
HAL Id: cea-01113096
https://cea.hal.science/cea-01113096v1

Preprint submitted on 4 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and implementation of a resource-secure system
Matthieu Lemerre, Vincent David, Guy Vidal-Naquet

To cite this version:
Matthieu Lemerre, Vincent David, Guy Vidal-Naquet. Design and implementation of a resource-secure
system. 2010. �cea-01113096�

https://cea.hal.science/cea-01113096v1
https://hal.archives-ouvertes.fr


Design and implementation of a resource-secure system

Matthieu Lemerre
CEA LIST

Vincent David
CEA LIST

Guy Vidal-Naquet
SUPELEC

Abstract
This paper describes an operating system for safe execu-
tion of hard real-time and non real-time tasks on a sin-
gle computer. Achieving this goal requires not only to
follow the traditional behavioral security principles, but
also new resource security principles throughout the sys-
tem. Even if these principles put heavy constraints on the
system, they make allocation predictable, immune from
denial of service attacks, and allows ensuring a task will
have enough resource to complete its execution.

We prove that building resource-secure systems is pos-
sible by describing the design and implementation of our
prototype, Anaxagoros. The main issue for writing the
system is synchronization, and we propose several novel
ways to solve synchronization problems.

1 Introduction

A system that allows safe execution of hard real-time
tasks is difficult to build. These tasks need prediction of
the amount of CPU time and other resources necessary
to complete their execution, and the only known way to
achieve this is to strip down the system, removing most
dynamic capabilities: no task creation, no dynamic ex-
tension of address space... Static allocation of resources
is often the paradigm, because resource sharing is done
using locks which makes schedulability analysis com-
plex and pessimistic [56].

We believe that the fundamental reason why general
purpose operating systems cannot safely execute hard
real-time tasks is lack of resource security: it is difficult
to guarantee that the system will give to a task the amount
of resources that was planned. We think that strong re-
source security, combined with flexible allocation poli-
cies, would reconcile hard real-time with dynamic shar-
ing, general purpose behavior.

This problem is especially important as the current
trend in industrial control systems is to integrate sev-

eral different functions in a single system, that were
previously segregated into several systems [53]. Often
these functions are of different importance, or criticality.
They must be isolated from one another (and in partic-
ular the most critical ones must be protected), but at the
same time the functions have to share the same set of re-
sources: CPU time, memory, communication links, dis-
play... Stronger resource security would allow less con-
servative resource allocation and more resource sharing,
increasing the system efficiency.

Contributions and plan Our first contribution is iden-
tification of the resource-security principles for efficient
and secure support of hard real-time tasks with general-
purpose tasks. These principles bring a highly secure
system, yet dynamic and with flexible and precise re-
source management. Section 2 details these principles
along with general design techniques to implement them.

Our main interrogation when we began designing the
system was: “is it feasible to build a system that strictly
follows these design principles?” Indeed building a se-
cure system is known to be a hard work, and resource-
security puts even heavier constraints: no unpredictable
blocking, bounded synchronization time, no dynamic al-
location of kernel/service memory, constant-time opera-
tions... Hence our second contribution is proving that
building such a system is indeed feasible, and has a po-
tential to be highly efficient. Section 3 details the de-
sign and implementation of Anaxagoros, a system built
to strictly comply with those principles.

The main issue for building the system was synchro-
nization, and our third contribution is a set of techniques
for efficient solutions of synchronization problems that
arise when building a resource-secure system, detailed
in section 4. Section 5,6,7 provides an evaluation of the
system so far, present related works and concludes.

1



2 Principles and global structure

Our goal is to build a system that safely and efficiently
integrates hard real-time and non real-time tasks on the
same system. This section first defines what would be a
satisfactory integration, before giving the principles and
general design rules to implement it.

2.1 Requirements and goal

The ideal system we want to build has the following char-
acteristics:

1. It can safely share resources between the different
tasks; for instance it allows tasks to share a network
link or a graphical display. It allows “rich” OS op-
erations such that dynamic task creation or dynamic
extension or address space.

2. It makes impossible for a task to interfere with the
correct execution of another task. In particular, a
task being able to delay another is considered a se-
curity breach, as this could lead to a deadline miss.

3. It is simple for the system integrator to put the func-
tions together. Adding a new task, resource or ser-
vice does not need to reconsider the previous de-
sign. Assigning resources to tasks (and CPU time
in particular) is simple, and not constrained by the
particular system implementation.

Existing systems do not fulfill one or several of these
characteristics. General purpose OS or hypervisors gen-
erally can block unexpectingly (e.g. when encountering
a kernel semaphore or because of single-threaded ser-
vices (e.g. [28, 62, 58]), and it is difficult to know the
memory required for the operating system.

Hard real-time OS systems allow prediction of the
number of resources to be used, and secure real-time OS
use timing budgets to prevent delay by other tasks. But
they often do not allow operations like dynamic task cre-
ation. Resource allocation is often static and sharing is
rare, and done using locks that constrain to use a schedul-
ing algorithm for which a schedulability analysis exists
that can take them into account (in practice, the non-
optimal fixed-priority algorithm).

To sum up, the system should provide facilities to
safely share resources between tasks, i.e. using shared
services. It should have strong security so as to prevent
undesirable task interference, and security should cover
protection of the hard real-time requirements of the tasks.
The use of shared services by hard real-time tasks should
be secured and easy.

2.2 General behavioral security
Fault containment (i.e. protection from interference) and
traditional security have much in common [13, 53]: in-
deed, a breach in confidentiality also indicates that a task
can affect another one. Therefore, spatial and behavioral
security should be enforced through the systematic use
of traditional security principles, as stated by Saltzer and
Schroeder [55].

Separation of privilege States that the system should
be divided into small parts, each with restricted privi-
leges. To support this principle, our system defines three
independent entities: address space (separates memory
rights), threads (separates CPU access rights), and do-
mains (separates all other kinds of rights). The usual task
concept is obtained by juxtaposition of one thread, one
domain, and one address space.

Least common mechanism System services are
special-purpose code and data necessary to securely
share resources between several tasks. Least common
mechanism states that these services should be mini-
mized, because they can cause more damage to the sys-
tem (and also restricts its flexibility). There are two pos-
sible interpretations of this principle. Microkernel sys-
tems (e.g. [32, 57, 35]) minimize common mechanism
by making tasks depend only on the services they use.
Exokernel and hypervisor systems [17, 52, 5] do it by
minimizing the size of these services. We chose to fol-
low both interpretations in our system, by structuring the
OS into small, simple, low-level and separated services.

Access control principles The principles state that
each access to each resource should be systematically
checked (complete mediation), that tasks should have no
more privilege than required (least privilege), that access
control should be based on list of permissions rather than
list of bans (fail-safe defaults, also called closed-system
design by Denning [13]), that the overall security mech-
anism should be simple (economy of mechanism), and
that security of the system should not rely on secrecy
(open design). We solve these issues by using capabil-
ity [42] as the sole mechanism of access control: a do-
main can access an object only if it contains a capability
to it. System capabilities implement all these principles,
as they naturally implement a closed system, favor least
privilege, are unforgeable and of simple design.

2.3 Real-time and resource security
The previous security principles provide a sound basis to
deal with “behavioral” security (integrity, confidentiality,
and spatial fault containment). But they are not sufficient

2



to protect from denial of service issues and temporal fault
containment, especially in the case of real-time systems.

The main issue in hard real-time systems is “how to
ensure that each job will have enough resources to ex-
ecute before their deadlines ?”. Although a part of the
answer is related to scheduling and worst-case execution
time research, there are two important system-related as-
sumptions that must be made. The first is that when there
is a chosen plan for resource allocation or schedule, re-
source allocation will follow that plan. This is what we
call resource security. The second is that the amount of
resources needed by the system can be predetermined.

2.3.1 Independence from allocation policies

Resource security means forbidding resource stealing,
meaning that a task has fewer resource than was planned.
A particular case is denial of resource, occurring when a
pool of resource becomes empty and tasks that need it
cannot complete their job.

These problems come from the fact that general pur-
pose systems design does not require the resource allo-
cation policy to be clearly defined, as resources are al-
located dynamically according to demands. The amount
of resources given to a particular task can unpredictably
change, e.g. the kernel can page out a frame if it needs
more memory, or the amount of CPU time given to a
task is reduced because the OS encountered a semaphore.
This makes them unsuitable for hard real-time tasks.

Therefore we defined the independence from alloca-
tion policies principle, which states that resource allo-
cation policies should be defined solely by a separated
module1. In other words, the OS no longer has the right
to interfere with the chosen resource allocation, which is
completely defined by the separated “policy module”.

There are only a few ways by which the OS interacts
with resource allocation, and we detail application of this
principle for each.

Identifying and accounting for all resources Every
overlooked resource creates a potential for denial of re-
source. For instance, if every pending request consumes
unaccounted memory in a service, service memory can
be exhausted with a sufficient number of requests. Some
resources are “hidden”: for instance address space for a
service is limited, and clients that would need to insert
memory mapping in the service address space would be
rejected once address space is exhausted. Yet another
example of easily exhaustible resources are TCP ports.

Most often denial of resource comes from a list-based
allocation: e.g. a system call returns the first element of
a free list (e.g. Solaris and Linux slabs [9, 10]). Instead,
we systematically use partitioning for each kind of re-
source: each resource is owned by exactly one partition.

Resource allocation is simply done by moving resources
between partitions, and it is easy to account for the num-
ber of resources used in each partition.

Resource sharing is achieved by allowing several tasks
to use the same partition, which is easily achieved by
having one capability per partition. For instance, we have
a common memory partition that contains the memory
code for all libraries. This separation of permission and
ownership combines the benefits of exact accounting of
partitioning with flexible sharing of capabilities.

0Resources 1 2 3 4 5 6 7

P0Partitions P1 P2 P3

Tasks T0 T1

Ownership

Permission

Figure 1: Separation of permission and ownership. Task
T0 can access P0, P1, and P2, i.e. resources 0, 1, 3, 4, 5.

No unexpected change in allocation Because the ker-
nel is fully privileged, any piece of kernel code can
change resource allocation. For instance, if the kernel
needs memory, it can page out a process page to obtain
it, changing the memory allocation. When it encounters
a sleeplock, it can change previous scheduling decisions.

All this makes the allocation policy unpredictable and
difficult to understand. Thus allocation policy decisions
should be restricted to the module in charge (e.g. the
memory allocator, the scheduler, etc.). In particular,
it means that the kernel (or invocation of any service)
should not block unexpectedly (only on explicit request),
nor should it allocate memory on its behalf.

Independence of allocation from protection domain
The system needs to be split into protection domains, and
in particular we need separated services (or one kernel) to
handle resource sharing and privileged operations. Thus
tasks need to make requests (system or service call) to
services. The problem is that these requests can consume
resources themselves: if these resources are not correctly
accounted for, this can cause a denial of resource.

The obvious way to solve this issue is to split the ser-
vice resources in parts reserved for each client. For in-
stance, the network service could reserve 3Mb of mem-
ory for client C’s network buffers. There should be some
of the service CPU time reserved to handle requests from
C. While feasible, this approach has a number of issues:

• Reservation of resources (e.g. memory) in the ser-
vice is a waste of resource if the resources are not

3



used. For many non real-time tasks it is difficult to
know the amount of resources required.

• Static reservations of CPU time implies high
client/request latency. Moreover, dividing the ser-
vice CPU time between clients is difficult and error-
prone.

• The approach cannot work when the number of
clients is unknown, or can dynamically grow.

These issues are avoided if the clients provide the re-
sources necessary to complete their own requests. For
instance when doing a system call in a monolithic ker-
nel, the CPU time spent in the kernel is accounted to the
caller, and so is the memory used for stack (the process
kernel stack). We call lending the act of providing to a
service usage of a resource. Lending only takes place on
the permission level, and does not affect ownership, and
is thus independent from resource allocation policies. In
the thread lending technique we explain on section 3.2,
all the resources needed for a service call are provided by
the client. This makes the system more efficient (no re-
sources wasted), avoids denial of resource (no resource
consumed by the service), and makes allocation easier
(no need to reserve resource pools, crossing protection
domain is independent from resource management).

Relation with policy/mechanism separation An in-
teresting property of the independence from allocation
policy principle is that the allocation policy for a re-
source is completely defined by the “policy module”.
Changing policies with the policy/mechanism separation
principle [41] has thus more impact, because the “policy
module” decisions are not constrained by the remainder
of the system. For instance in our system it is easy to
change the scheduling policy between round-robin, static
scheduling, or even no scheduling (i.e. single-threaded
system); the memory allocation policy between static
and “first-come first-served”.

2.3.2 Real-time and predictability

Predictable needed resources Supporting safety-
critical real-time tasks requires the ability to predict the
amount of resources a task will need to run correctly.
This must be achieved through appropriate task design,
but it is also needed to know the amount of resources
consumed when using OS services.

Thus, the amount of memory consumed when using a
service should be known to the client. In Anaxagoros,
all kernel objects are of size one page, making their size
easily predictable. Other services may document their
needs in memory and other resources with their interface.

The amount of CPU time also has to be known. In our
system all kernel operations are done in constant time
complexity (even though we support complex operations
like task creation, and multicore architectures). This is
achieved by using low-level interfaces to services struc-
tured around the resources automata, which describes all
possible operations based on the state of the resources.

Special attention is required to bound the time needed
for synchronizations in multi-threaded services. In the
kernel, the main other difficulty is bounding object de-
struction: forcefully retrieving resources in use must be
a bounded operation, so as to timely restart a task. Ob-
ject destruction is well-known as a difficult problem in
capability systems [42, p.198].

Predictable errors It is not acceptable for critical tasks
when a service request fails unpredictably.. Service calls
should fail only because of incorrect use by the clients
(wrong arguments, or incorrect call order ). We found out
that it was easy to achieve, once all denial of resources
issues were avoided (with the independence from alloca-
tion policies principle).

3 System design and implementation

This section details the design and implementation of the
Anaxagoros2 microkernel, which is a building block for a
secure system that comply with all the above principles.
We first concentrate on access control and service call
implementations, before explaining the memory system
and other kernel services.

3.1 Design of the access control mechanism
3.1.1 Choosing an access control paradigm

System security requires a single ubiquitous access con-
trol mechanism. There are two main kinds of compet-
ing access control paradigms [37]: access control lists
(ACL), and capabilities. We opted for capabilities mainly
because:

• capabilities can perform access control checks in
constant time (although some implementations do
not [14]);

• the cost of access control storage can be attributed to
the client, avoiding memory allocation in the kernel
or services.

Capabilities have other advantages: they naturally im-
plement closed systems, encourage least privilege, and
fine-grained access control; they can implement a wide
range of security policies [49].

4



3.1.2 Traditional capability implementation issues

But many capability implementations do not respect
resource-security principles. One issue is object destruc-
tion: an object can be destroyed only if there are no more
capabilities still pointing to it.

Existing approaches to the problem all suffer from dif-
ferent problems. Garbage collection [42, p. 198] allows
an attacker to prevent the destruction of an object forever.
Invalidating all capabilities pointing to an object one by
one (e.g. seL4 [14]) can take an unpredictable and large
amount of time if an attacker creates enough capabilities.
The use of a unique identifier for objects (e.g. Hydra,
System 38 [42, p.194], CAL/TSS [38] allows immediate
invalidation of all outstanding capabilities to an object;
but this identifier is stored in a central “master object ta-
ble” [51, p.27] of limited size, and may thus be subject
to denial of resource attacks.

A related problem is type destruction, which destroys
at once all objects of a type (it is the same problem than
object destruction, at a larger scale). Type destruction
occurs for instance when a shared service is destroyed.

3.1.3 A capability system in constant time and space

We propose an efficient capability implementation,
where all capability operations (invocation, creation,
copy, object and type destruction) can be done in con-
stant time complexity, and do not require a master object
table. It is also very flexible and parallelizable.

Capability format and invocation Tasks invoke capa-
bility to an object so that the service responsible for this
object can perform the required privileged operations3.
But instead of performing the access control checks in
one single operation in the kernel, we split access checks
into three successive steps: checks for service access,
checks for object access, checks rights. The kernel is
only responsible for checking service access, but pro-
vides to the service the means to check object access and
rights.

The capability structure contains a pointer to the ser-
vice, the object number, and a set of rights to the ob-
ject. The service pointer allows the kernel to retrieve the
service in constant time. The object number allows the
service to retrieve the object in constant time. The capa-
bility structure contains a fourth field, called the times-
tamp, that contains the “creation date” of the capabil-
ity. Services and objects also have a timestamp: the ob-
ject timestamp is stored in a per-service object table, and
the service in the frame table (a table with one entry per
physical frame, see section 3.3.5). Thus there are no cen-
tral tables, and the timestamps are easily retrieved from
the service pointer or object number.

Access checks Intuitively, access should be granted
only if neither the object and the service have been de-
stroyed since creation of the object/capability pair. This
is what the timestamps algorithm implements (Figure 2):
timestamps monitor capability, service and object cre-
ation. Access is denied iff the service and object were
created after the capability (it means that the storage has
been reused and the capability is invalid). Destruction
is represented as creation of an object with timestamp
+∞. Thus, capabilities identifies services and objects
uniquely, both spatially and temporally.

The set of rights in a capability is represented by a
bitfield, with one bit set per right owned. Checking that
rights is sufficient is a simple mask operation.

The access checks need to be done upon capability in-
vocation, but not only: because services calls can be done
in parallel, objects and services can be destroyed while a
thread is performing operations on it. On single proces-
sor, it is sufficient to add checks when a thread resumes
execution in the service. On multiple processor, inter-
processor interrupts must be added to throw threads of
other cores out of the service (see section 4.1.2).

Summary The timestamp algorithm has many advan-
tages: small constant-time bounds on object access
checks, object destruction, and service destruction; no
central array, and services use their own storage for their
object table; compact capability representation. Finally,
it is possible to write a highly parallel version of this im-
plementation for multicore systems. This parallel ver-
sion and the proof of its correctness are described in [39].
More details can also be found in [40].

3.2 Service call: the thread lending model
Access control is only a part of the service call mecha-
nism. We now deal with data and resource transfers, cen-
tered in our system around the resource lending mecha-

0 1 2 3 4 5 6 7 8 9
s (o, c) ok o ko o2 ko s ko

+∞ 1 1 1 1 +∞
+∞+∞ 2 +∞ 6 ?

0 0 2 2 2 2

s:
o:
c:

Figure 2: Evolution of timestamps for a service s, object
o, and capability c. The three bottom lines are times-
tamps of s, o and c. The top line represent events:
“ok”and “ko” represent sucessful and denied invocations
of c. Event 1,2 and 6 are creation of s, o, c and o2 which
occupies the same storage than o. Event 4 and 8 are de-
struction of o and s.

5



nism. We define resource lending as the transfer of the
right to use a resource, without changing ownership of
the resource. In other words, a service can use the re-
sources provided by a client to complete a request, but
these resources still belong to the client, are accounted to
him, and resource allocation does not change. This gen-
eral principle corresponds to different realities depending
on the kind of resource.

Lending CPU time Applying resource lending to CPU
time means that execution of the client request in the ser-
vice happens when the client should have run. This can
be achieved using a “thread tunnelling” [52] mechanism:
the client thread continues its execution, but in the ser-
vice protection domain. System calls to a monolithic
kernel is an example of such a system, but there also ex-
ists many implementations of the technique for userspace
services (e.g. [63, 25, 16, 22]). This mechanism allows
low-overhead, low-latency client-service communication
like synchronous IPC [43, 57], but without interfering
with the scheduler.

In particular the client thread can be preempted while
it is in the service. Thus shared services become by
construction multi-threaded, with one thread per current
client connection. All these threads consume memory
for their stack, and the number of clients may not be a
priori bounded, so stack memory must also be lent by
the client to avoid a denial of resource vulnerability.

Problems of lending capabilities and memory Mem-
ory and capabilities are very similar: indeed in both case
a reference to a resource (resp. the page table entry and
the capability), stored in a table (resp. a page table or
capability table) gives the right to access a resource. The
natural way (e.g. [44]) to lend the resource is thus to copy
the reference in the corresponding table in the service.
But service tables are finite, so this constitutes a possible
denial-of-resource attack on the “service table entry” re-
source. To solve this problem, the client must lend the
room for table entry as well. And it cannot just lend
memory for this, as this constitutes a chicken-and-egg
problem.

Thread lending To solve this problem, Anaxagoros
threads are also principals, i.e. they can be used to hold
references to resources: there are thread-local capabili-
ties, and thread-local mappings. Program execution can
use the memory of the current address space or the cur-
rent thread, and the capabilities of the current domain or
the current thread.

When a thread is lent, it means that all of its CPU time,
thread-local capabilities, and thread-local mappings are
lent. Concretely, the client prepares the thread with the

t0 1 2 3 4 5 6

TA

DA

TA

DS

TB

DB

TB

DS

TB

DB

TA

DS

TA

DA

Figure 3: Evolution of thread (T∗) and domain (D∗)
mappings for two tasks A and B calling a service S.
Preemption (at time 2 and 5) change the current thread;
service calls/return change the current thread’s domain.

mappings and capabilities it wants to lend, before pass-
ing the thread to the service. Notice the analogy with the
implementation of “passive call” in object-oriented lan-
guages, with access control metadata being exchanged
by domains using threads (instead of data being ex-
changed by objects using the stack).

Implementation The “threads” kernel object contains
a pointer to the “current domain” object, which contains
a pointer to the “current address space” object. After the
kernel has checked that the capability can access the ser-
vice (section 3.1.3), the thread’s current domain changes
to the service, and the address space changes to that of
the domain. The return is similar.

Our first implementation of thread-local mappings
copied the thread-local mappings to a reserved location
in the service page directory, upon the service call and
when threads resume from preemption (see Figure 3).
There were some TLB issues on multiple processors, and
our new design now copies the service and the thread
mappings on a per-processor page directory. These oper-
ations are necessary because of the hardware page tables,
and would be much easier to accomplish with a software
TLB.

There is a special mapping, the UTCB, which is guar-
anteed to be mapped only in the current thread, so that it
can safely be used as stack by the service. It has other
uses, such as passing arguments to services, or asyn-
chronous communication with the kernel (section 4.1.1).

Discussion and related work The thread lending ser-
vice call model has many advantages. It retains the
low-latency and low-overhead of the synchronous IPC
model [43, 58] without the need to block, which makes
schedulability analysis easier, and allows parallel ser-
vice execution in the service on multicore systems.
It also avoids the denial of resource issues found in
many thread-tunnelling implementations (e.g. shortage
of server thread in Spring [25]).

The biggest benefit of the model is that it does not
change any resource allocation policies. This makes

6



lending fast because resource allocation modules (e.g.
scheduler or memory allocators) do not need to be in-
volved in the service call. It also makes policies simpler.

But thread lending is no silver bullet. In particular
thread lending alone is difficult to use for requests that
may not be immediately satisfied, for instance disk reads
or network requests. In this case there should be a ser-
vice thread to handle, schedule and serialize the requests.
However, thread lending is still useful to set up and com-
municate with this service thread. For instance, it can be
used to set up memory lending that lasts across service
calls, in the spirit of EROS network stack [60].

Finally, thread lending causes many synchronization
issues in shared services, that are addressed in section 4.

3.3 The memory management service
Memory management is another key piece in achiev-
ing behavioral security, as it is responsible for ensuring
confinement of memory accesses. Because of its criti-
cal role, the memory management service is part of the
Anaxagoros kernel.

The current implementation is for the Intel x86 archi-
tecture, however it should be readily portable to any ar-
chitecture with multilevel paging. Its complete descrip-
tion, and full proof of confidentiality of the system (and
of its liveness) is available [39]. More detailed descrip-
tions can also be found in [40].

3.3.1 Kernel services interface

The virtual memory service provides a low-level inter-
face: clients must select the individual frames and se-
quence of privileged operations that they want to be done
on them. Higher level functionality (e.g. task creation,
address space extension) can be provided either by li-
braries [17, 34] or virtualization [5].

The service is centered around the frame type automa-
ton, which describes the different roles that can be as-
sumed by a frame and the transition between them. For
instance, a memory frame can be used to hold regular
data, but must be entirely cleaned of this data before be-
ing used as a page table. The current type of a frame
restrict the operations that can be performed on them:
for instance data mappings can only be installed on page
tables, and to data frames.

The kernel only role is to make sure that the opera-
tions are valid according to the frame type automaton,
and are allowed according to ownership: privileged op-
erations on a frame can be done only by clients that have
a capability to the partition that contains it4.

3.3.2 Frame types description

There are few different frame types:

Dataframe This type holds regular data, and (with
UTCB) is the only type directly accessible from user
space.

Page table and page directory These are the page table
of the different levels. They only contain page table en-
tries to the lower-level page table, or to dataframes. The
page directory is the top-level page table, and represents
the “address space” kernel object.

KTCB and KDCB Hold and represent respectively the
“thread” and “domain” kernel objects (the acronyms
stand for kernel thread control block and kernel domain
control block). They both contain capabilities, as well as
other (e.g. scheduling-related) data.

UTCB The user thread control block is uniquely associ-
ated to its KTCB. It is used as storage for client-service
and client-kernel communication. It is writable, but is
mapped only once, in the current address of the thread,
so that it can safely be used as a stack by the service.

Zero and cleanup states These states are necessary in-
termediaries for a frame to change type. The zero type
is an unmapped page filled with zeros. When a frame
changes to one of the above frame types, it does so by a
single transition from the zero state. The other types rep-
resent intermediary cleanup states: before a frame can be
reused, it must be cleaned to return to the zero state. The
intermediary states are used to record that only a fraction
of the frame has been cleaned up, which allows splitting
the cleanup operation of frame, decreasing the preemp-
tion delay and allowing low-latency task switches.

3.3.3 Memory mappings

An important privileged operation is page table modifi-
cation. When the kernel creates new page table entries,
it must obviously ensure that the pointed page is a lower-
level page table (or data frame), otherwise this would re-
sult in an integrity breach.

But it must also ensure that when frames change to an-
other type, there are no existing page tables that point to
them. Although the timestamp mechanism could be used
to solve this problem, this would incur a large memory
overhead. Instead, we use a reference count [5], counting
how many times a page is present in a higher-level page
table. This count is updated whenever page table entries
change, and must be equal to zero before the frame can
be cleaned.

3.3.4 Consistency issues and multicore

On single processor, our kernel is atomic and follow the
interrupt model [19], which made implementation of the
virtual memory system relatively easy. To keep task
switching latency low, the code explicitly polls to know

7



if there is a preemption pending, and if so clean up and
perform the task switch. This makes code much simpler
than pessimistically being prepared for preemptions, and
regular polling still allows for low latency.

The only consistency problem is enforcing TLB con-
sistency. This is done by the kernel (by flushing the TLB)
only when this would otherwise cause a security problem
(other flushes are required by the clients). This allows
user-space to amortize the cost of a flush between multi-
ple page-table modifications.

We realized an implementation of the virtual memory
system on multiple processors (but did not yet integrate
it to the kernel). Our implementation relies on a number
of “partial guarantees” [27] techniques. One is kernel
atomicity: operations are ensured to terminate. One is
the use/destroy lock (section 4.1.2): concurrent reads and
modifications of an object are allowed, but the lock for-
bids access to an object that is being destroyed by another
processor. Thus, only the few conflicting operations are
forbidden, and all other accesses can be done in parallel.

Parallel modifications are handled using various ad-
hoc wait-free techniques: for instance, checking a frame
state and changing it can be done in a single instruction
using compare and swap. Another technique is out-of-
sync reference counting: reference count can be greater
than the actual number of references, which avoids syn-
chronization between these values. The result is that
our implementation never requires busy-waiting, except
(the rare) forceful kernel object destruction for which
busy-waiting is bounded. This makes our implementa-
tion highly parallel, with all operations bounded in time,
even on multicore systems.

We found that the low-level interface, and decompo-
sition in small actions allowed for highly parallel imple-
mentation. These techniques can be generalized for user-
level services, as shown in section 4.2.

3.3.5 Experience designing the memory service

Because of the complex relationship that can exist be-
tween the frames, the virtual memory system is the most
complex part of the kernel. It is thus a good test for ap-
plying the resource-security principles.

Its interface has many advantages. It is easy to predict
the amount of memory needed for kernel objects, as they
all are of size one page. All operations take a bounded
time, and thus system time can be easily accounted for.
The frame table, which contains an entry per frame, is the
only necessary storage for all of its operation, and there
is no need for dynamic memory allocation in the kernel
(the frame table is allocated at initialization time). The
frame table is also used to store the services timestamps,
and thus integrates well with the capability system.

The experience building the virtual memory system

has been central for determining the applicability of our
principles, and providing design guidelines to respect
them. This was true in particular for synchronization is-
sues, discussed below.

4 Synchronization issues in shared services

The most difficult problem we encountered when writ-
ing resource-secure code is synchronization, due to both
the constraints of the resource-security principles and the
concurrent nature of shared system services. There are
two kinds of responses to this problem: coding tech-
niques, and design methodology.

4.1 Dealing with forceful revocation

Resource lending means that service code use resources
they do not “own”, and their right to use the resources
can be revoked anytime (e.g. when the client is de-
stroyed). Resource-security principles forbid notifying
the service and waiting for it to release the resource
(as in [18]), as it is difficult to account for the “extra
time” needed to handle these notifications. Instead, ser-
vices must be prepared to sudden revocation of these re-
sources.

Revocation of memory and capabilities can be eas-
ily handled. If access to a resource is revoked, in-
voking its capability will simply report an error. Ac-
cessing a revoked memory region can be handled us-
ing an exception-like procedure implemented with self-
paging [15, 26] or user-level pagers [1, 28].

In fact, when access to a revoked resource is tried by
a lent thread, most often the best way to handle this is
to return to the client with an error code. This can be
seen as a special case of preemption with infinite dura-
tion. Thus the service only has to deal with preemption,
i.e. revocation of CPU time.

4.1.1 Revocation of CPU time and preemption

A notable difference between shared services and con-
ventional multithreaded programs is that the service has
no control over when the lent threads are run. For in-
stance, a scheduling policy can preempt a lent thread
inside a service, and never execute it again. Further-
more, as services are forbidden to affect scheduling by
blocking, they cannot use conventional facilities such as
semaphores or sleeplocks (locks that put tasks to sleep).

Because services are multithreaded and access shared
state, some kind of synchronization is however neces-
sary. An alternative to sleeplocks is lock-free program-
ming. We heavily used it, but we found that “general”

8



lock-free algorithms [29, 30, 21] require unbounded al-
location of the service memory. Another one is hardware
transactional memory [31], but is currently available only
on a few platforms.

Roll-forward locking The last alternative to
sleeplocks are spinlocks, but they cannot be used
because preemption in the critical section would make
other threads to spin forever. The classical solution to
this problem is to mask interrupts, but this is a privi-
leged instruction unavailable to our userspace services.
Another solution [16, 47] is to give tasks an “extra time”
when they are in critical section, but that would increase
the task switching latency, which is undesirable for hard
real-time systems5.

Instead, our technique has been to allow for recovery:
when a thread needs a lock used by a thread that was
preempted in its critical section, it releases the lock by
terminating execution of the critical section in place of
the preempted thread. It can then take the lock to execute
its own critical section. This recovery strategy is called
roll-forward [6] .

Implementation The mechanism is based upon an-
other mechanism we call user-level preemption and re-
suming: upon preemption, the kernel writes all regis-
ters in user-space at a location indicated by the thread.
Upon resumption, the thread is responsible for restoring
its context by itself. This mechanism is similar to those
in [3, 17].

When a thread acquires the lock, it indicates to the
kernel the address of the lock, and switch to a dedicated
stack in memory owned by the service. If it is preempted,
all registers are stored on top of this stack, and the ker-
nel changes the value of the lock to indicate preemption
to other threads. If another thread needs the lock, it re-
stores the registers and continue execution until the lock
is released.

The implementation does not need to perform any sys-
tem call, which makes it very efficient, but synchroniza-
tion issues make it an extremely complex piece of as-
sembly code. Fortunately this complexity is hidden by a
convenient API.

Other recovery mechanisms A drawback of roll-
forward is that the critical section cannot access the cur-
rent thread-local mappings (because execution can be
done using another thread), which limits its applicabil-
ity. For this reason we are considering other recovery
strategies.

Rollback can be implemented by writing a back-log
of the previous values of the stores that are done. But
it is not applicable to some device drivers (e.g. VGA

display), for which special registers have to be written
in order. We are also considering allowing “ad-hoc” re-
covery strategies for performance-critical cases: this can
be seen as an extension6 to the concept of “revocable”
lock [27].

4.1.2 The use/destroy synchronization protocol

The previous section dealt with revocation of resources
lent. We now focus on destruction of the objects served
by the service (i.e. revocation of the resources used for
this object).

When an object is destroyed (e.g. a network connec-
tion is forcefully destroyed), eventually no more thread
should be operating on the object. This must happen be-
fore the resources of the object (e.g. the memory for the
network buffers) can be reused. Moreover, to comply
with the predictability principle, the time spent waiting
for possible reuse of an object should be bounded.

To solve this problem, we use the following protocol:

Using an object:
1. If object destroyed: leave
2. Mark the object as being used
3. If object destroyed: release the object
4. Operate on the object
5. Notification received or polling: release the object

Destroying an object:
1. Mark the object as destroyed
2. Notify all running user threads of object destruction
3. Busy-wait until all user threads are gone
4. Mark the object as reusable

Upon destruction, step 1 prevents new user threads
from coming in, while step 2 urges currently running (on
other processors) user threads to stop using the object.
After a while, no thread is using the object, and it can be
safely reused. The step 3 when using an object is neces-
sary to avoid a race condition.

Implementations of the protocol We have several
uses of this protocol. The virtual memory service use it
before cleaning page types. For pagetables, no notifica-
tion is necessary, because the code regularly polls to see
if the page has been destroyed. For other types (domain,
thread, address space destruction), an inter-processor in-
terrupt is sent to processors using the object so that they
return to the kernel.

In user-level services, destruction of an object is done
by changing the timestamp of the object. This prevents
new threads from using the object, as well as preempted
threads to reuse the object when they resume . On mul-
tiprocessor, an interprocessor interrupt could be sent to

9



other threads of the service so that they stop using the
object.

Note that in single processor systems, steps 2 and 3 are
not necessary, because there cannot be any concurrent
use when the resource is destroyed. Steps 1 and 4 can
thus be done in a single operation.

Discussion This technique allows timely destruction of
an object (i.e. revocation of a resource), without bur-
den on the rest of the code. Timely destruction only re-
quire user threads to timely stop using the resource once
they have been notified, which is immediate when using
inter-processor interrupts, and fast when polling regu-
larly. Marking the resource as being used is done simply
with some kind of reference counting. Multiple threads
can be using the same object concurrently.

The use/destroy lock provides “partial guarantees”
[27]. For instance, as long as the object is used, its stor-
age cannot be reused, providing “type-stability” [23]. We
found that this kind of partial guarantees is sufficient to
make design of wait-free algorithms tractable.

4.2 Designing resource-secure services
Even if using roll-forward locks does not affect schedul-
ing, they can induce a variation in execution time. So as
to keep this variation to a minimum, synchronizations
should be kept at a minimum. The following design
rules helped us to write various services with minimum
synchronizations, and that comply with the resource-
security principles. In one word, the motto is minimiza-
tion.

4.2.1 Minimization of state

The least state in a service, the least data to synchronize.
There are different techniques to minimize state: one of
the most important is to suppress abstractions from the
service [17, 34] (and provide abstraction in libraries).
This structures the service around a resource array, with
one entry per physical resource7, and a few global vari-
ables. Another technique is to make transactions state-
less, i.e. pass data as arguments rather than retain it in
the service.

Following this principle is interesting for resource-
security, but also for traditional security (least com-
mon mechanism), for multicore performance (less data
shared), and flexibility and performance in general (as
shown by [17, 52, 34])

4.2.2 Minimization of actions

The second principle asks to design the service interface
around a set of small orthogonal actions. Instead of pro-

viding complex operations such as mmap or writev,
it is better to structure the system around basic opera-
tions such as “clean page table entry” or “putchar”. This
makes critical sections short and fine-grained (thus more
easily replaceable by wait-free or lock-free algorithms);
allows better context-switching latency in the kernel, and
less time spent in recovery in user services.

However, division into small actions can be inefficient
because of the overhead of “setting up” the action (i.e.
context switch, taking a lock, etc.). The interface should
provide a way to group the actions efficiently (for in-
stance, in the memory service we allow to set up “map-
ping ranges” to mutualize the syscall and “use lock”
overheads, but this operation can still be stopped at the
granularity of writing one page table entry).

Generally, minimization of actions means that the ser-
vice is structured around resource automata, as in our
memory system or in [54]. Often the automata is simple,
with only one reinitialization phase and one operational
phase.

4.2.3 Minimization of synchronizations

We observed that in many cases, the fact that the remain-
ing data managed by the service can be inconsistent is not
a security problem. For instance, several threads writ-
ing simultaneously to the same network buffer will likely
send garbage, but will not prevent other threads to send
proper data.

Thus whenever possible, we make clients responsible
for the consistency in the service data. In fact, this is
something existing OSes must already do. For instance
in the network buffer case, serializing the writes in a ser-
vice using a mutex would not be sufficient, because the
contents of the network data depends on the order of the
writes, that an OS service cannot control. We only make
this fact explicit.

Ensuring consistency at the client level is not difficult.
Most often a policy will ensure that different clients will
access different resources. When multiple clients access
the same resource, they generally need to synchronize
anyway, because operations to the resource have to be
done in a certain order. An exception to this rule is force-
ful destruction and retrieval of a resource, which must
succeed regardless of concurrent operations on the re-
source. This is the purpose of the use/destroy lock.

Even when consistency has to be ensured for security
reasons, it is often not necessary to enforce it through
serialization of requests. It is often easier to detect and
report inconsistency as an error. For instance rather than
serializing the writes to a capability table entry , we de-
tect concurrent writes to the same entry, and report an
error. Early detection of errors prevents further propaga-
tion, and is important for fault-tolerant systems [13].

10



Another example where this principle applies is ensur-
ing TLB consistency in our virtual memory system. The
TLB can hold references to entries not present in page
tables, but only as long as this is not a security threat (i.e.
this may not be used to write to kernel objects).

5 Evaluation

Feasibility and experience We have obtained a first
prototype that fully respects resource-security (no block-
ing, no service dynamic memory allocation), behav-
ioral security (separated, minimal user-level services),
and maximizes resource lending. It comprises several
user-level resource-secure services: textual VGA dis-
play, keyboard, a ram file system, the beginning of a net-
work stack, and several kernel-level services (thread and
scheduling management, domain and protection, virtual
memory and I/O ports). It also comprise a “libOS”, espe-
cially used for memory management (memory map and
allocation, creating new tasks from ELF images, etc.).
The system allows using shared services like the VGA
display and dynamic creation of tasks without any im-
pact on scheduling or memory allocation (which can be
static). This shows that allocation policies is independent
from the use of the resource.

Implementing this prototype helped us more clearly
define the resource-security concepts given in the paper,
and find out the techniques necessary to overcome the
constraints. The most complex issue during implemen-
tation of the system was synchronization. Especially, the
combination of multithreaded services (due to tread lend-
ing), no sleeplock (because of resource-security princi-
ples) and no spinlock with interrupts masked (because of
security principles) forced use to explore new solutions,
like the roll-forward lock. Writing parallel services is not
hard, once we have a clear view of the requirements and
concurrent operations involved.

Security It is difficult to provide benchmark for secu-
rity. An important metric is size, because fewer code
means fewer bugs. Our kernel currently has 2282 lines of
C and 1088 of x86 assembly (measured with sloccount).
A large part of them (500 statements) deals with veri-
fying user input and internal assertions. The resulting
kernel code is less than 60kb (this could be further de-
creased after optimizations). Many services are much
smaller: for instance the user-level VGA display service
code fits in one 4kb page.

A goal of our kernel is to efficiently support multicore
systems, and we designed the kernel with these systems
in mind. We are in the process of rewriting the kernel
to support these systems, and found that parallel code
may be complex to understand (especially in the virtual

memory service). This is why we did a full manual proof
of these algorithms [39], and began formally specifying
some parts with TLA [36]. We found out that proof al-
lowed to fully understand the precise requirements of the
algorithms, and to minimize the amount of synchroniza-
tion needed to fulfill these requirements (i.e. write po-
tentially more parallel code).

Performance The focus for this initial prototype has
been put first on security, second on simplicity, but even
before the optimization phase many operations already
have correct performance. The following measurements
were performed using the rdtsc instruction (which
reads the number of cycles) on a Athlon XP 3000+ pro-
cessor (first line) and the bochs PC simulator (second
line. bochs does not simulate cache, and execute one
instruction per cycle).

call new pd new pt new dom free pd vga
4687 577 233 1879 44156 259279
750 160 120 445 31755 35570

This array gives the number of cycles needed to do a
service call to the VGA service to write a string of one
character; create a new page directory, page table, do-
main; to remove all entries in a page directory; and to set
up the VGA service (i.e. create its page table and direc-
tory from the ELF binary loaded into RAM, call it so that
it can initialize, and return). Most of these operations are
quite fast. Destruction of page directory is long because
it requires to remove all the mappings. Creating a new
service needs a lot of service calls for now, and could be
optimized a lot, for intance by batching system calls to
memory. In a previous experiment, we found that ser-
vice call time can be reduced to 1500 cycles when all of
the physical memory is accessible to the kernel (else, this
requires the kernel to set up expensive temporary map-
pings).

There are several reasons why we expect to get per-
formant in the future. The non-blocking property means
less time lost in the scheduler and re-filling the caches.
Services are well-suited for multicore execution, because
they are multithreaded and with minimal shared state.
Resource lending means less resources wasted in static
reservations.

Cache effects We did some experiments to measure
the variation of actual execution time. The threads
were statically scheduled with 10ms timeslices. Threads
performed various workload (service calls, filling the
cache...), and one thread incremented a counter. The
value of the counter was compared after each timeslice.

In the worst case, the execution variation measured
with bochs was of 1200 cycles; with the Athlon XP
3000+ processor it could reach 150000 cycles. This

11



means that resource security should be complemented
with an approach to partition the cache, for instance page
coloring [45]. But resource security already helps control
cache unpredictability: because threads cannot block un-
expectingly, possible preemption instants (i.e. possible
cache flushes) can be limited. In the example, there can-
not be more than one preemption every 10ms, and the
variation in execution time was below 1%.

6 Related work

Many systems have been built to improve resource ac-
counting and security on general purpose systems, but
generally to support soft real-time and multimedia tasks,
not safety-critical hard real-time.

Nemesis [52] analyzed that using shared services can
cause some CPU time to be unaccounted for, and pro-
posed to minimize this unaccounted time by minimizing
the service. Thread lending allows for exact account-
ing of CPU time in shared services, but still recommends
their minimization.

Other approaches allowed accounting of CPU time
spent in shared services: capacity reserves on micro-
kernels [48, 62], resource containers on monolithic ker-
nels [4]. An important difference with resource-security
principles is that they require not only correct account-
ing, but also not to affect scheduling decisions.

Other systems were built to avoid denial of resource,
and especially for memory. KeyKOS [8], EROS [59] and
the Cache kernel [12] avoid kernel memory allocation by
viewing kernel memory as a cache, which is not suitable
for real-time systems.

Liedtke advocated for the benefits of memory lend-
ing against denial of service attacks [46]. Genode/Bastei
implemented a mechanism of temporary resource do-
nation [18], (different from lending because memory
allocation changes). L4 [24], seL4 [14] and Xen [5]
have implemented memory lending, but only to the ker-
nel/hypervisor. CAP [50] and EROS [60] did implement
memory lending to any shared services, but not system-
atically in each communication.

The thread-tunneling mechanism is common [7, 25,
20, 17]but without lending of stack is generally vulnera-
ble to denial-of-resource on kernel memory (i.e. unpre-
dictable blocking). An exception is the Pebble mecha-
nism [22], which can allocate lend a stack.

As single-threaded services are problematic for real-
time and multicore processing, multithreaded services
have been advocated for L4 [28] and Nova [61], but with-
out memory lending would lead to higher memory con-
sumption.

Rushby [53] and MILS systems [2] propose a parti-
tioning approach relying on static allocation which is
resource-secure. We think resource-security is possible

with more dynamic behavior, which increases perfor-
mance and allows support for general-purpose tasks.

There as been many scheduling-related work on sup-
porting real-time applications on general-purpose OSes
(e.g. [33, 11]). These approaches are complementary to
resource-security.

Finally, our design and implementation was inspired
by reading many techniques in other non-blocking sys-
tems [23], other systems with low-level interfaces [52, 5,
17], other microkernels [43] and capability systems [59,
8, 63, 42, 38, 51].

7 Conclusion

In this paper we explained how resource-security princi-
ples are necessary to safely execute hard real-time and
general purpose tasks on the same system. These prin-
ciples allows to predict when a task will have enough
resources to execute, allows for exact, flexible resource
accounting, encourage high resource sharing, and makes
definition of resource allocation easier.

We explained how we solved design issues when im-
plementing a operating system microkernel that comply
with these principles. We showed how many synchro-
nization problems encountered when using shared ser-
vices needed new solutions explained in the paper.

Our prototype kernel proved that applying the
resource-security principles is possible. But a lot of work
still has to be done to fully demonstrate the advantages
of a full resource-secure systems.

More shared services should be written. Work has be-
gan on a network stack implementation, which is a good
example of a complex service that could be compared to
other systems. A problem is that getting resource-secure
services require redeveloping it, and synchronization is-
sues in shared services are hard, so it would be interest-
ing to provide libraries (or driver synthesis [54]) to sim-
plify the service development process.

The system has to be optimized for full performance
evaluation of resource security. Resource-security prin-
ciples should be beneficial to multicore systems (because
shared state and synchronizations are minimized), so
scalability should be taken into account. We designed
the kernel with multicore systems in mind, and already
began re-implementing some parts.

Finally, even if resource security allows almost perfect
resource allocation, current hardware is not optimized for
the worst case and make it easy for a task to affect the
performance of another task (e.g. with cache pollution).
We should investigate solutions to this problem; for in-
stance it might be possible to partition caches using page
coloring [45], or limiting the number of preemptions.

12



References
[1] ACCETTA, M., BARON, R., GOLUB, D., RASHID, R., TEVA-

NIAN, A., AND YOUNG, M. Mach: A new kernel foundation
for unix development. Tech. rep., Carnegie Mellon University,
August 1986.

[2] ALVES-FOSS, J., HARRISON, W. S., OMAN, P., AND TAYLOR,
C. The mils architecture for high-assurance embedded systems.
International journal of embedded systems ISSN 1741-1068 2, 3-
4 (2006), 239–247.

[3] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND
LEVY, H. M. Scheduler activations: effective kernel support for
the user-level management of parallelism. ACM Trans. Comput.
Syst. 10, 1 (1992), 53–79.

[4] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource con-
tainers: A new facility for resource management in server sys-
tems. In Proceedings of OSDI ’99 (1999), USENIX, pp. 45–58.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceed-
ings of ACM SOSP ’03: (2003), ACM Press, pp. 164–177.

[6] BERSHAD, B. Practical considerations for non-blocking concur-
rent objects. In Proceedings of the 13th International Conference
on Distributed Computing Systems (May 1993), pp. 264–273.

[7] BERSHAD, B., ANDERSON, T., LAZOWSKA, E., AND LEVY,
H. Lightweight remote procedure call. In SOSP ’89: Proceedings
of the twelfth ACM symposium on Operating systems principles
(New York, NY, USA, 1989), ACM Press, pp. 102–113.

[8] BOMBERGER, A. C., FRANTZ, A. P., FRANTZ, W. S., HARDY,
A. C., HARDY, N. R., LANDAU, C., AND SHAPIRO, J. The
keykos nanokernel architecture. In Proceedings of the USENIX
Workshop on Micro-Kernels and Other Kernel Architectures
(April 1992), pp. 95–112.

[9] BONWICK, J. The slab allocator: an object-caching kernel mem-
ory allocator. In USTC’94: Proceedings of the USENIX Summer
1994 Technical Conference on USENIX Summer 1994 Technical
Conference (Berkeley, CA, USA, 1994), USENIX Association,
pp. 6–6.

[10] BOVET, D. P., AND CESATI, M. Understanding the Linux Kernel
- 3rd edition. O’reilly, 2005.

[11] BRANDT, S. A., BANACHOWSKI, S., LIN, C., AND BISSON, T.
Dynamic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. In RTSS ’03: Proceedings of the
24th IEEE International Real-Time Systems Symposium (Wash-
ington, DC, USA, 2003), IEEE Computer Society, p. 396.

[12] CHERITON, D. R., AND DUDA, K. J. A caching model of op-
erating system kernel functionality. In Proceedings of the 1st
Symposium on Operating Systems Design and Implementation
(OSDI) (Nov. 1994), USENIX Association, pp. 179–193.

[13] DENNING, P. J. Fault tolerant operating systems. ACM Comput-
ing Survey 8, 4 (1976), 359–389.

[14] ELKADUWE, D., DERRIN, P., AND ELPHINSTONE, K. Ker-
nel design for isolation and assurance of physical memory. In
1st Workshop on Isolation and Integration in Embedded Systems
(IIES’08), Glasgow, UK (April 2008).

[15] ENGLER, D., GUPTA, S., AND KAASHOEK, M. AVM:
application-level virtual memory. In Proceedings Fifth Workshop
on Hot Topics in Operating Systems (May 1995), pp. 72–77.

[16] ENGLER, D. R. The design and implementation of a prototype
exokernel system. Master’s thesis, Massachussets Institute of
Technology, 1995.

[17] ENGLER, D. R., KAASHOEK, M. F., AND J. O’TOOLE, J. Ex-
okernel: an operating system architecture for application-level re-
source management. In Proceedings of SOSP ’95 (1995), ACM
Press, pp. 251–266.

[18] FESKE, N., AND HELMUTH, C. Design of the bastei os architec-
ture. Tech. Rep. TUD-FI06-07, Technische Universität Dresden,
December 2006.

[19] FORD, B., HIBLER, M., LEPREAU, J., MCGRATH, R., AND
TULLMANN, P. Interface and execution models in the fluke ker-
nel. In OSDI ’99: Proceedings of the third symposium on Op-
erating systems design and implementation (Berkeley, CA, USA,
1999), USENIX Association, pp. 101–115.

[20] FORD, B., AND LEPREAU, J. Evolving Mach 3.0 to a migrating
thread model. In Usenix Winter Conference (1994), pp. 97–114.

[21] FRASER, K. Practical lock-freedom. Tech. rep., University of
Cambridge, February 2004.

[22] GABBER, E., SMALL, C., BRUNO, J., BRUSTOLONI, J., AND
SILBERSCHATZ, A. The Pebble component-based operating sys-
tem. In Proceedings of the 1999 USENIX Technical Conference
(June 1999), pp. 267–282.

[23] GREENWALD, M., AND CHERITON, D. R. The synergy between
non-blocking synchronization and operating system structure. In
Operating Systems Design and Implementation (1996), pp. 123–
136.

[24] HAEBERLEN, A., AND ELPHINSTONE, K. User-level manage-
ment of kernel memory. In Proceedings of the 8th Asia-Pacific
Computer Systems Architecture Conference (Aizu-Wakamatsu
City, Japan, Sept. 24–26 2003).

[25] HAMILTON, G., AND KOUGIOURIS, P. The Spring nucleus: A
microkernel for objects. Tech. Rep. TR-93-14, Sun Microsystems
Laboratories, Inc, April 1993.

[26] HAND, S. M. Self-paging in the nemesis operating system. In
Operating Systems Design and Implementation (1999), pp. 73–
86.

[27] HARRIS, T., AND FRASER, K. Revocable locks for non-blocking
programming. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel pro-
gramming (New York, NY, USA, 2005), ACM, pp. 72–82.

[28] HÄRTIG, H., HOHMUTH, M., LIEDTKE, J., SCHÖNBERG, S.,
AND WOLTER, J. The performance of µ-kernel-based systems.
In SOSP ’97: Proceedings of the sixteenth ACM symposium on
Operating systems principles (New York, NY, USA, 1997), ACM
Press, pp. 66–77.

[29] HERLIHY, M. A methodology for implementing highly concur-
rent data structures. In PPOPP ’90: Proceedings of the second
ACM SIGPLAN symposium on Principles & practice of parallel
programming (New York, NY, USA, 1990), ACM, pp. 197–206.

[30] HERLIHY, M. A methodology for implementing highly concur-
rent data objects. ACM Transactions on Programming Languages
and Systems 15, 5 (November 1993), 745–770.

[31] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
architectural support for lock-free data structures. In ISCA ’93:
Proceedings of the 20th annual international symposium on Com-
puter architecture (New York, NY, USA, 1993), ACM, pp. 289–
300.

[32] HOHMUTH, M., PETER, M., HÄRTIG, H., AND SHAPIRO, J. S.
Reducing TCB size by using untrusted components: small ker-
nels versus virtual-machine monitors. In EW11: Proceedings of
the 11th workshop on ACM SIGOPS European workshop (New
York, NY, USA, 2004), ACM, p. 22.

[33] JONES, M. B., ROSU, D., AND ROSU, M.-C. CPU reservations
and time constraints: efficient, predictable scheduling of indepen-
dent activities. SIGOPS Oper. Syst. Rev. 31, 5 (1997), 198–211.

13



[34] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,
BRICENO, H. M., HUNT, R., MAZIERES, D., PINCKNEY, T.,
GRIMM, R., JANNOTTI, J., AND MACKENZIE, K. Application
performance and flexibility on exokernel systems. In SOSP ’97:
Proceedings of the sixteenth ACM symposium on Operating sys-
tems principles (New York, NY, USA, 1997), ACM Press, pp. 52–
65.

[35] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (Big Sky, MT, USA, Oct 2009), ACM.

[36] LAMPORT, L. The temporal logic of actions. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 16, 3
(1994), 923.

[37] LAMPSON, B. Protection. ACM Operating System Review 1
(January 1971), 18–24.

[38] LAMPSON, B. W., AND STURGIS, H. E. Reflections on an op-
erating system design. Commun. ACM 19, 5 (1976), 251–265.

[39] LEMERRE, M. Intégration de systèmes hétérogènes en terme de
niveaux de sécurité. PhD thesis, Université Paris Sud, October
2009.

[40] LEMERRE, M., DAVID, V., AND VIDAL-NAQUET, G. A de-
pendable kernel design for resource isolation and protection. In
IIDS ’10: Proceedings of the First Workshop on Isolation and
Integration in Dependable Systems (2010), ACM, pp. 1–6.

[41] LEVIN, R., COHEN, E., CORWIN, W., POLLACK, F., AND
WULF, W. Policy/mechanism separation in Hydra. In Proceed-
ings of SOSP ’75 (New York, NY, USA, 1975), ACM, pp. 132–
140.

[42] LEVY, H. M. Capability-Based Computer Systems. Digital Press,
1984.

[43] LIEDTKE, J. Improving IPC by kernel design. In Proceedings of
SOSP’93 (Asheville, NC, Dec. 1993).

[44] LIEDTKE, J. On micro-kernel construction. In SOSP ’95: Pro-
ceedings of the fifteenth ACM symposium on Operating systems
principles (New York, NY, USA, 1995), ACM Press, pp. 237–
250.

[45] LIEDTKE, J., HÄRTIG, H., AND HOHMUTH, M. Os-controlled
cache predictability. In Proceedings of the 3rs IEEE Real-
time Technology and Applications Symposium (RTAS) (Montreal,
Canada, June 1997).

[46] LIEDTKE, J., ISLAM, N., AND JAEGER, T. Preventing denial-
of-service attacks on a microkernel for weboses. In Proceedings
of the 6th Workshop on Hot Topics in Operating Systems (HotOS-
VI) (Cape Cod, MA, May 5–6 1997).

[47] MARSH, B. D., SCOTT, M. L., LEBLANC, T. J., AND
MARKATOS, E. P. First-class user-level threads. In Proceed-
ings of the13th ACM Symposium on Operating Systems Principle
(Pacific Grove, CA, 1991), pp. 110–121. Psyche.

[48] MERCER, C. W., SAVAGE, S., AND TOKUDA, H. Processor
capacity reserves for multimedia operating systems. Tech. Rep.
CS-93-157, Carnegie Mellon University, 1993.

[49] MILLER, M., AND SHAPIRO, J. Paradigm regained: Abstraction
mechanism for access control, 2003.

[50] NEEDHAM, R. M., AND WALKER, R. D. The cambridge cap
computer and its protection system. In SOSP ’77: Proceedings of
the sixth ACM symposium on Operating systems principles (New
York, NY, USA, 1977), ACM Press, pp. 1–10.

[51] REDELL, D. Naming and protection in extendable operating sys-
tems. PhD thesis, MIT, 1974.

[52] ROSCOE, T. The Structure of a Multi-Service Operating System.
PhD thesis, University of Cambridge, April 1995.

[53] RUSHBY, J. Partitioning in avionics architectures: Requirements,
1998.

[54] RYZHYK, L., CHUBB, P., KUZ, I., SUEUR, E. L., AND HEISER,
G. Automatic device driver synthesis with termite. In Proceed-
ings of the 22nd ACM Symposium on Operating Systems Princi-
ples (SOSP’09) (Big Sky, MT, USA, October 2009).

[55] SALTZER, AND SCHROEDER. The protection of information in
computer systems. Communication of the ACM 7 (1974).

[56] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority in-
heritance protocols: An approach to real-time synchronization.
IEEE Trans. Comput. 39, 9 (1990), 1175–1185.

[57] SHAPIRO, J. EROS: A capability system. PhD thesis, University
of Pennsylvania, 1999.

[58] SHAPIRO, J. S., FARBER, D. J., AND SMITH, J. M. The mea-
sured performance of a fast local IPC. In IWOOOS ’96: Pro-
ceedings of the 5th International Workshop on Object Orientation
in Operating Systems (IWOOOS ’96) (Washington, DC, USA,
1996), IEEE Computer Society, p. 89.

[59] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. Eros: a fast
capability system. In ACM Symposium on Operating Systems
Principles (SOSP’99) (December 1999), vol. 34, pp. 170–185.

[60] SINHA, A., SARAT, S., AND SHAPIRO, J. S. Network subsys-
tems reloaded: a high-performance, defensible network subsys-
tem. In Proceedings of the USENIX Annual Technical Conference
2004 (2004), USENIX Association, pp. 19–19.

[61] STEINBERG, U., AND KAUER, B. Towards a scalable multi-
processor user-level environment. In IIDS ’10: Proceedings of
the First Workshop on Isolation and Integration in Dependable
Systems (2010), ACM, pp. 1–6.

[62] STEINBERG, U., WOLTER, J., AND HÄRTIG, H. Fast com-
ponent interaction for real-time systems. In Proceedings of
ECRTS’05 (July 2005), pp. 89–97.

[63] WULF, W. A., COHEN, E. S., CORWIN, W. M., JONES, A. K.,
LEVIN, R., PIERSON, C., AND POLLACK, F. J. Hydra: The
kernel of a multiprocessor operating system. Commun. ACM 17,
6 (1974), 337–345.

Notes
1Resource allocation policies define how and when resources are

divided between the tasks
2Named after the Greek philosopher Anaxagoras, who said: “Noth-

ing is born or perishes, but already existing things combine, then sep-
arate anew”, which can be seen as a summary of the resource security
principles

3(This “typecall” mechanism, invented in Hydra [42], proved to be
the only one needed in many following capability systems [42, 59, 35]).

4Actually, when the frame types correspond to kernel objects (e.g.
thread and domain), privileged operations on these objects is done us-
ing a capability that directly points to the object. This allows using
the object without owning its memory frame, and direct access to the
thread/domain kernel services. These services handle capability cre-
ation, copy, scheduling, inter-domain inter-processor interrupts...

5Furthermore, hard-coded timing constants are always a problem:
what should be done if the extra time is too small?

6The difference is that it is easier to programs to know that they are
in a recovery process

7Sometimes there is only one resource of a kind, for instance a key-
board

14


