0, si). In the last equation, we see that we can get rid of

the second derivatives by multiplying on the left by ~r ~wti and using ~wti~r =
T
N
. It gives:

~r ~wti

(

−V ′
1(si) +

∑

j 6=i

T

N(si − sj)
+ Λ

)

K ′(x0, si) +
T

N
~r~Vi

t
K ′(x0, si)

+~r ~wti

(

−V ′′
1 (si)−

∑

j 6=i

T

N(si − sj)2

)

K(x0, si) +
T

N
~r~V 1 t

i K(x0, si)

=
~r ~wti

(x0 − si)2
−
∑

j 6=i

~r~wtiAj(x0)

(si − sj)2
(B.16)

The last equation is only interesting on the last line, because all other lines trivially

give zero (because we multiply on the left by ~r). Now we note the following identity

for the component (d2 − 1, q):
(

~r ~wti

(

−V ′
1(si) +

∑

j 6=i

T

N(si − sj)
+ Λ

)

K ′(x0, si) +
T

N
~r~Vi

t
K ′(x0, si)

)

d2−1,q

=

(

−V ′
1(si) +

∑

j 6=i

T

N(si − sj)

)
d2−1∑

k=0

uk,i

t̃d2
K ′(x0, si)k,q +

d2−1∑

k=1

uk−1,i

t̃d2
K ′(x0, si)k,q

+
T

Nt̃d2

d2−1∑

k=0

(
∑

j 6=i

uk,j
si − sj

− t̃k + siδk,0

)

K ′(x0, si)k,q

=
1

t̃d2

d2−1∑

k=0

(

uk−1,i − V ′
1(si)uk,i +

T

N

∑

j 6=i

uk,i + uk,j
si − sj

+
T

N
(−t̃k + siδk,0)

)

K ′(x0, si)k,q

= 0 (B.17)

Where we have used the relation for the uk,i’s (6.8). Therefore, we can simplify

(B.16) into a much simpler way:

~r ~wti

(

−V ′′
1 (si)−

∑

j 6=i

T

N(si − sj)2

)

K(x0, si) +
T

N
~r~V 1 t

i K(x0, si)
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=
~r ~wti

(x0 − si)2
−
∑

j 6=i

~r ~wtiAj(x0)

(si − sj)2
(B.18)

This time, we see that all the derivatives K ′(x0, si) have vanished. Observe that we

can replace Aj(x0) by some K(x0, si)’s using (B.9).

~r ~wti

(

−V ′′
1 (si)−

∑

j 6=i

T

N(si − sj)2

)

K(x0, si) +
T

N
~r~V 1 t

i K(x0, si)

=
~r ~wti

(x0 − si)2
− T

N

∑

j 6=i

(~r ~wti + ~r ~wtj)K(x0, sj)

(si − sj)2
(B.19)

Taking the component (d2 − 1, q) of the last equation we have:

d2−1∑

k=0

(

−V ′′
1 (si)uk,i −

T

N

∑

j 6=i

uk,i + uk,j
(si − sj)2

+
T

N
δk,0

)

K(x0, si)k,q

=
uq,i

(x0 − si)2
− T

N

d2−1∑

k=0

∑

j 6=i

(uk,i + uk,j)K(x0, sj)k,q
(si − sj)2

(B.20)

Remember that from (B.14) we have some recursion for the other lines. ∀p < d2−1

:
(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj

)

K(x0, si)p,q +K(x0, si)p+1,q −
T

N

∑

j 6=i

K(x0, sj)p,q
si − sj

=
δp,q

x0 − si
(B.21)

Therefore, we can group (B.20) and (B.21) into a matrix form. Let’s introduce the

following vectors:

~Kq =



























K(x0, s1)0,q
...

K(x0, sN)0,q
−−−−

K(x0, s1)1,q
,

K(x0, sN)1,q
−−−−

...
−−−−

K(x0, s1)d2−1,q
...

K(x0, sN)d2−1,q



























, ~fq =




































~0
−−−−

...
−−−−

~0
−−−−

1
x0−s1
...
1

x0−sN
−−−−

~0
−−−−

~0
−−−−

uq,1
(x0−s1)2

...
uq,N

(x0−sN )2




































, ~fd2−1 =
T

N
t̃d2



















~0
−−−−

...
−−−−

~0
−−−−

1
(x0−s1)2

...
1

(x0−sN )2



















(B.22)
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where the 1
x0−si are in position Nq + i. (Note that ~fd2−1 does not have these terms).

M =










−Bt Id 0 . . . 0
0 −Bt Id 0
...

. . .
. . .

...
...

0 . . . −Bt Id
B0 B1 . . . Bd2−2 Bd2−1










(B.23)

where all the matrices Bk, Id and 0 are symmetric matrices of size N ×N given by:

B0 =
T

N










(B0)1,1
u0,1+u0,2
(s1−s2)2 . . .

u0,1+u0,N
(s1−sN )2

u0,1+u0,2
(s1−s2)2

. . .
. . .

...
...

. . . u0,N−1+u0,N
(sN−1−sN )2

u0,N+u0,1
(sN−s1)2 . . .

u0,N+u0,N−1

(sN−sN−1)2
(B0)N,N










(B.24)

with (B0)i,i = −N
T
V ′′
1 (si)u0,i −

∑

j 6=1

u0,i+u0,j
(si−sj)2 + 1.

And ∀k > 0:

Bk =










(Bk)1,1
T
N

uk,1+uk,2
(s1−s2)2 . . . T

N

uk,1+uk,N
(s1−sN )2

T
N

uk,1+uk,2
(s1−s2)2

. . .
...

...
. . .

. . . T
N

uk,N−1+uk,N
(sN−1−sN )2

T
N

uk,N+uk,1
(sN−s1)2 . . . T

N

uk,N+uk,N−1

(sN−sN−1)2
(Bk)N,N










(B.25)

with (Bk)i,i = −V ′′
1 (si)uk,i − T

N

∑

j 6=i

uk,i+uk,j
(si−sj)2

Then, we can rewrite the equations (B.20) and (B.21) into the nice matrix form:

∀ 0 ≤ q ≤ d2 − 1 : M ~Kq = ~fq
(B.26)

Hence, by a simple matrix inversion, we can find all the K(x0, si) and then using

(B.9) find the kernel G(x0, x). Note in particular that the last column of K(x0, si) and

hence G(x0, x) only have terms in 1
(x0−si)2 . In particular, if we define the “Bergmann

kernel” B(x0, x) = −1
2
∂xG(x0, x), we observe that it is a symmetric function. Eventu-

ally, note that in the case d2 = 2 (i.e. the one-matrix model) we recover the results of

the one-matrix model as described in [46] since we have a scalar problem corresponding

to the component (d2 − 1, d2 − 1) of our problem.

B.3 Computation/choice of K ′(x0, si) and K ′′(x0, si)

Now that the K(x0, si)’s and the kernel G(x0, x) have been determined, the next step

is to find the higher derivatives K ′(x0, si), K ′′(x0, si), . . . in order to be able to apply
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the residue formula (7.15). Unfortunately, since K(x0, x) is defined as as solution of a

differential equation, it is not determined uniquely. For instance we can write the loop

equation projected at orders (x − si)0, (x − si)1 and (x − si)2. Using notations (B.5)

we find:

order 0:
(

Λ− V ′
1(si) +

T

N

∑

j 6=i

1

si − sj
+ ~r~Vi

t

)

K(x0, si)+~r ~wi
tK ′(x0, si) =

Id

x0 − si
+
∑

j 6=i

Aj(x0)

si − sj
(B.27)

order 1:
(

−V ′
1(si) +

∑

j 6=i

T

N(si − sj)
+ Λ + ~r~Vi

t

)

K ′(x0, si)

+

(

−V ′′
1 (si)−

∑

j 6=i

T

N(si − sj)2
+ ~r~V 1 t

i

)

K(x0, si)

− T

2N
K ′′(x0, si) + ~r ~wi

tK
′′(x0, si)

2
=

Id

(x0 − si)2
−
∑

j 6=i

Aj(x0)

(si − sj)2
(B.28)

order 2:
(

−V ′
1(si) +

∑

j 6=i

T

N(si − sj)
+ Λ + ~r~Vi

t

)

K ′′(x0, si)

2

+

(

−V ′′
1 (si)−

∑

j 6=i

T

N(si − sj)2
+ ~r~V 1 t

i

)

K ′(x0, si)

+

(

−V
′′′
1 (si)

2
+
∑

j 6=i

T

N(si − sj)3
+ ~r~V 2 t

i

)

K(x0, si)

− T

3N
K ′′′(x0, si) + ~r ~wi

tK
′′′(x0, si)

6
=

Id

(x0 − si)3
+
∑

j 6=i

Aj(x0)

(si − sj)3
(B.29)

Remember that if we multiply on the left by ~r ~wti we kill the terms
(

−V ′
1(si) +

∑

j 6=i
T

N(si−sj) + Λ + ~r~Vi
t

)

. We clearly see that now that the K(x0, si)’s are

known, we have some arbitrariness in solving this set of equations. Moreover, it is not

obvious that this set of equations is compatible with our determination of K ′(x0, si)’s

in the last section. Fortunately, we prove in appendix C that this is the case. For

our residue scheme, we can choose whatever kernel K(x0, x) we want providing that it

satisfies the assumption described earlier. Here we will choose it so that:

∀ p < d2 − 1 , ∀ q, i : K ′(x0, si)p,q = 0 , ∀ q, i : K ′′(x0, si)d2−1,q = 0
(B.30)
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We claim that this assumption is compatible with our previous set of equations.

Indeed, since the matrices K ′(x0, si) have vanishing d2 − 2 first lines, we can extract

from (B.27), the missing components:

T

N
K ′(x0, si) =

∑

j 6=i

Aj(x0)d2−1,q

si − sj
+

(

V ′
1(si)−

∑

j 6=i

T

N(si − sj)

)

K(x0, si)d2−1,q

+
δq,d2−1

x0 − si
+

d2−1∑

k=0

(
∑

j 6=i

uk,j
si − sj

− t̃k + δk,0si

)

K(x0, si)k,q

=
δq,d2−1

x0 − si
+ V ′

1(si)K(x0, si)d2−1,q −
T

N

∑

j 6=i

K(x0, si)d2−1,q −K(x0, si)d2−1,q

si − sj

+

d2−1∑

k=0

(
∑

j 6=i

uk,j
si − sj

(K(x0, si)k,q −K(x0, sj)k,q) + (−t̃k + δk,0si)K(x0, si)k,q

)

(B.31)

This expression is also equivalent to the following (multiply (B.27) on the left by

~r ~wti and use (B.17) to get rid of K(x0, si)):

(
T
N

)2
K ′(x0, si)d2−1,q =

uq,i
t̃d2 (x0−si)

+
d2−1∑

k=0

∑

j 6=i

uk,iAj(x0)k,q
t̃d2 (si−sj)

=
uq,i

t̃d2 (x0−si)
+ T

N

d2−1∑

k=0

∑

j 6=i

(uk,i+uk,j)K(x0,sj)k,q
t̃d2 (si−sj)

(B.32)

Then we can compute the first lines of K ′′(x0, si) using (B.28): ∀p < d2 − 1 :

T
2N
K ′′(x0, si)p,q = δp,d2−2K

′(x0, si)d2−1,q −
(

V ′′
1 (si) +

∑

j 6=i
T

N(si−sj)2

)

K(x0, si)p,q

− δp,q
(x0−si)2 +

∑

j 6=i

Aj(x0)p,q
(si−sj)2

= δp,d2−2K
′(x0, si)d2−1,q − V ′′

1 (si)K(x0, si)p,q − δp,q
(x0−si)2

− T
N

∑

j 6=i

K(x0,si)p,q−K(x0,sj)p,q
(si−sj)2

(B.33)

where the r.h.s. is known. We see also that in (B.28), the last line ofK ′′(x0, si) vanishes

identically so it cannot be determined and we can choose it to be zero to simplify the

computations. These degree of freedom were also present in the one-matrix model [46]

where K ′′(x0, si) (which was scalar) remained unknown. Moreover, if we count the

degrees of freedom, we see that we have exactly d2
2 unknowns in the determination

of K(x0, x) which corresponds to a unknown matrix of size d2 × d2 as expected for a

linear differential equation of the form (7.12).
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B.4 Recursion to determine K(n)(x0, si)

Now that we have the matrices K(x0, si), K
′(x0, si) and K ′′(x0, si), we can perform a

recursion to get the higher derivatives. To obtain them, one needs to look at the terms

of the expansion of order (x − si)
n. The main problem here is not conceptual, but

rather notational. We introduce the following expansions:

Y (x) =
T

N(x− si)
+

∞∑

p=0

(

V
(p+1)
1 (si)

p!
−
∑

j 6=i

T (−1)p
N(si − sj)p+1

)

(x− si)p

:=
∞∑

p=−1

Y(x−si)p(x− si)p (B.34)

From the definition of U
(0)
0,k (x) =

N∑

i=1

uki
x−si − t̃k + δk,0x we have also:

U
(0)
0,k (x) =

uki
x− si

+

(
∑

j 6=i

ukj
si − sj

− t̃k + δk,0si

)

+

(
∑

j 6=i

−ukj
(si − sj)2

+ δk,0

)

(x− si)

+
∞∑

p=2

(
∑

j 6=i

(−1)pukj
(si − sj)p+1

)

(x− si)p :=
∞∑

p=−1

U
(0)
0,k,(x−si)p(x− si)

p (B.35)

We can regroup them into the following vectors:

~U(x−si)p =









U
(0)
0,0,(x−si)p

U
(0)
1,0,(x−si)p

...

U
(0)
d2−1,0,(x−si)p









(B.36)

Note for example that we have in the former notations ~wi = ~U(x−si)−1 , ~Vi = ~U(x−si)0 ,
~V 1
i = ~U(x−si)1 ,...

We will also need an expansion in (x− si)p of the x 7→ G(x0, x) function:

G(x0, x) =
Ai(x0)

x− si
+

∞∑

p=0

(

Id

(x0 − si)p+1
+
∑

j 6=i

(−1)pAj(x0)
(si − sj)p+1

)

(x− si)p

:=

∞∑

p=−1

G(x−si)p(x0)(x− si)p (B.37)

Now it is easy to write the equality of the power n ≥ 1 of the differential equation
(
Dt(x)− T

N
∂x
)
K(x0, x) = G(x0, x):

Terms in (x− si)n:

G(x−si)n(x0) = −n T
N

K(n+1)(x0, si)

(n + 1)!
−

n∑

l=0

Y(x−si)n−l

K(l)(x0, si)

l!
+ Λ

K(n)(x0, si)

n!
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+~r ~wi
tK

(n+1)(x0, si)

(n+ 1)!
+

1

t̃d2
~r

n∑

l=0

~U t
(x−si)n−l

K(l)(x0, si)

l!
(B.38)

We can project this equation on the first d2 − 1 lines. Any term with a ~r does not

contribute. We find for p < d2 − 1:

n T
N
K(n+1)(x0,si)p,q

(n+1)!
= −G(x−si)n(x0)p,q

−
n∑

l=0

Y(x−si)n−l
K(l)(x0,si)p,q

l!
+

K(n)(x0,si)p+1,q

n!

(B.39)

Note that the r.h.s is completely known by recursion since it involves derivatives

only up to order n. Then since we know the first lines, we can compute the missing

last one by projecting the equation on the last line:

(n− 1) T
N

K(n+1)(x0,si)d2−1,q

(n+1)!
= −G(x−si)n(x0)d2−1,q

−
n∑

l=0

Y(x−si)n−l

K(l)(x0,si)d2−1,q

l!
+

d2−2∑

k=0

uk,i
t̃d2

K(n+1)(x0,si)k,q
(n+1)!

+ 1
t̃d2

d2−1∑

k=0

n∑

l=0

~Uk,(x−si)n−l
K(l)(x0,si)k,q

l!

(B.40)

Again, we note that the r.h.s. is known by recursion since it involves only derivatives

up to order n. Moreover the coefficient (n − 1) T
N

is never zero when n > 1 so that

we can compute K(n+1)(x0, si)d2−1,q. Therefore we can determine with both (B.39)

and (B.40) all the components of K(n+1)(x0, si) as soon as we know the lower orders.

Since we know K(x0, si), K
′(x0, si) and K ′′(x0, si) we can compute by recursion

every derivative K(n)(x0, si) and thus implement the scheme given by (5.10)

to determine all functions U
(g)
0,k (x) and then by taking the last component of

this vector (7.6) the correlation functions W
(g)
1 (x).

C Compatibility of the system at order 0

In this appendix, we will show that equations given by the identification of the coeffi-

cient (x− si)0 given before do not add any new constraints. Indeed, from the equation

(B.14) we get:

(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj
+ Λ + ~r~Vi

)

K(x0, si)

+~r ~wtiK
′(x0, si) =

Id

x0 − si
+
∑

j 6=i

( T
N
+ ~r ~wtj)K(x0, sj)

si − sj
(C.1)

A possible worry is that one can eliminate the term K ′(x0, si) in the previous equation

by multiplying on the left by ~r ~wti. Then one can obtain a closed system of equations
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for the K(x0, si)’s which is different from the one we presented before. We will prove

here that this does not happen.

Let’s first project the equation by multiplying on the left by ~r ~wi
t. The first term

disappear because of the relation (B.17). Therefore we find:

T

N
~r ~wi

tK ′(x0, si) =
~r ~wi

t

x0 − si
+
T

N

∑

j 6=i

(~r ~wi
t + ~r ~wj

t)K(x0, sj)

si − sj
(C.2)

From there we can extract ~r ~wi
tK ′(x0, si) and put it back into the first equation. We

get a closed relation for the K(x0, si):

T

N

(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj
+ Λ + ~r~Vi

)

K(x0, si)

+
~r ~wi

t

x0 − si
+
T

N

∑

j 6=i

(~r ~wi
t + ~r ~wj

t)K(x0, sj)

si − sj

=
T

N(x0 − si)
+
T

N

∑

j 6=i

( T
N
+ ~r ~wj

t)K(x0, sj)

si − sj
(C.3)

Some simplifications occur and we find:

T

N

(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj
+ Λ + ~r~Vi

)

K(x0, si)

=
T
N
− ~r ~wit

x0 − si
+
T

N

∑

j 6=i

( T
N
− ~r ~wit)K(x0, sj)

si − sj
(C.4)

We can project this relation into components. Note that the first d2 − 2 lines do

not give any new information since they are the same as (B.14):
(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj

)

K(x0, si)p,q−
T

N

∑

j 6=i

K(x0, sj)p,q
si − sj

+K(x0, si)p+1,q =
δp,q

x0 − si
(C.5)

The projection on the last line is interesting:

T

N

(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj

)

K(x0, si)d2−1,q

+
T

Nt̃d2

d2−1∑

k=0

(
∑

j 6=i

uk,j
si − sj

− t̃k + δk,0si

)

K(x0, si)k,q

=

T
N
δd2−1,q − uq,i

t̃d2

x0 − si
+
T 2

N2

∑

j 6=i

K(x0, sj)d2−1,q

si − sj

− T

Nt̃d2

d2−1∑

k=0

(
∑

j 6=i

uk,i
si − sj

)

K(x0, sj)k,q
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(C.6)

In the last term, the case k = d2 − 1 cancels the previous one:

T

N

(

−V ′
1(si) +

T

N

∑

j 6=i

1

si − sj

)

K(x0, si)d2−1,q

+
T

Nt̃d2

d2−1∑

k=0

(
∑

j 6=i

uk,j
si − sj

− t̃k + δk,0si

)

K(x0, si)k,q

=

T
N
δd2−1,q − uq,i

t̃d2

x0 − si
− T

Nt̃d2

d2−2∑

k=0

(
∑

j 6=i

uk,i
si − sj

)

K(x0, sj)k,q

(C.7)

We can put this system into a matrix d2N × d2N form. We introduce:

~Kq =




























K(x0, s1)1,q
...

K(x0, sN)1,q
−−−−

K(x0, s1)2,q
...

K(x0, sN)2,q
−−−−

...
−−−−

K(x0, s1)d2−1,q
...

K(x0, sN)d2−1,q




























, ~gq =

































~0
−−−−

...
−−−−

~0
−−−−

1
x0−s1
...
1

x0−sN
−−−−

~0
−−−−

−uq,1
t̃d2 (x0−s1)

...
−uq,N

t̃d2 (x0−sN )

































, ~gd2−1 = ~0 (C.8)

and

P =










−B Id 0 . . . 0
0 −B Id 0
...

. . .
. . . Id

...
0 . . . −B Id
C0 C1 . . . Cd2−2 Cd2−1










(C.9)

where all the matrices Ck, Id and 0 are of size N ×N given by :

Ck =







(Ck)i,i =
T

Nt̃d2

(

∑

j 6=i

uk,j
si−sj − t̃k + δk,0si

)

(Ck)i,j =
T
N

uk,i
t̃d2 (si−sj)

(C.10)
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and a special case for Cd2−1:

Cd2−1 =
T

N
diag(−V ′

1(si) +
2T

N

∑

j 6=i

1

si − sj
− t̃d2−1

t̃d2
) (C.11)

Then the two sets of equations are equivalent to the matrix equation:

∀q : P ~Kq = ~gq
(C.12)

The main problem now is that this system is different from the one we got before

and thus the system seems overdetermined. Fortunately, the matrices,M and P and

the vectors ~fq and ~gq have the same d2 − 2 first lines. But the main difference is that
~fq has double poles in x0 = si on the last line whereas ~gq has simple poles. Writing:

PM−1 ~fq = ~gq (C.13)

And looking at the last component gives that the two matrix systems are compatible

if and only if the last column of PM−1 is null. From the form (companion-like) of the

matrices we have: It is easy computation to see that the last column can be split in

blocks of size m :

M−1 =






X . . . X M0
...

...
...

X . . . X Md2−1




 (C.14)

where:

Mk = Bk
(
B0 +B1B + · · ·+Bd2−1B

d2−1
)−1

(C.15)

so that: Multiplying on the left by P gives that the two systems are compatible if and

only if:

C0 + C1B + · · ·+ Cd2−1B
d2−1 = 0

(C.16)

Note that we have also the determinantal identity:

det(M) = det










−X Id 0 . . . 0
0 −X Id 0
...

. . .
. . . Id

...
0 . . . −X Id
A0 A1 . . . Ad−1 Ad










= (−1)Nddet
(

d∑

i=0

AiX
i

)

(C.17)

valid for every matrices Ai and every matrix X of size N ×N .

This condition seems rather completely non trivial from the definition of B and of

Ck. But we will show in the following that from the definition of the uk,i’s, the last

equation is automatically satisfied. Note then that because of (C.17) we obtain at the
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same time that P is not invertible and thus only (B.26) gives us the K(x0, si)’s. Let’s

now prove that we have always:

C0 + C1B + · · ·+ Cd2−1B
d2−1 = 0 (C.18)

From the definition of the uk,i’s we have:

N

T

d2−1∑

k=0

uk−1,i(B
k)i,j =

N

T

d2−2∑

k=0

uk,i

(

V ′
1(si)−

T

N

∑

r 6=i

1

si − sr

)

(Bk)i,j

+

d2−2∑

k=0

∑

r 6=i

uk,i
si − sr

(Bk)r,j (C.19)

We obtain then that:
(
d2−2∑

k=0

CkB
k

)

i,j

=
T

Nt̃d2

d2−2∑

k=0

(
∑

r 6=i

uk,r(B
k)i,j + uk,i(B

k)r,j
si − sr

− t̃k(Bk)i,j + siδi,j

)

(C.20)

Note then that:

∑

r 6=i

uk,r
si − sr

= t̃k − δk,0si −
N

T
uk−1,i +

(

NV ′
1(si)

T
−
∑

r 6=i

1

si − sr

)

uk,i

so that:
(
d2−2∑

k=0

CkB
k

)

i,j

=
T

Nt̃d2

d2−2∑

k=0

[
(

t̃k − δk,0si +
(

NV ′
1(si)

T
−
∑

r 6=i

1

si − sr

)

uk,i

)

(Bk)i,j

−N
T
uk−1,i(B

k)i,j +
uk,i

si − sr
(Bk)r,j − t̃k(Bk)i,j + siδi,j

]

=
1

t̃d2
ud2−2,i(B

d2−1)i,j (C.21)

Then we need to add the last term:

(
Cd2−1B

d2−1
)

i,j
=

(

− T
N
V ′
1(si) +

2T 2

N2

∑

j 6=i

1

si − sj
− T

N

t̃d2−1

t̃d2

)

(Bd2−1)i,j

.

From the definition of ud2−1,2 we have also:

ud2−2,i =
N∑

k=1

(Bt)i,kud2−1,k +
T

N
t̃d2−1

so that:
1

t̃d2
ud2−2,i −

T

N
V ′
1(si) +

2T 2

N2

∑

j 6=i

1

si − sj
− T

N

t̃d2−1

t̃d2
= 0
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and thus:
(
d2−1∑

k=0

CkB
k

)

i,j

=

(

1

t̃d2
ud2−2,i −

T

N
V ′
1(si) +

T 2

N2

∑

j 6=i

2

si − sj
− T

N

t̃d2−1

t̃d2

)

(Bd2−1)i,j = 0

(C.22)

proving that only (B.26) gives the correct formula to determine all the K(x0, si)’s.

D Example: Only one root s

In order to illustrate our algorithm, we present here the case when there is only one

root s (we omit the subscript s1). In this case, almost all the computation can be

carried out analytically and in particular we show how to obtain W
(1)
1 (x) and F1 in

this context. The results presented here are direct applications of the formula presented

in the article. First we have from (6.14):

B = V ′
1(s) , uk,1 =

T

N

d2−k−1∑

p=0

t̃k+p+1 (V
′
1(s))

p
(D.1)

Then we have:

U
(0)
0 (x, y) =

T

N(x− s)

d2∑

p=0

p−1
∑

q=0

t̃py
p−1−q (V ′

1(s))
q
+ x− V ′

2(y) (D.2)

The action S is given by:

S(s, s̃, A, u) = V1(s) + V2(s̃)− ss̃ +
T

N
lnA− T

N
u(A− 1) (D.3)

The extremum is obtained for u = 1, A = 1, V ′
1(s) = s̃ and V ′

2(s̃) = s = V ′
2(V

′
1(s)).

The Hessian matrix is given by:

H(s, s̃, A, u) =







V ′′
1 (s) −1 0 0
−1 V ′′

2 (s̃) 0 0
0 0 − T

NA2 − T
N

0 0 − T
N

0







(D.4)

At the extremum it gives:

H|extr =







V ′′
1 (s) −1 0 0
−1 V ′′

2 (V
′
1(s)) 0 0

0 0 − T
N
− T
N

0 0 − T
N

0







(D.5)

which gives:

H−1(s, s̃, A, u) =








V ′′

2 (s̃)

V ′′

2 (s̃)V ′′

1 (s)−1
1

V ′′

2 (s̃)V ′′

1 (s)−1
0 0

1
V ′′

2 (s̃)V ′′

1 (s)−1

V ′′

1 (s)

V ′′

2 (s̃)V ′′

1 (s)−1
0 0

0 0 0 −N
T

0 0 −N
T

N
TA2








(D.6)
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so that at the extremum we get:

H−1
|extr =








V ′′

2 (V ′

1 (s))

V ′′

2 (V ′

1 (s))V
′′

1 (s)−1
1

V ′′

2 (V ′

1 (s))V
′′

1 (s)−1
0 0

1
V ′′

2 (V ′

1 (s))V
′′

1 (s)−1

V ′′

1 (s)

V ′′

2 (V ′

1 (s))V
′′

1 (s)−1
0 0

0 0 0 −N
T

0 0 −N
T

N
T








(D.7)

Hence we have with (6.45):

∂s

∂V1(x)
=

V ′′
2 (V

′
1(s))

(V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x− s)2 (D.8)

giving the formula for W
(0)
2 (x1, x2):

W
(0)
2 (x1, x2) =

T

N

V ′′
2 (V

′
1(s))

(V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x1 − s)2(x2 − s)2

(D.9)

We can now compute the kernels G(x0, x) and K(x0, si). The matrixM (size d2× d2)
is given by:

M =










−V ′
1(s) 1 0 . . . 0

0 −V ′
1(s) 1

...
...

. . .
. . .

. . .

0 −V ′
1(s) 1

−V ′′
1 (s)u0,1 +

T
N
−V ′′

1 (s)u1,1 . . . −V ′′
1 (s)ud2−2,1 −V ′′

1 (s)ud2−1,1










(D.10)

and the linear equation giving the K(x0, s) reads for q = d2 − 1:

M










K(x0, s)0,d2−1

K(x0, s)1,d2−1
...

K(x0, s)d2−2,d2−1

K(x0, s)d2−1,d2−1










=











0
...
...
0
1

(x0−s)2











(D.11)

The expression of M−1 is quite complicated. But fortunately, the last column

(which is the only one we need for the computation of W
(1)
1 ) is the most simple:

(
M−1

)

p,d2−1
=

V ′
1(s)

p

−V ′′
1 (s)

(
d2−1∑

k=0

uk,1(V ′
1(s))

k

)

+ T
N

(D.12)

But since uk,1 =
T
N

d2−k−1∑

p=0

t̃d2+p+1(V
′
1(s))

p, we find easily that:

(
M−1

)

p,d2−1
= − NV ′

1(s)
p

T (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)

(D.13)

64



We can compute U
(0)
1 (x, y; x) by derivation of U

(0)
0 (x, y) relatively to V1(x) with the

formula
∂U

(0)
0 (x,y)

∂V1(z)
= U

(0)
1 (x, y; z). We find:

U
(0)
1 (x, y; x) =

T

N

V ′′
2 (V

′
1(s))

(V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x− s)4

d2∑

p=0

p−1
∑

q=0

t̃py
p−1−q (V ′

1(s))
q

+
T

N(x− s)

d2∑

p=0

p−1
∑

q=0

t̃py
p−1−qq (V ′

1(s))
q−1 ∂V

′
1(s)

∂V1(x)

=
T

N

V ′′
2 (V

′
1(s))

(V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x− s)4

d2∑

p=0

p−1
∑

q=0

t̃py
p−1−q (V ′

1(s))
q

+
T

N(x− s)

d2∑

p=0

p−1
∑

q=0

t̃py
p−1−qq (V ′

1(s))
q−1
(

− 1

(x− s)2

+
V ′′
1 (s)V

′′
2 (V

′
1(s))

(V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x− s)2

)

(D.14)

If we project along the kth power of y, it gives:

U
(1)
1,k (x; x) = T

N

V ′′

2 (V ′

1 (s))

(V ′′

2 (V ′

1 (s))V
′′

1 (s)−1)(x−s)4
d2−k−1∑

r=0

t̃r+k+1 (V
′
1(s))

r

+ T

N(V ′′

2 (V ′

1 (s))V
′′

1 (s)−1)

d2−k−1∑

r=0

rt̃r+k+1 (V
′
1(s))

r−1 1
(x−s)3

(D.15)

Therefore we have with (7.16):






U
(1)
0,0 (x)
...

U
(1)
0,d2−1(x)




 = Res

z→s
Kt(x, z)

[






U
(1)
1,0 (z; z)

...

U
(1)
1,d2−1(z; z)




−

N

T
∂z






U
(0)
0,0 (z)
...

U
(0)
0,d2−1(z)






]

(D.16)

We want to compute W
(1)
1 (x) = 1

t̃d2
U

(1)
0,d2−1(x) that is to say that we only need the

last column of the previous vector. If we write it in components we get:

t̃d2W
(1)
1 (x) = Res

z→s

d2−1∑

k=0

K(x, z)k,d2−1

(

U
(1)
1,k (z; z) −

N

T
∂zU

(0)
0,k (z)

)

(D.17)

The contribution from U
(0)
0,k (z) is easy to compute since it only involves a double

pole at x = s. Regarding the fact that K ′(x0, s)p,q are null for p < d2− 1, there is only

one term involved. An easy computation leads to:

−N
T

Res
z→s

d2−1∑

k=0

K(x, z)k,d2−1∂zU
(0)
0,k (z) =

N

T
t̃d2

1

x− s (D.18)
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The contribution from U
(1)
1,k (z; z) is technically more involved. Indeed, since

U
(1)
1,k (z; z) has poles up to order 4, we need to compute the derivatives up to K ′′′(x0, s).

In particular, we only need the last column of the matrices. Since m = 1, the formulas

of the derivatives simplify a lot:

~w =
1

t̃d2






u0,i
...

ud2−1,i




 , ~V =

1

t̃d2








−t̃0 + s
−t̃1
...

−t̃d2−1








, ~V 1 =








1
t̃d2

0
...
0








, ~V 2 = ~0 (D.19)

which gives:

K(x0, s)p,d2−1 = −t̃d2
V ′

1 (s)
p

(V ′′

1 (s)V ′′

2 (V ′

1 (s))−1)
1

(x0−s)2

K ′(x0, s)d2−1,q =
N2uq,1

T 2 t̃d2 (x0−s)
K ′′(x0, s)p,d2−1 = 2N

T
(δp,d2−2K

′(x0, s)d2−1,d2−1 − V ′′
1 (s)K(x0, s)p,d2−1)

=
2N2δp,d2−2

T 2(x0−s) +
2Nt̃d2V

′′

1 (s)V ′

1 (s)
p

T(V ′′

1 (s)V ′′

2 (V ′

1(s))−1)(x0−s)2
(p < d2 − 1)

(D.20)

Then (B.29) reduces for p < d2 − 1 to:

T
3N
K ′′′(x0, s)p,d2−1 = −1

2
V ′
1(s)K

′′(x0, s)p,d2−1 +
1
2
K ′′(x0, s)p+1,d2−1

−V ′′′

1 (s)

2
K(x0, s)p,d2−1

(D.21)

The last component is a bit more sophisticated. We can obtain it by multiplying

(B.29) by ~r ~wt in order to get rid of K ′′(x0, s):

T

6N
~r~wtK ′′′(x0, s) =

(

−V ′′
1 (s)~r ~w

t +
T

N
~r ~V 1

)

K ′(x0, s)

−V
′′′
1 (s)

2
~r ~wtK(x0, s)p,d2−1 −

~r ~wt

(x0 − s)3
(D.22)

which gives in components:

T 2

6N2K
′′′(x0, s)d2−1,d2−1 = − T

6N

d2−2∑

k=0

uk,1
t̃d2
K ′′′(x0, s)k,d2−1 − T

N
V ′′
1 (s)K

′(x0, s)d2−1,d2−1

−V ′′′

1 (s)

2

d2−1∑

k=0

uk,1
t̃d2
K(x0, s)k,d2−1 − T

N(x0−s)3

(D.23)

Now we can compute W
(1)
1 (x0). First we can compute the term coming from 1

(x−s)3 of

(D.15) in (D.17):

(1) =
T

N (V ′′
2 (V

′
1(s))V

′′
1 (s)− 1)

d2−1∑

k=0

d2−k−1∑

r=0

rt̃r+k+1 (V
′
1(s))

r−1 K
′′(x0, s)k,d2−1

2

66



=
1

(V ′′
2 (V

′
1(s))V

′′
1 (s)− 1)

d2−1∑

k=0

d2−k−1∑

r=0

rt̃r+k+1 (V
′
1(s))

r−1
( Nδk,d2−2

T (x0 − s)

+
t̃d2V

′′
1 (s)V

′
1(s)

k

(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1) (x0 − s)2

)

=
Nt̃d2

T (V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x0 − s)

+
t̃d2V

′′
1 (s)V

′′′
2 (V ′

1(s))

2 (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)2 (x0 − s)2

(D.24)

Then we observe that we have to compute:

(2) =
TV ′′

2 (V
′
1(s))

6N(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)

d2−1∑

k=0

d2−k−1∑

r=0

t̃r+k+1 (V
′
1(s))

r
K ′′′(x0, s)k,d2−1

=
TV ′′

2 (V
′
1(s))

6N(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)

( d2−2∑

k=0

d2−k−1∑

r=0

t̃r+k+1 (V
′
1(s))

r
K ′′′(x0, s)k,d2−1

+t̃d2K
′′′(x0, s)d2−1,d2−1

)

=
TV ′′

2 (V
′
1(s))

6N(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)

( d2−2∑

k=0

d2−k−1∑

r=0

t̃r+k+1 (V
′
1(s))

r
K ′′′(x0, s)k,d2−1

−
d2−2∑

k=0

Nuk,1
T

K ′′′(x0, s)k,d2−1 −
6Nt̃d2
T

V ′′
1 (s)K

′(x0, s)d2−1,d2−1

−3N
2

T 2
V ′′′
1 (s)

d2−1∑

k=0

uk,1K(x0, s)k,d2−1 −
6Nt̃d2

T (x0 − s)3
)

=
TV ′′

2 (V
′
1(s))

6N(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)

(

− 6Nt̃d2
T

V ′′
1 (s)K

′(x0, s)d2−1,d2−1

−3N
2

T 2
V ′′′
1 (s)

d2−1∑

k=0

uk,1K(x0, s)k,d2−1 −
6Nt̃d2

T (x0 − s)3
)

=
V ′′
2 (V

′
1(s))

(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)

(

− t̃d2V ′′
1 (s)K

′(x0, s)d2−1,d2−1

− N
2T

V ′′′
1 (s)

d2−1∑

k=0

uk,1K(x0, s)k,d2−1 −
t̃d2

(x0 − s)3
)

(D.25)

where we have used the definition of uk,1 to cancel the terms in K ′′′(x0, s). Eventually

we observe that:

d2−1∑

k=0

uk,1K(x0, s)k,d2−1

= − T t̃d2
N(V ′′

1 (s)V
′′
2 (V

′
1(s))− 1)(x0 − s)2

d2−1∑

k=0

uk,1 (V
′
1(s))

k

= − T t̃d2
N(V ′′

1 (s)V
′′
2 (V

′
1(s))− 1)(x0 − s)2

d2−1∑

k=0

d2−1∑

r=0

t̃r+k+1 (V
′
1(s))

r+k
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= − T t̃d2
N(V ′′

1 (s)V
′′
2 (V

′
1(s))− 1)(x0 − s)2

d2−1∑

k=0

d2−1∑

p=k

t̃p+1 (V
′
1(s))

p

(D.26)

= − T t̃d2
N(V ′′

1 (s)V
′′
2 (V

′
1(s))− 1)(x0 − s)2

d2−1∑

p=0

p∑

k=0

t̃p+1 (V
′
1(s))

p

= − T t̃d2V
′′
2 (V

′
1(s))

N(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)(x0 − s)2

(D.27)

Therefore we find:

(2) = − Nt̃d2V
′′
1 (s)V

′′
2 (V

′
1(s))

T (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)(x0 − s)

+
t̃d2V

′′′
1 (s) (V ′′

2 (V
′
1(s)))

2

2 (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)2 (x0 − s)2

− t̃d2V
′′
2 (V

′
1(s))

(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)(x0 − s)3

(D.28)

And eventually putting (1) and (2) together and the contribution from ∂zU
(0)
0,k (z), we

get to:

W
(1)
1 (x0) =

N

T (V ′′
2 (V

′
1(s))V

′′
1 (s)− 1) (x0 − s)

+
V ′′
1 (s)V

′′′
2 (V ′

1(s))

2 (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)2 (x0 − s)2

+
V ′′′
1 (s) (V ′′

2 (V
′
1(s)))

2

2 (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)2 (x0 − s)2

− NV ′′
1 (s)V

′′
2 (V

′
1(s))

T (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)(x0 − s)

− V ′′
2 (V

′
1(s))

(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)(x0 − s)3

+
N

T
t̃d2

1

x0 − s

= − V ′′
2 (V

′
1(s))

(V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)(x0 − s)3

+
V ′′
1 (s)V

′′′
2 (V ′

1(s)) + V ′′′
1 (s) (V ′′

2 (V
′
1(s)))

2

2 (V ′′
1 (s)V

′′
2 (V

′
1(s))− 1)2 (x0 − s)2

(D.29)

i.e.:

W
(1)
1 (x0) =

V ′′

1 (s)V ′′′

2 (V ′

1(s))+V
′′′

1 (s)(V ′′

2 (V ′

1(s)))
2

2(V ′′

1 (s)V ′′

2 (V ′

1 (s))−1)
2
(x0−s)2

− V ′′

2 (V ′

1 (s))

(V ′′

1 (s)V ′′

2 (V ′

1(s))−1)(x0−s)3

(D.30)

Then a straightforward computation gives F1 defined by ∂
∂V1(x)

F1 =W
(1)
1 (x) with:

F1 = −
1

2
ln (V ′′

1 (s)V
′′
2 (V

′
1(s))− 1) = −1

2
ln (V ′′

1 (s)V
′′
2 (s̃)− 1)

(D.31)

where F0 is given by −S which reduces when N = 1 to:

F0 =
T

N
(−V1(s)− V2(V ′

1(s)) + sV ′
1(s)) =

T

N
(−V1(s)− V2(s̃) + ss̃)

(D.32)
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and which satisfies ∂
∂V1(x)

F0 =W
(0)
1 (x) = T

N(x−s) .

E Computation of W
(1)
1 (x) in the general case

We have:

[V ′
2(B)]i =

d2∑

k=0

t̃k(B
(k))i = si (E.1)

where

B
(k)
i =

N∑

j=1

[Bk]i,j (E.2)

The relation
δ ([V ′

2(B)]i − si)
δV1(x)

= 0 (E.3)

implies
∑

j

Zi,jHj,k = Vi,k (E.4)

where:

Vi,j =
d[V ′

2(B)]i
dV ′

1(sj)
, Zi,j =

d ([V ′
2(B)]i − si)
dsj

(E.5)

The equation to solve is:

U (1)(x, ŷ)

[

T

N

∑

i

1

x− si
− V ′

1(x) + ŷ

]

+

[
∑

i,j

Ai,j
V ′
2(ŷ)− V ′

2(s̃j)

ŷ − s̃j
1

x− si
+ x− V ′

2(y)

]

W
(1)
1 (x)

+U
(1)
0 (x, x, ŷ) = −P (1)(x, ŷ) (E.6)

where:

U
(0)
1 (x, z, y) =

δU
(0)
0 (x, y)

δV1(z)
=

δ

δV1(z)

[

T

N

∑

i,j

Ai,j
V ′
2(y)− V ′

2(s̃j)

y − s̃j
1

x− si
+ x− V ′

2(y)

]

(E.7)

Since we must perform an expansion in y, we write:

V ′
2(y)− V ′

2(s̃j)

y − sj
=

d2−1∑

k=0

Ej,k(s̃j, t̃n)y
k (E.8)

and
T

N

∑

j

Ai,j
V ′
2(y)− V ′

2(s̃j)

y − sj
=

d2−1∑

k=0

Φi,ky
k (E.9)
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with

Φi,k =
T

N

∑

j

Ai,jEj,k(s̃j, t̃n) (E.10)

Since:

Ej,d2−1(s̃j, t̃n) = t̃d2
Ej,p−1(s̃j, t̃n)− s̃jEj,p(s̃j, t̃n) = t̃p ∀1 ≤ p = d2 − 1

−s̃jEj,0(s̃j, t̃n) = t̃0 − V ′
2(s̃j) (E.11)

we obtain:

Φi,d2−1 = t̃d2
Φi,p−1 −

∑

k

Bi,kΦk,p = t̃p ∀1 ≤ p = d2 − 1

−
∑

k

Bi,kΦk,0 = t̃0 − [V ′
2(B)]i = t̃0 − si (E.12)

We have the following properties:

Φi,p =

d2−p−1
∑

k=0

t̃k+p+1B
(k)
i (E.13)

We calculate:

d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dsj
Φl,p =

d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dsj

d2−p−1
∑

k=0

t̃k+p+1B
(k)
i

=
d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dsj

d2∑

u=p+1

t̃uB
(u−p−1)
i

=

d2∑

u=0

u−1∑

p=0

t̃u

[
∑

q,i

[Bp]r,q
dBq,i

dsj
B

(u−p−1)
i

]

=

d2∑

u=0

t̃u
dB

(u)
r

dsj
=
d[V ′

2(B)]r
dsj

= Zr,j + δr,j (E.14)

Consequently,

d2[V ′
2(B)]r

dsjdsk
=

d2−1∑

p=0

∑

q,i

d[Bp]r,q
dsk

dBq,i

dsj
Φi,p

+

d2−1∑

p=0

∑

q,i

[Bp]r,q
d2Bq,i

dsjdsk
Φi,p

+

d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dsj

dΦi,p
dsk

(E.15)
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We note that:

d2−1∑

p=0

∑

q,i

d[Bp]r,q
dsk

dBq,i

dsj
Φi,p =

d2−1∑

p=1

∑

q,i

d[Bp]r,q
dsk

d

dsj
[Bq,iΦi,p]

−
d2−1∑

p=0

∑

q,i

d[Bp]r,q
dsk

Bq,i
dΦi,p
dsj

=
d2−1∑

p=0

∑

q,i

d[Bp]r,q
dsk

dΦq,p−1

dsj
−

d2−2∑

p=0

∑

q,i

d[Bp+1]r,i
dsk

dΦi,p
dsj

+

d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dsk

dΦi,p
dsj

=
d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dsk

dΦi,p
dsj

(E.16)

so that

d2[V ′
2(B)]r

dsjdsk
=

d2−1∑

p=0

∑

q,i

[Bp]r,q
d2Bq,i

dsjsk
Φi,p

+

d2−1∑

p=0

∑

q,i

[Bp]r,q

[
dBq,i

dsj

dΦi,p
dsk

+ (j ↔ k)

]

(E.17)

Similarly,

d2−1∑

p=0

∑

q,i

[Bp]r,q
dBq,i

dV ′
1(sj)

Φi,p =

d2−1∑

p=0

[Bp]r,jΦj,p =
d[V ′

2(B)]r
dV ′

1(sj)
= Vr,j (E.18)

Now we have

U
(0)
1 (x, z, y) =

d2−1∑

p=0

yp
∑

i,k

[

∆kΦi,p
1

x− si
1

(z − sk)2
+ Φi,pHi,k

1

(x− si)2
1

(z − sk)2
]

(E.19)

where
δ

δV1(z)
Φi,p =

∑

k

∆kΦi,p
1

(z − sk)2
(E.20)

Then, U
(0)
1 (x, x, ŷ) is obtained by changing z → x and y → ŷ = − T

N
d
dx

with the

convention that ŷ is written at the left of all x dependent terms.

U
(0)
1 (x, x, ŷ) =

d2−1∑

p=0

ŷp
∑

i,k

[

∆kΦi,p
1

x− si
1

(z − sk)2
+ Φi,pHi,k

1

(x− si)2
1

(z − sk)2
]

(E.21)
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Also we write

U (1)(x, ŷ) =

d2−1∑

p=0

ŷpUp(x) (E.22)

so that

U (1)(x, ŷ)ŷ = ŷd2Ud2−1(x) +

d2−2∑

p=0

ŷp
[

Up(x) +
dUp+1(x)

dx

]

+
dU1(x)

dx
(E.23)

The system to be solved is:

ŷd2−1Ud2−1(x) +

d2−2∑

p=0

ŷp
[

Up(x) +
dUp+1(x)

dx

]

+

d2−1∑

p=0

ŷpUp(x)

[
∑

i

1

x− si
− V ′

1(x)

]

+

[
d2−1∑

p=0

ŷp
∑

l

Φi,p
1

x− sl
+ x−

d2∑

p=0

ŷpt̃p

]

W
(1)
1 (x) +

dU1(x)

dx

= −
(
d2−1∑

p=0

ŷp
∑

l,k

[

∆kΦl,p
1

x− si
1

(x− sk)2
+ Φi,pHi,k

1

(x− si)2
1

(x− sk)2
])

(E.24)

Clearly

Ud2−1(x) = t̃d2W
(1)
1 (x) ,

T

N

d

dx
~u+D~u = −~v (E.25)

where

~u =








U1

U2
...

Ud2−1








(E.26)

and

D =

















T
N

∑

i

1
x−si − V

′
1(x) 0 . . . 0 1

t̃d2

[
∑

i

Φi,0

x−si + x− t̃0
]

1
. . .

. . .
... 1

t̃d2

[
∑

i

Φi,1

x−si − t̃1
]

0
. . .

. . . 0
...

...
. . . 1 T

N

∑

i
1

x−si − V
′
1(x)

1
t̃d2

[
∑

i

Φi,p−1

x−si − t̃p−1

]

0 . . . 0 1 T
N

∑

i

2
x−si − V

′
1(x)−

t̃d2−1

t̃d2

















(E.27)
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and

~v =



















∑

i,k

[

∆kΦi,0
1

x−si
1

(x−sk)2 + Φi,0Hi,k
1

(x−si)2
1

(x−sk)2
]

∑

i,k

[

∆kΦi,1
1

x−si
1

(x−sk)2 + Φi,1Hi,k
1

(x−si)2
1

(x−sk)2
]

...
∑

i,k

[

∆kΦi,p−1
1

x−si
1

(x−sk)2 + Φi,p−1Hi,k
1

(x−si)2
1

(x−sk)2
]

...
t̃d2
∑

i,k

Hi,k
1

(x−si)2
1

(x−sk)2



















(E.28)

We have

W
(1)
1 (x) =

Ud2−1

t̃d2

= =
1

t̃d2

∑

j

Res
x→sj

d2−1∑

p=0

Kp,d2−1(x0, x)
∑

i,k

[

− N

T t̃d2
∂xU

(0)
0,p (x)

+∆kΦi,p−1
1

x− si
1

(x− sk)2
+ Φi,p−1Hi,k

1

(x− si)2
1

(x− sk)2
]

(E.29)

The term involving the derivatives is easy to compute. Indeed, it gives:

N

T t̃d2

∑

i

d2−1∑

k=0

K ′(x0, si)k,d2−1uk,i (E.30)

Now only the term with k = d2 − 1 contributes from (B.30). Moreover, ud2−1,i =
T t̃d2
N

and from (B.32) we have:

K ′(x0, si)d2−1,d2−1 =
N

T (x0 − si)
+ 2

∑

j 6=i

K(x0, sj)d2−1,d2−1

si − sj
(E.31)

so that the term involving the derivative is:

− N
T t̃d2

∑

j

Res
x→sj

d2−1∑

p=0

K(x0, x)p,d2−1∂xU
(0)
0,p (x) = N

T

N∑

i=1

1
x0−si

+2
∑

i,j 6=i

K(x0,sj)d2−1,d2−1

si−sj

(E.32)

Note in particular that it contributes with a simple pole at x0 = si with residue N
T
.

where the kernel K(x0, x) satisfies

[

Dt − T

N

d

dx

]

K(x0, x) = G(x0, x) =
∑

i

αi
x− si

+
Id

x0 − x
(E.33)
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the matrices αi and Id are d2 × d2 matrices. We expand around sj :

1

x− si
1

(x− sk)2
=

δi,jδk,j
(x− sj)3

− δk,j
∞∑

q=0

∑

i 6=j

(x− sj)q−2

(si − sj)q+1

+δi,j

∞∑

q=0

∑

k 6=j
(q + 1)

(x− sj)q−1

(sk − sj)q+2

−
∞∑

q,r=0

∑

i,k 6=j
(q + 1)

(x− sj)q+r
(si − sj)r+1(sk − sj)q+2

(E.34)

and also

1

(x− si)2(x− sk)2
=

δi,jδk,j
(x− sj)4

δi,j

∞∑

q=0

∑

k 6=j
(q + 1)

(x− sj)q−2

(sk − sj)q+2

+δk,j

∞∑

r=0

∑

i 6=j
(r + 1)

(x− sj)r−2

(si − sj)r+2

+
∞∑

q,r=0

∑

i,k 6=j
(q + 1)(r + 1)

(x− sj)q+r
(si − sj)r+2(sk − sj)q+2

(E.35)

Consequently, from the expansion of K(x0, x) around x = sj :

Ud2−1 =
∑

j

d2∑

p=1

Uj,(p,d2) (E.36)

with

Uj,(p,d2) =
1

6
Φj,p−1Hjjk

′′′
j,(p,d2) +

1

2
∆jΦj,p−1k

′′
j,(p,d2)

+
∑

i 6=j

[
(Φi,p−1 + Φj,p−1)Hi,j

(si − sj)2
− ∆jΦi,p−1

si − sj

]

k′j,(p,d2)

+
∑

i 6=j
2

[
(Φi,p−1 + Φj,p−1)Hi,j

(si − sj)3
+

(∆iΦi,p−1 +∆jΦi,p−1)

(si − sj)2
]

kj,(p,d2)

(E.37)

The expansion of Dt around x = sj is:

Dt =
1

x− sj










T
N

T
N

. . .
T
N

Φj,0

t̃d2

Φj,1

t̃d2
. . .

Φj,d2−2

t̃d2
2
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+











−Bj,j 1 0 . . . 0

0 −Bj,j 1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 −Bj,j 1

D0 D1 . . . Dd2−2 −Bj,j − t̃d2−1

t̃d2











(x− sj)













−Qj
j,j

−Qj
j,j

. . .

−Qj
j,j

1
t̃d2

[

1−
∑

i 6=j

Φi,0

(sj−si)2

]

− 1
t̃d2

∑

i 6=j

Φi,1

(sj−si)2 . . .
∑

i 6=j

Φi,d2−2

(sj−si)2 −Qj,j













+
1

2
(x− sj)2











−Rj
j,j,j

−Rj
j,j,j

. . .

−Rj
j,j,j

2
t̃d2

∑

i 6=j

Φi,0

(sj−si)3
2
t̃d2

∑

i 6=j

Φi,1

(sj−si)3 . . . 2
t̃d2

∑

i 6=j

Φi,d2−2

(sj−si)3 −Rj,j,j











. . . (E.38)

where we have noted:

D0 =
1

t̃d2

[
∑

i 6=j

Φi,0
sj − si

+ sj − t̃0
]

Dp =
1

t̃d2

[
∑

i 6=j

Φi,p
sj − si

− t̃p
]

(E.39)

where

Qi,j =
∑

p

Qp
i,j =

dBi

dsj
(E.40)

and

Qp
i,j =

dBi,p

dsj
=






V ′′
1 (si) +

T
N

∑

k 6=i
1

(si−sk)2 if i = j = p
T
N

1
(si−sp)2 if i = j 6= p

− T
N

1
(si−sp)2 if i = p 6= j or j = p 6= i




 (E.41)

and where

Ri,j,k

∑

p

Rp
i,j,k =

dQi,j

dsk
=

d2Bi

dsjdsk
(E.42)

and

Rp
i,j,k =

dQp
i,j

dsk
=
d2Bi,p

dsjdsk
=

(

V ′′′
1 (si)δi,jδi,k − 2 T

N

∑

q 6=i
(δi,j−δp,i)(δi,k−δp,k)

(si−sq)3 if i = p

−2 T
N

∑

q 6=i
(δi,j−δp,i)(δi,k−δp,k)

(si−sq)3 if i 6= p

)

(E.43)
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We also expand the kernels:

G(x0, x) =
αj

x− sj
−

∞∑

p=0

∑

i 6=j

(x− sj)p
(si − sj)p+1

αi +
∞∑

p=0

(x− sj)p
(x0 − sj)p+1

Id (E.44)

We define the matrices:

Mj =









1
1

. . .
1

Φj,0 Φj,1 . . . Φj,d2−2 Φj,d2−1









(E.45)

and expand Mj

[
Dt − T

N
d
dx

]
K(x0, x) =MjG(x0, x) and identify the powers in (x− sj):

1

x− sj
→









1
T
N

. . .
T
N

2Φj,0 2Φj,1 . . . 2Φj,d2−2 2Φj,d2−1









kj =Mjαj (E.46)

and

(x− sj)0 →









0
0

. . .
0

Φj,0 Φj,1 . . . Φj,d2−2 Φj,d2−1









k′j

+









−Bj,j 1
−Bj,j 1

. . .
−Bj,j 1

0 0 0 0









kj

−
∑

i 6=j

1

si − sj
Mjαi +

Mj

x0 − sj
(E.47)

We note that

Mjαi =









1
T
N

. . .
T
N

Φj,0 + Φi,0 Φj,1 + Φi,1 . . . Φj,d2−2 + Φi,d2−2 Φj,d2−1 + Φi,d2−1









ki

(E.48)

The d2 − 1 first equations tell that:

kj,(1,d2) −
∑

r

kr,(1,d2)

d2∑

p=1

∑

i,q

[Bp−1]r,qQ
i
q,jΦi,p−1 =

t̃d2
(x0 − sj)2

(E.49)
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We proved before that this is equivalent to

kj,(1,d2) −
∑

r

kr,(1,d2)
d[V ′

2(B)]t
dsj

=
t̃d2

(x0 − sj)2
(E.50)

so that:

−
∑

r

kr,(1,d2)Zr,j =
t̃d2

(x0 − sj)2
(E.51)

and

ki,(1,d) = −
∑

j

t̃d2
(x0 − sj)2

Z−1
j,i

ki,(p,d) = −
∑

j,r

t̃d2
(x0 − sj)2

Z−1
j,r [B

p−1]r,i (E.52)

The other equations tell

−1
2
k′′j,(p,d2) = Bj,jk

′
j,(p,d2) − k

′
j,(p+1,d2) +

∑

i

ki,(p,d2)Q
j
i,j (E.53)

Finally,

(x− sj)2 → −
1

6









2 T
N

2 T
N

. . .
2 T
N

Φj,0 Φj,1 . . . Φj,d2−2 Φj,d2−1









k′′′j

+
1

2









−Bj,j 1
−Bj,j 1

. . .
−Bj,j 1

0 0 0 0









k′′j

+










−Qj
j,j

−Qj
j,j

. . .

−Qj
j,j

1−∑
i

Qi
j,jΦi,0 −

∑

i

Qi
j,jΦi,1 . . . −∑

i

Qi
j,jΦi,d2−2 −

∑

i

Qi
j,jΦi,d2−1










k′j

+
1

2










−Rj
j,j,j

−Rj
j,j,j

. . .

−Rj
j,j,j

−∑
i

Ri
j,j,jΦi,0 −

∑

i

Ri
j,j,jΦi,1 . . . −∑

i

Ri
j,j,jΦi,d2−2 −

∑

i

Ri
j,j,jΦi,d2−1










kj

= −
∑

i 6=j

1

(si − sj)3
Mjαi +

Mj

(x0 − si)3
(E.54)
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We need only to look at the last equation:

1

6

d2∑

p=1

Φj,p−1k
′′′
j,(p,d2)

− k′j,(1,d2) +
d2∑

p=1

∑

i

Qi
j,jΦi,p−1k

′
j,(p,d) +

1

2

d2∑

p=1

∑

i

Ri
j,j,jΦi,p−1kj,(p,d)

=
∑

i 6=j

1

(si − sj)2
d2∑

p=1

(Φi,p−1 + Φj,p−1)ki,(p,d2) −
t̃d2

(x0 − si)3
(E.55)

We now show that in Ud2−1, if we replace the terms in k′′′i,(p,d2) and k
′′
i,(p,d2)

by their value,

then the terms in k′i,(p,d2) disappear so that only the terms in ki,(p,d2) which are known

remain.

First Step

1

2
∆jΦj,p−1k

′′
j,(p,d2)

−
∑

i 6=j

∆jΦi,p−1

si − sj
k′j,(p,d2)

= −
∑

i

Bj,i∆jΦi,p−1k
′
j,(p,d2)

+∆jΦj,p−1k
′
j,(p+1,d2)

−
∑

i

ki,(p,d2)Q
j
i,j∆jΦi,p−1 (E.56)

or

1

2
∆jΦj,p−1k

′′
j,(p,d2)

−
∑

i 6=j

∆jΦi,p−1

si − sj
k′j,(p,d2)

=

[

−∆jΦj,p−2 − Φj,p−1 +
∑

i,k

Qi
j,kΦi,p−1Hk,j

]

k′j,(p,d2)

+∆jΦj,p−1k
′
j,(p+1,d2) −

∑

i

ki,(p,d2)Q
i
i,j∆jΦj,p−1 (E.57)

where, for p = 1,

[∆jΦj,p−2]p−1 → ∆j [V
′
2(B)]j = ∆jsj = Hj,j (E.58)

Step 2

d2∑

p=1

[

Hj,j

6
Φj,p−1k

′′′
j,(p,d2) +

1

2
δjΦj,p−1k

′′
j,(p,d2) −

∑

i 6=j

δjΦi,p−1

si − sj
k′j,(p,d2)

]

=

d2∑

p=1

∑

i,k 6=j
Qi
j,kΦi,p−1Hk,jk

′
j,(p,d2)

− Hj,j

2

d2∑

p=1

∑

i

Ri
j,j,jΦi,p−1kj,(p,d2)

+Hj,j

[
∑

i 6=j

1

(si − sj)3
d2∑

p=1

(Φi,p−1 + Φj,p−1)ki,(p,d2) −
t̃d2

(x0 − si)3

]

− t̃d2
x0 − sj

+
∑

i 6=j

1

si − sj

d2∑

p=1

(Φi,p−1 + Φj,p−1)ki,(p,d2)
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−
∑

i

d2∑

p=1

ki,(p,d2)Q
j
i,j∆jΦj,p−1

(E.59)

Step 3

From the indices properties of Qi
j,k we obtain:

d2∑

p=1

Uj,(p,d2) = −t̃d2
Hj,j

(x0 − si)3
− t̃d2

T

N(x0 − sj)
− Hj,j

2

d2∑

p=1

∑

i

Ri
j,j,jΦi,p−1kj,(p,d2)

+
∑

i 6=j

d2∑

p=1

Φi,p−1 + Φj,p−1

(si − sj)3
(Hj,jki,(p,d2) + 2Hi,jkj,(p,d2))

+
∑

i 6=j

d2∑

p=1

∆iΦj,p−1 +∆jΦi,p−1

(si − sj)2
kj,(p,d2) −

∑

i,j

d2∑

p=1

ki,(p,d2)Q
j
i,j∆jΦj,p−1

+
Φi,p−1 + Φj,p−1

si − sj
ki,(p,d2) (E.60)

Consequently,

W
(1)
1 (x) =

Ud2−1

t̃d2
= −

∑

j

[ Hj,j

(x0 − sj)3
+

Bj

(x0 − sj)2
]

(E.61)

Note in particular that the simple pole in (E.60) is canceled by the one coming from

(E.32)

We now calculate Bj , we have

∑

j

∑

i 6=j

d2∑

p=1

(Φi,p−1 + Φj,p−1)

si − sj
ki,(p,d2)

= −t̃d2
∑

i,j,k,n 6=i

1

(x0 − sj)2
Z−1
j,k

d2∑

p=1

[Bp−1]k,i
(Φi,p−1 + Φn,p−1)

si − sn

= −t̃d2
∑

i,j,k

1

(x0 − sj)2
Z−1
j,k

[

V ′
1(si)Vk,i − Bk,i

∑

n

Vn,i

]

(E.62)

We have also:

∑

j

(

− Hj,j

2

d2∑

p=1

∑

i

Ri
j,j,jΦi,p−1kj,(p,d2)

+
∑

i 6=j

d2∑

p=1

(Φi,p−1 + Φj,p−1)

(si − sj)3
(Hj,jki,(p,d2) + 2Hi,jkj,(p,d2))

)
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= −
∑

j,k,q

1

(x0 − sj)2
Z−1
j,k

d2∑

p=1

[Bp−1]k,q

(

− Hq,q

2

∑

i

Ri
q,q,qΦi,p−1

+
∑

i 6=q

Φq,p−1 + Φi,p−1

(sq − si)3
Hi,i − 2

∑

i 6=q

Φq,p−1 + Φi,p−1

(sq − si)3
Hi,q

)

(E.63)

The bracket is

Hq,q

2
V ′′′
1 (si)Φq,p−1 −

∑

i 6=q

Φq,p−1 + Φi,p−1

(sq − si)3
(Hq,q − 2Hi,q +Hi,i) =

1

2

∑

u,v,n

Rn
q,u,vHu,vΦn,p−1

(E.64)

Consequently,

∑

j

(

− Hj,j

2

d2∑

p=1

∑

i

Ri
j,j,jΦi,p−1kj,(p,d2)

+
∑

i 6=j

d2∑

p=1

(Φi,p−1 + Φj,p−1)

(si − sj)3
(Hj,jki,(p,d2) + 2Hi,jkj,(p,d2))

)

=
1

2

∑

j,k,q

1

(x0 − sj)2
Z−1
j,k

d2−1∑

p=1

[Bp−1]k,q
∑

u,v,n

d2[B]q,n
dsudsv

Hu,vΦn,p−1 (E.65)

We have:

∑

j

∑

i 6=j

d2∑

p=1

∆iΦj,p−1 −∆jΦi,p−1

(si − sj)2
kj,(p,d2) −

∑

i,j

d2∑

p=1

ki,(p,d2)Q
i
i,j∆jΦj,p−1

= −
∑

j

d2∑

p=1

kj,(p,d2)

[

V ′′
1 (sj)∆jΦj,p−1 +

∑

i 6=j

1

(si − sj)2
(∆j −∆i)(Φj,p−1 + Φi,p−1)

]

= t̃d2
∑

j,k,q,n,m

1

(x0 − sj)2
Z−1
j,k

d2∑

p=1

[Bp−1]k,qQ
m
q,n∆nΦm,p−1

= t̃d2
∑

j,k,q,n,m

1

(x0 − sj)2
Z−1
j,k

d2∑

p=1

[Bp−1]k,qQ
m
q,n

[

−dΦm,p−1

dV ′
1(sn)

+
∑

u

dΦm,p−1

dsu
Hu,n

]

(E.66)

We note that

d2∑

p=1

∑

q,u,v,n

[1

2
[Bp−1]k,q

d2[B]q,n
dsudsv

Φn,p−1 + [Bp−1]k,q
dBq,n

dsv

dΦn,p−1

dsu

]

Hu,v

=
1

2

∑

u,v

d2[V ′
2(B)]

dsudsv
Hu,v (E.67)

Consequently, we find:

Bj =
∑

k

Z−1
j,k

[

− 1

2

∑

u,v

d2[V ′
2(B)]

dsudsv
Hu,v +

∑

i

V ′
1(si)Vk,i −

∑

i,n

Bk,iVi,n
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+

d2∑

p=1

∑

q,n,m

[Bp−1]k,qQ
m
q,n

dΦm,p−1

dV ′
1(sn)

]

+2
∑

i,j 6=i,r

t̃d2
Z

−1

j,r
[Bd2−1]r,i (E.68)

We have not been able to sum over p the last term. This result is the same found from

the differential operator ŷ = − d
dx

method. We have

d

dV ′
1(sn)

[
d2∑

p=1

∑

q,n,m

[Bp−1]k,qQ
m
q,nΦm,p−1

]

=
d

dV ′
1(sn)

d[V ′
2(B)]k
dsn

=
d

dsn

d[V ′
2(B)]k

dV ′
1(sn)

=
dVk,n
dsn

(E.69)

so that

d2∑

p=1

∑

q,n,m

[Bp−1]k,qQ
m
q,n

dΦm,p−1

dV ′
1(sn)

=
∑

n

dVk,n
dsn

−
d2∑

p=1

∑

q,n,m

d[Bp−1]k,q
dV ′

1(sn)
Qm
q,nΦm,p−1 (E.70)

or

d2∑

p=1

∑

q,n,m

[Bp−1]k,qQ
m
q,n

dΦm,p−1

dV ′
1(sn)

=
1

2

d2∑

p=1

∑

q,n,m

[

[Bp−1]k,qQ
m
q,n

dΦm,p−1

dV ′
1(sn)

−d[B
p−1]k,q

dV ′
1(sn)

Qm
q,nΦm,p−1

]

+
1

2

∑

n

dVk,n
dsn

(E.71)

We use the relation

dVk,n
dsn

=
∑

p

d2[V ′
2(B)]k

dsndsp
Hp,n +

∑

p

Zk,p
Hp,n

dsn
(E.72)

and write:

Bj =
1

2

∑

n

Hj,n

dsn
+
∑

k

Z−1
j,k

[1

2

d2∑

p=1

∑

q,n,m

[

[Bp−1]k,qQ
m
q,n

dΦm,p−1

dV ′
1(sn)

−d[B
p−1]k,q

dV ′
1(sn)

Qm
q,nΦm,p−1

]

+
∑

i

V1(si)Vk,i −
∑

i,n

Bk,jVi,n

]

+2
∑

i,j 6=i,r

t̃d2
Z−1
j,r

[Bd2−1]r,i (E.73)
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