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Abstract. The local densities and current densities of conserved quan-
tities are expressed, for a fluid under arbitrary off-equilibrium condi-
tions, in terms of the two-particle potential W (r) and of the one- and
two-particle densities in phase space f and f2. When f and f2 vary
significantly over the range of W (r), the density and current density
of energy are not defined in a unique fashion, so that conservation of
energy can be implemented locally in many different ways. Owing to
Galilean invariance, the stress tensor and the heat flux are defined even
far from the hydrodynamic regime.

In the 1960’s, Jacques Yvon was professor of physics at the University of Paris.
Beforehand, he had directed the Department of physics and nuclear reactors at Saclay.
He therefore asked Cirano De Dominicis, then myself, who worked in this department,
to become his assistant for his course of statistical mechanics. He focused on classical
fluids, modelled as an assembly of N point particles with mass m interacting through
a two-body potential W (|rj − rk|). His lectures started from the most fundamental
dynamical description, based on the Liouville equation governing the density in the
6N -dimensional phase space, a function of the time-dependent coordinates rj and pj
(1 ≤ j ≤ N). Having defined the reduced 1-body, 2-body, . . . densities

f (r, p; t) ≡

〈∑
j

δ3 (rj − r) δ3 (pj − p)

〉
, (1)

f2 (r, p; r′, p′; t) ≡

〈∑
j 6=k

δ3 (rj − r) δ3 (pj − p) δ3 (rk − r′) δ3 (pk − p′)

〉
, . . . ,

(2)
where < . . . > is the expectation value over positions and momenta in phase space,
he derived the BBGKY hierarchy of equations that he had initiated long ago [1].
Among the many topics he treated thereafter, he established rigorous foundations for
conservation laws in classical statistical mechanics; this part of his course inspires the
present discussion.

From the global conservation of the particle number N , of the energy E, of the
three components of the momentum P and of the angular momentum L, we infer the
existence at each point r of densities ρN of particles, ρE of energy, ρP of momentum
and ρL of angular momentum, and the existence of corresponding current densities
JN , JE , JP and JL that satisfy local conservation laws ∂ρ/∂t + div J = 0. Our
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purpose [2] is to define these quantities without approximations, for an arbitrary
potential W having possibly a long range, and in any regime even far from local
equilibrium, for instance within shock waves or near boundaries.

The density of particles is

ρN (r, t) =

〈∑
j

δ3 (rj − r)

〉
=

∫
d3p f (r, p; t) . (3)

Its time derivative follows from Hamilton’s equations drj/dt = vj = pj/m, dpj/dt =
Fj , so that the conservation of particle number ∂ρN/∂t + div JN = 0 is readily
expressed in terms of the current density of particles

JN (r, t) =

〈∑
j

vjδ
3 (rj − r)

〉
=

∫
d3p

p

m
f (r, p; t) . (4)

As regards the conservation of momentum, after having defined the three compo-
nents of the density of momentum through

ρP (r, t) =

〈∑
j

pjδ
3 (rj − r)

〉
=

∫
d3pp f (r, p; t) , (5)

we need to express their time derivative (involving the velocities vj and the forces Fj
issued from the potential W ),

∂ρPβ
∂t

(r, t) =

〈∑
j, α

vjαpβ
∂δ3 (rj − r)

∂rjα

〉
−

〈∑
j 6=k

∂W (|rj − rk|)
∂rjβ

δ3 (rj − r)

〉
, (6)

in the form of the divergence −
∑
α ∂J

α
Pβ/∂rα of a tensor JαPβ(r, t). This is straight-

forward for the first term. We rewrite the second term as

−1

2

∫
d3r′

r′β
r′

dW (r′)

dr′

〈∑
j 6=k

δ3 (r′ − rj + rk)
[
δ3 (rj − r)− δ3 (rk − r)

]〉
,

and transform the last bracket into a divergence according to

δ3 (rj − r)− δ3 (rk − r) =

∫ 1

−1
dλ

dδ3
[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]
dλ

(7)

= −1

2

∑
α

∂

∂rα

∫ 1

−1
dλ (rjα − rkα) δ3

[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]
.

This finally yields the expression of the conserved current density of momentum:

JαPβ (r, t) =

∫
d3p

pαpβ
m

f (r, p; t)− 1

4

∫
d3pd3p′d3r′ (8)

×
r′αr
′
β

r′
dW (r′)

dr′

∫ 1

−1
dλf2

[
r + 1

2 (1− λ)r′, p; r− 1
2 (1 + λ)r′, p′; t

]
.
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Due to the non-locality of the potential, JP(r, t) involves contributions from the two-
body function f2 taken at points located on each side of r, at distances of the order
of the range of W .

The above results for the local balance of momentum can alternatively be derived
through Noether’s approach. The conservation of the total momentum results from
the invariance of the Lagrangian under the translation rj 7→ rj + δrj by a small
vector δrj = a. Consider now a slowly varying infinitesimal vector field a(r, t). Given
a solution {rj(t)} of the equations of motion in the 3N -dimensional space, a change
of rj(t) into rj(t) +a[rj(t), t] produces a variation of the action around this solution,
which has the form

δS =

∫
d3rdt

∑
β

∂aβ (r, t)

∂t
ρPβ (r, t) +

∑
α, β

∂aβ (r, t)

∂rα
JαPβ (r, t)

 (9)

in terms of the time derivative and of the gradient of a(r, t). The coefficients ρPβ(r, t)
and JαPβ(r, t) arising from this calculation are found to be equal to (5) and (8),
respectively. Integration by parts yields the local conservation law of momentum,
owing to the stationarity of S for arbitrary a(r, t).

In the above derivation of the momentum balance at the point r, after having
written in (6) the force exerted by the particle k onto the particle j in terms of the
potential W (|rj − rk|), we have transferred through Eq. (7) this force to the running
points r located between rj and rk. Likewise, the contribution of the potential W (|rj−
rk|) to the energy density ρE(r, t) should be transferred to r. We are thus led to
distribute the potential energy W (|rj−rk|) over the segment (rj , rk). Characterising
as above a point r = 1

2 (1 + λ)rj + 1
2 (1 − λ)rk on (rj , rk) by the parameter λ, we

introduce on the segment −1 ≤ λ ≤ 1 a normalised measure dχ/dλ, generated by a
function χ(λ) that increases from χ(−1) = − 1

2 to χ(1) = 1
2 . The density of energy is

then defined as

ρE (r, t) =

〈∑
j

p2j
2m

δ3 (rj − r)

〉
(10)

+

〈
1

2

∑
j 6=k

∫ 1

−1
dλ

dχ

dλ
W (|rj − rk|) δ3

[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]〉

=

∫
d3p

p2

2m
f (r, p; t) +

1

2

∫
d3r′d3pd3p′

×W (r′)

∫ 1

−1
dλ

dχ

dλ
f2
[
r + 1

2 (1− λ) r′, p; r− 1
2 (1 + λ) r′, p′; t

]
.

Its time derivative is given by
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∂ρE (r, t)

∂t
= −

〈 ∑
j 6=k, β

vjβ
∂W (|rj − rk|)

∂rjβ
δ3 (rj − r)

〉
+

〈∑
j, α

p2j
2m

vjα
∂δ3 (rj − r)

∂rjα

〉

−

〈
1

2

∑
j 6=k, α

∫ 1

−1
dλ

dχ

dλ
W (|rj − rk|)

[
1
2 (1 + λ) vjα + 1

2 (1− λ) vkα
]

×
∂δ3

[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]
∂rα

〉

+

〈 ∑
j 6=k, β

∫ 1

−1
dλ

dχ

dλ
(vjβ − vkβ)

∂W (|rj − rk|)
2∂rjβ

δ3
[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]〉
.

While the two middle terms readily produce a divergence with respect to r, the first
and last terms should be combined so as to account for exchanges between kinetic
and potential energies. Symmetrizing the first one with respect to j and k, integrating
by parts over λ, then using (7), we find their sum as

1

2

∫
d3r′

〈 ∑
j 6=k, β

r′β
r′

dW (r′)

dr′
δ3 (r′ − rj + rk)

∫ 1

−1
dλ

dχ

dλ

×
{[

δ3
[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]
− δ3 (r− rj)

]
vjβ

−
[
δ3
[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]
− δ3 (r− rk)

]
vkβ

}〉

=
1

4

∫
d3r′

〈 ∑
j 6=k, α, β

r′β
r′

dW (r′)

dr′
δ3 (r′ − rj + rk)

∫ 1

−1
dλ

×
{[

1
2 + χ (λ)

]
vjβ +

[
1
2 − χ (λ)

]
vkβ
}
r′α
∂δ3

[
r− 1

2 (1 + λ) rj − 1
2 (1− λ) rk

]
∂rα

〉
.

Altogether, the current density of energy is found as

JE (r, t) =

∫
d3p

p

m

p2

2m
f (r, p; t) +

1

2m

∫
d3r′d3p d3p′

∫ 1

−1
dλ (11)

×

W (r′)
dχ

dλ

[
(1 + λ)

2
p +

(1− λ)

2
p′
]
− r′

∑
β

r′β
r′

dW (r′)

2dr′
[(

1
2 + χ

)
pβ +

(
1
2 − χ

)
p′β
]

×f2
[
r + 1

2 (1− λ) r′, p; r− 1
2 (1 + λ) r′, p′; t

]
.

The conservation of energy can therefore be locally implemented in many different
ways. This arbitrariness depends on the choice of the function χ(λ) that enters the
above definitions of the density and flux of energy. If we take dχ/dλ = δ(λ), the
contribution W (|rj − rk|) to the potential energy is assigned to the middle of the
segment (rj , rk); if dχ/dλ = 1

2 [δ(λ + 1) + δ(λ − 1)], it is assigned in half to rj
and rk; if χ(λ) = λ/2, it is uniformly spread over (rj , rk). This choice of χ(λ) is
irrelevant if the factor f2 entering (8), (10) and (11) does not vary significantly when
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r is translated over a distance smaller than the range of the potential W ; in this case,
these expressions simplify into

JαPβ (r, t) =

∫
d3p

pαpβ
m

f(r, p; t) (12)

− 1

4

∫
d3pd3p′d3r′

r′αr
′
β

r′
dW (r′)

dr′
f2
(
r + 1

2r
′, p; r− 1

2r
′, p′; t

)
,

ρE (r, t) =

∫
d3p

p2

2m
f (r, p; t) (13)

+
1

2

∫
d3r′d3p d3p′W (r′) f2

(
r + 1

2r
′, p; r− 1

2r
′, p′; t

)
,

JE (r, t) =

∫
d3p

p

m

p2

2m
f (r, p; t) +

1

4m

∫
d3r′d3pd3p′ (14)

×

W (r′) (p + p′)− r′
∑
β

r′β
r′

dW (r′)

dr′
(
pβ + p′β

)
× f2

(
r + 1

2r
′, p; r− 1

2r
′, p′; t

)
.

However, either for long-range forces or in situations involving rapid space variations,
the various formulations of the energy conservation differ and one should retain the
expressions (8), (10) and (11).

The conservation of the total angular momentum L is related to the invariance of
the Lagrangian under a rotation δrj(t) = ω∧rj(t). Here again, one can use Noether’s
method, replacing the rotation vector ω by an infinitesimal vector field ω(r, t), and
evaluating the variation δS of the action when the coordinates rj(t) are transformed
into rj(t)+ω[rj(t), t]∧rj(t). The coefficients yield as in (9) the components of the local
density ρL(r, t) and current density JL(r, t) of angular momentum, the stationarity of
the action implying the local conservation of angular momentum ∂ρL/∂t+div JL = 0.
In fact, the calculation is the same as in (9) within replacement of a[rj(t), t] by
ω[rj(t), t]∧ rj(t). Without even writing the specific forms of ρP, ρL, JP and JL, one
finds

ρL (r, t) = r ∧ ρP (r, t) , JαL (r, t) = r ∧ JαP (r, t) , (15)

relations valid for point particles without intrinsic angular momentum. Together with
(15), the local conservation of angular momentum entails the symmetry of the ten-
sor JαPβ(r, t). The latter property, readily checked on (8), is thus a consequence of
rotational invariance.

We now consider the consequences of Galilean invariance. If the frame is set
into motion with a velocity u, the coordinates r, p are changed into r′ = r − ut,
p′ = p −mu, the total momentum into P′ = P −muN and the energy into E′ =
E − u ·P + 1

2mu
2N . Accordingly, the density of momentum acquires a contribution

from the density of particles, and the density of energy acquires contributions from
the densities of momentum and particles, according to

ρ′N (r′, t) = ρN (r, t) , ρ′P′ (r′, t) = ρP (r, t)−muρN (r, t) , (16)

ρ′E′ (r′, t) = ρE (r, t)−
∑
β

uβρPβ (r, t) + 1
2mu

2ρN (r, t) .
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Besides the change of P into P′ and E into E′, the transformation of the current
densities should account for the motion of the frame, so as to ensure that the equations
of conservation hold in both frames. The conserved currents in the moving frame are
therefore

J′N (r′, t) = JN (r, t)− uρ′N (r′, t) , (17)

J′P′β (r′, t) = JPβ (r, t)−muβJN (r, t)− uρ′P′β (r′, t) ,

J′E′ (r′, t) = JE (r, t)−
∑
β

uβJPβ (r, t) + 1
2mu

2JN (r, t)− uρ′E′ (r′, t) .

The local velocity u(r, t) of the fluid at a given point r is defined by imposing
that, in a Galilean frame with uniform velocity u = u(r, t), the density of momentum
ρ′P′(r′, t) at the corresponding moving point (or equivalently the current density of
particles J′N (r′, t)) vanishes. Introducing the mass density ρ = mρN , we have

mJN (r, t) = ρP (r, t) ≡ u (r, t) ρ (r, t) , (18)

that is, using Eqs. (4) and (5),

u (r, t) =

∫
d3p p

m f (r, p; t)∫
d3pf(r, p; t)

. (19)

The relations (16) and (17) suggest to parametrise ρE , JP and JE in terms of
ρ(r, t), of u(r, t), and of the quantities ρ′E′ ≡ ρU , J′P′ ≡ σ and J′E′ ≡ JQ which
pertain to the local rest frame, according to

ρE = 1
2ρu

2 + ρU , (20)

JαPβ = uαuβ ρ (r, t) + σαβ , (21)

JE =
(
1
2ρu

2 + ρU
)
u +

∑
β

uβσ
α
β + JQ , (22)

all these quantities being functions of r and t. Microscopic expressions for ρU , σ and
JQ are obtained by inserting (8), (10) and (11) into Eqs. (20)-(22). The stress tensor
σ has then the form (8) where pαpβ is replaced by (pα−muα)(pβ−muβ), the density
of internal energy ρU has the form (10) where p2 is replaced by (p −mu)2, and the
heat flux JQ the form (11) where each pα is replaced by (pα −muα) in the factors
that precede f and f2.

We have interpreted 1
2ρu

2 as the density of kinetic energy, ρU as the density of
internal energy in the local rest frame, σ as the stress tensor and JQ as the heat flow.
These interpretations are confirmed by rewriting the conservation laws in terms of
the new quantities. We first get the mass conservation

∂ρ

∂t
+ div ρu = 0 . (23)

Then, the conservation of momentum yields

ρ

[
∂uβ
∂t

+
∑
α

uα
∂uβ
∂rα

]
= −

∑
α

∂σαβ
∂rα

, (24)

which is identified with Newton’s equation in the Eulerian description, applied to an
infinitesimal volume element around the point r. The conservation of energy, rewritten
as
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∂ρU
∂t

+
∑
α

uα
∂ρU
∂rα

= −
∑
αβ

σαβ
∂uβ
∂rα
− div JQ , (25)

exhibits the balance of work done by the stresses on the volume element and of heat
that it receives. The conservation of angular momentum entails the symmetry of the
stress tensor σαβ .

These well-known laws have been recovered here in an arbitrary situation, possibly
far from local equilibrium. In the hydrodynamic regime, they would be complemented
by Fourier’s heat law and by the equations of viscosity, but in the general case con-
sidered here the local temperature and the local chemical potential are not defined.
We can still rely, however, on the dynamical laws (23)-(25) that relate the various
quantities expressed by the above microscopic formulae.
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