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Appendix: Maximal power of heat machines
by Roger Balian

When a motor generates work by exchanging heat with two sources at tempera-
tures T1 > T2, Carnot’s maximum efficiency 1 − T2/T1 can be approached only for
reversible processes; but these are too slow to yield significant power. At the other
extreme, rapid processes are strongly irreversible and cannot produce much work.
A compromise is needed to maximise the power output. Jacques Yvon tackled this
problem in 1955, focusing on a major cause of irreversibility, the delay required for
heat transport. A simple approach is presented here.

During the first step of a cycle, between the times t0 and t1 = t0 + τ1, the motor
M evolves at a temperature Θ1(t), receiving the heat Q1 from the hot source S1 at
temperature T1. We assume that heat transfers obey Fourier’s law, so that the heat
flux Φ1(t) from S1 to M has at times t (t0 ≤ t ≤ t1) the form Φ1(t) = C1[T1 −Θ1(t)]
where C1 is supposed to be given. During the second step, between t1 and t2 =
t1 + τA, M evolves adiabatically, its temperature going down from Θ1(t1) to Θ2(t2).
During the third step, between t2 and t3 = t2 + τ2, M evolves at a temperature
Θ2(t), giving the heat Q1 to the cold source S2 at temperature T2, through a flux
Φ2(t) = C2[Θ2(t) − T2](t2 ≤ t ≤ t3). Finally, between t3 and t4 = t3 + τ ′A, M
returns adiabatically to its initial state, with a temperature rising from Θ2(t3) to
Θ1(t4) = Θ1(t0). The cycle has the total duration τ = t4− t0 = τ1 +τA +τ2 +τ ′A. The

work produced by M during a cycle is the difference between the heat Q1 =
∫ t1
t0

dt

Φ1(t) that it received from S1 and the heat Q2 =
∫ t3
t2

dt Φ2(t) that it yielded to S2,

so that the average power output is

P =
1

τ

{
C1

∫ t1

t0

dt [T1 −Θ1 (t)]− C2

∫ t3

t2

dt [Θ2 (t)− T2]

}
. (1)

The system M evolves in a closed cycle, so that its change ∆S of entropy between
the times t0 and t4 vanishes:

∆S = C1

∫ t1

t0

dt
[T1 −Θ1 (t)]

Θ1 (t)
− C2

∫ t3

t2

dt
[Θ2 (t)− T2]

Θ2 (t)
= 0 . (2)

We wish to maximise P as function of the temperatures Θ1(t), Θ2(t) and of the
durations τ1, τA, τ2, τ ′A, for given values of T1, T2, C1, C2, τ , under the constraint
∆S = 0. Introducing a Lagrange multiplier λ/τ , and writing that P − λ∆S/τ is
stationary with respect to Θ1(t) and Θ2(t), we obtain

Θ1 (t) =
√
λT1 , Θ2 (t) =

√
λT2 . (3)

The optimal cycles for M are therefore Carnot cycles with constant temperatures
Θ1(t) ≡ Θ1 and Θ2(t) ≡ Θ2. Maximising P with respect to τA and τ ′A provides
τA/τ ' 0, τ ′A/τ ' 0: The adiabatic steps should be the shortest possible. It remains
to write that P − λ∆S/τ is stationary with respect to τ1/τ = 1− τ2/τ , which yields

C1 (T1 −Θ1) (1− λ/Θ1) + C2 (Θ2 − T2) (1− λ/Θ2) = 0 , (4)

or equivalently, using (3),

√
λ =

√
C1T1 +

√
C2T2√

C1 +
√
C2

. (5)

From the condition ∆S = 0, we get the optimal durations of the isothermal steps of
the cycle:
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τ1
τ

=

√
C2√

C1 +
√
C2

,
τ2
τ

=

√
C1√

C1 +
√
C2

. (6)

Altogether, the maximal power is

P max =
C1C2(√

C1 +
√
C2

)2 (T1 − T2) . (7)

This power is equivalent to a fraction, at most equal to 1
4 (reached for C1 = C2), of

the heat flux C(T1 − T2) that would be transferred from S1 to S2 for a coefficient
C equal to the average

√
C1C2. Finally, the efficiency at maximal power is obtained

from ∆S = Q1/Θ1 −Q2/Θ2 = 0 as

η = 1− Q2

Q1
= 1− Θ2

Θ1
= 1−

√
T2
T1

. (8)


