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Abstract. - An ideal measurement on a system S by an apparatus A is approached in a minimalist,
statistical formulation of quantum mechanics, where states encode properties of ensembles. The
required final state of S+A is shown to have a Gibbsian thermodynamic equilibrium form, not
only for a large ensemble of runs, but also for arbitrary subensembles. This outcome is justified
dynamically in quantum statistical mechanics as result of relaxation for models with suitably
chosen interactions within A. The quantum ambiguity that precludes the interpretation of a mixed
state in terms of physical subensembles is overcome due to a specific type of microcanonical
relaxation. The resulting structure for the states describing subsets of runs affords an explanation
for the standard properties of ideal measurements, in particular the uniqueness of the result for
each individual run, thus offering a statistical solution to the quantum measurement problem.

One of the main foundational challenges of quantum
theory is the so-called measurement problem: Why does
each individual run of an ideal measurement yield a well-
defined outcome, in spite of the existence of quantum co-
herences? Does measurement theory require a specific
principle or interpretation of quantum mechanics? Al-
ready raised by the founding fathers, this crucial question
has witnessed a revival [1–7]. Many authors explore mod-
els, others propose alternative interpretations of quantum
mechanics or go beyond it.

As in [8, 9], we will approach the problem through a
standard minimalist quantum approach, by analysing the
dynamics of the isolated system constituted by the tested
system S coupled to the measuring apparatus A. A key
point is the macroscopic size of the apparatus, which forces
us to rely on non-equilibrium quantum statistical mechan-
ics. Moreover, being irreducibly probabilistic, quantum
physics does not describe individual objects; we must deal
with statistical ensembles (§1), then attempt to infer the
properties of a single run of the measurement from those
of the subensembles of runs in which it may embedded.

We deal with ideal, non demolishing measurements.
Their purpose is to test a single observable ŝ =

∑
i siΠ̂i

of S characterised by its eigenvalues si and the associ-
ated eigenprojectors Π̂i, while perturbing S minimally. Al-
though ideal measurements are not currently performed in

real experiments, their theoretical elucidation is a neces-
sary step towards a full understanding of actual measure-
ment processes, since any general quantum measurement
(POVM) can be represented as a partial trace over an
ideal measurement [10]. We denote by D̂(t) the joint den-
sity operator of S+A for a large ensemble of runs, and by
r̂(t) = trAD̂(t) and R̂(t) = trSD̂(t) the marginal den-
sity operators of S and A, respectively. At the initial
time t = 0, S and A are uncorrelated, S lies in some
state r̂(0) and A in a metastable state R̂(0), so that
D̂(0) = r̂(0) ⊗ R̂(0). Triggered by its coupling with S, A
may relax towards one or another among its stable states
R̂i, which should have equal entropies and energies so as
to avoid bias in the measurement. These states can be dis-
tinguished from one another through observation or reg-
istration of the pointer variable Ai, identified with the
expectation value trAR̂iÂ of some collective observable Â
of A. The final indication Ai of the pointer must be fully
correlated with the eigenvalue si of the tested observable
ŝ and with the production of the final state r̂i for S. The
analysis of the process should therefore explain how S+A,
starting from the state D̂(0), reaches at a final time tf , for
each run of the measurement, one among the states [11]

D̂i = r̂i ⊗ R̂i, pir̂i = Π̂ir̂(0)Π̂i, (1)
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with Born’s probability pi = 〈Π̂i〉 = trSr̂(0)Π̂i.
Some parts of this task have been achieved for various

models. Here we deal with arbitrary ideal measurement
processes, gathering the key ideas that underlie their full
dynamical solution. Due to the generality of our scope, we
can describe only qualitatively this solution, but we will
demonstrate the feasibility of the program by recalling in
footnotes the outcomes of the detailed dynamical solution
[6, 12] of the Curie–Weiss (CW) model1.

1. Statistical formulation of the principles of quantum
mechanics. We tackle the measurement problem within a
statistical formulation of quantum mechanics, also called
“statistical interpretation” or “ensemble interpretation”
[1]. It is a minimalist, formal description suited to both
microscopic and macroscopic systems. Its spirit is the
same as in the C∗-algebraic approach [7], although we
deal with finite non relativistic systems. It does not pre-
judge any specific interpretation of quantum oddities [10].
Physical interpretations should emerge at the macroscopic
scale, in experimental contexts, as will be discussed in §5.

Physical quantities pertaining to a system (or rather
to an ensemble of similar systems) are described as “ob-
servables” represented by Hermitean matrices in a Hilbert
space. Observables behave as random objects, but, unlike
ordinary random variables, their randomness arises from
their non-commutative nature and is inescapable.

A “quantum state”, whether pure or not, encompasses
the probabilistic predictions that one may make about the
various observables. It is characterised by a correspon-
dence between observables Ô and real numbers, imple-
mented as Ô 7→ 〈Ô〉 = tr D̂Ô by means of a Hermitean,
normalised and nonnegative density operator D̂. Such a
definition looks analogous to that of a state in classical
statistical mechanics, encoded in a density in phase space.
However, “quantum expectation values” 〈Ô〉, “quantum
probabilities” such as 〈Π̂i〉 and “quantum correlations”
such as 〈ŝÂ〉 present a priori only a formal similarity
with standard expectation values, probabilities and cor-
relations; fluctuations arise not only from some ignorance
but also from the operator character of physical quantities.

As a standard probability distribution, a quantum state
gathers information and refers, implicitly or not, to a sta-
tistical ensemble E : We should regard an individual sys-
tem as embedded in a large, real or virtual, ensemble E of
systems produced under the same conditions. So a state
does not “belong to a system”, it is not an intrinsic prop-
erty. Information may be updated as for ordinary prob-

1In the CW model [6, sect. 3], S is a spin 1
2

, the measured observ-
able being its z-component ŝz , with outcomes i = ↑ or ↓. The appa-
ratus simulates a magnetic dot, including N � 1 spins σ̂(n), which
interact through the Ising coupling J , and a phonon thermal bath at
temperature T < J ; these spins and the phonons are coupled through
a dimensionless weak coupling γ. Initially prepared in its metastable
paramagnetic state, A may switch to one or the other stable ferro-

magnetic state. The pointer observable Â = Nm̂ =
∑N

n=1
σ̂
(n)
z is

the total magnetisation in the z-direction of the N Ising spins. The

coupling between S and A is ĤSA = −
∑N

n=1
gŝz σ̂

(n)
z , while ĤS = 0.

abilities by acknowledging and sorting the outcomes of
measurements so as to split E into subensembles, to each
of which a new state will be assigned (§5).

2. System plus apparatus in thermodynamic equilib-
rium. We suppose that the compound system S+A is
isolated, including in A a thermal bath or an environ-
ment if present. The properties of S+A are governed by
the Hamiltonian Ĥ = ĤS + ĤA + ĤSA, which must have
specific features. If A is decoupled from S, the part ĤA

governing the macroscopic apparatus should produce an
initial metastable state R̂(0) with lifetime longer than the
duration of the measurement and several thermodynamic
equilibrium states R̂i, the possible final states. A typical
example1 is given by spontaneously broken discrete invari-
ance, the pointer variable Ai being the order parameter.

As we wish to deal with ideal measurements, the pro-
cess should perturb S as little as possible: any observable
compatible with ŝ, i.e., commuting with its eigenprojec-
tors Π̂i, should remain unaffected. The conservation of
all these observables [11] is expressed by the fact that Ĥ
depends on S only through the projectors Π̂i. In partic-
ular the coupling must have the form ĤSA =

∑
i Π̂i ⊗ ĥi,

where ĥi are operators of A. Moreover, if ŝ takes the value
si, that is, Π̂i the value 1, A should end up near its sta-
ble state R̂i, the pointer variable being close to Ai. This
can be achieved if each ĥi behaves as a source that breaks
explicitly the invariance2 by energetically favouring Ai.

Before analysing the dynamics of the measurement pro-
cess (§3 and §4), we determine for orientation the gen-
eral form D̂eq of the thermodynamic equilibrium states

associated with the Hamiltonian Ĥ of S+A. We rely on
the maximum von Neumann entropy criterion for assign-
ing a state to a system in equilibrium [13, 14]. We thus
maximise −trD̂ ln D̂ under constraints accounting for the
conserved quantities. As usual for isolated macroscopic
systems, thermal equilibrium is implemented by specify-
ing the average energy 〈Ĥ〉. The other constants of the
motion, to wit, the expectation values of all observables of
S that commute with the projections Π̂i, are accounted for
by associating a Lagrange multiplier with each of them.

This yields for the equilibrium states a Gibbsian form
where the exponent involves an arbitrary linear com-
bination of all the conserved observables, i.e., D̂eq ∝
exp(−βĤ +

∑
i ŷi) where ŷi is any operator of S acting

2The interaction Hamiltonian ĤSA allows to describe not only
ideal measurements involving well separated eigenvalues si of ŝ, but
also more general measurements for which the projectors Π̂i, still as-
sociated through ĥi with the pointer indications Ai, are no longer in
one-to-one correspondence with the eigenvalues of ŝ. For instance, if
some Π̂i encompasses the eigenspaces of several different neighbour-
ing eigenvalues, selecting the outcome Ai will not discriminate them,
and the final state r̂i = Π̂ir̂(0)Π̂i/pi of S will not be associated with a
single eigenvalue of ŝ as in an ideal measurement. As another exam-
ple, consider two orthogonal rank-one projectors Π̂1 and Π̂2, coupled
with sources ĥ1 and ĥ2 that produce different outcomes A1 and A2,
and assume that Π̂1 + Π̂2 spans the two-dimensional eigenspace as-
sociated with a degenerate eigenvalue of ŝ; reading the outcome A1

(or A2) then provides more information than this eigenvalue.
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inside the diagonal block i (so that ŷi = Π̂iŷiΠ̂i). Noting
that the exponent, which commutes with the projections
Π̂i, has a block diagonal structure, we find for these equi-
librium states the related block diagonal structure

D̂eq =
∑
i

qix̂i ⊗ R̂h
i ,

∑
i

qi = 1. (2)

Each factor qix̂i, which arises from exp(−βĤS + ŷi), is an
arbitrary block diagonal operator of S, where x̂i = Π̂ix̂iΠ̂i,
trSx̂i = 1 behaves as a density operator of S. (If the eigen-
value si is non degenerate, x̂i reduces to Π̂i.) Each factor

R̂h
i ∝ exp[−β(ĤA + ĥi)] in (2) can be interpreted as a

canonical equilibrium density operator in the space of A.
Here the invariance is explicitly broken by adding to the
Hamiltonian of A the source term ĥi arising from ĤSA.

This term should be sufficiently large so that the dis-
tribution trAR̂hi δ(A − Â) of Â has a single narrow peak,
and sufficiently small so that this peak lies close to Ai, so
as to let Â behave as a pointer observable. These prop-
erties are easy to satisfy for a macroscopic apparatus3.
Thermodynamic equilibrium (2) thus entails a complete
correlation between the eigenvalue si of ŝ and the value
Ai of the pointer variable. The moderate size of ĥi also
ensures that the state R̂hi lies in the basin of attraction of

the state R̂i with broken symmetry, so that R̂hi will relax

smoothly to R̂i at the end of the measurement process
when the coupling ĤSA is switched off4.

Let us return to measurements. We wish to explain how
a final state D̂i of the form (1) should be assigned with
probability pi to each run. It is thus necessary (but not
sufficient) to prove, by studying the dynamics of a large
statistical ensemble E of runs for which S+A lies initially
in the state D̂(0) = r̂(0)⊗ R̂(0), that its final state is

D̂(tf) =
∑
i

piD̂i =
∑
i

pir̂i ⊗ R̂i. (3)

We can identify (3) with a thermodynamic equilibrium
state (2), for which relaxation of R̂h

i to R̂i has taken place4

after switching off ĤSA. Dynamics and conservation laws
will determine the free parameters of D̂eq from the initial

state D̂(0) as qix̂i = Π̂ir̂(0)Π̂i ≡ pir̂i. i.e., qi = pi, x̂i = r̂i.
We can also identify the state D̂i defined in (1), ex-

pected to describe the subensemble Ei obtained by select-
ing within E the runs tagged by the value Ai of the pointer,
with an equilibrium state for which all qj with j 6= i van-
ish. More generally, for an arbitrary subset Esub of runs5

3In the CW model1, the factors ĥ↓ = −ĥ↑ =
∑N

n=1
gσ̂

(n)
z that

occur in the coupling ĤSA behave as a magnetic field applied to
A. The conditions for ĥi are satisfied if Ng � T (which lets the
probability of the states with m < 0 vanish for sz = 1), and g < T
[6, sect. 9.4].

4In the CW model g < T ensures this relaxation [6, sect. 7.2].
5Subsets obtained by extracting runs at random from E would be

described by the same state D̂(t) as the full set E. If r̂i is a mixed
state, the runs described by (4) are picked up at random within Ei.

having yielded a proportion qi of individual runs with out-
comes Ai, the expected final state

D̂sub(tf) =
∑
i

qiD̂i (4)

is a thermodynamic equilibrium state (2) with x̂i = r̂i.
Thus, an ideal measurement process appears as a mere

relaxation of S+A to equilibrium, for the full ensemble E
of runs and for arbitrary subensembles Esub. In quantum
mechanics, relaxation of D̂(t) and D̂sub(t) towards Gibb-
sian thermodynamic equilibrium states (3) and (4) is not
granted [15]. We must therefore justify these properties
within the quantum statistical dynamics framework. We
sketch the main steps of such a proof in §3 and §4.

3. Dynamics of S+A for the full set of runs. Our first
task [8] consists in deriving the final state (3) by solv-
ing the Liouville–von Neumann equation ih̄dD̂(t)/dt =
[Ĥ, D̂(t)] with initial condition D̂(0) = r̂(0)⊗ R̂(0). Tak-
ing into account the above form of Ĥ and the commutation
[ĤS, r̂(0)] = 0 which ensures that the marginal state r̂(t)
of S is perturbed only by the interaction ĤSA during the
process, we check that D̂(t) can be parameterised as

D̂(t) =
∑
i,j

Π̂ir̂(0)Π̂j ⊗ R̂ij(t) (5)

in terms of a set R̂ij(t) = R̂†ji(t) of operators in the Hilbert
space of A, to be determined by the equations

ih̄
dR̂ij(t)

dt
= (ĤA + ĥi)R̂ij(t)− R̂ij(t)(ĤA + ĥj), (6)

with the initial conditions R̂ij(0) = R̂(0). The dynamics
thus involves solely the apparatus, irrespective of the tested
system, a specific property of ideal measurements.

Though macroscopic, A should be treated as a finite
system so as to ensure a better control of the dynam-
ics and to discuss under which conditions the process can
be regarded as an ideal measurement. We must then ex-
plain how the expected irreversible relaxation from D̂(0)
to D̂(tf) can be governed by the reversible equations (6),
so that we run into the old paradox of irreversibility. As
usual in statistical mechanics, it is legitimate for finite
but large systems to disregard events having an extremely
small probability, to forget about recurrences that would
occur after large, unattainable times, and to neglect phys-
ically irrelevant correlations between a macroscopic num-
ber of degrees of freedom. Such approximations, although
not exact mathematically, are fully justified when their
outcome is physically indistinguishable from the exact so-
lution. A large apparatus, and a suitable choice of param-
eters in ĤA and ĤSA will therefore be needed, for each
model, to explain the required relaxations and to estimate
their time scales, as will be illustrated by the CW model
treated extensively in [6].
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Two types of relaxation arise independently from the
dynamical equations (6). (i) For i 6= j, the coherent con-
tributions R̂ij(t) decay owing to the difference between

ĥi and ĥj and eventually vanish. The off-diagonal blocks

of the density matrix D̂(t) are thus truncated as regards
the physically attainable observables. Depending on the
model, this decay may be governed by different mecha-
nisms6. (ii) For i = j, the evolution of R̂ii(t) governed by
(6) is a mere relaxation from the metastable state R̂(0)
to the equilibrium state R̂hi in the presence of the source

ĥi, and then to R̂i after ĤSA is switched off. The corre-
lation between si and Ai needed to register the outcome
is thereby established7. Thus, microscopic dynamics con-
firms the thermodynamic surmise (3) for the final state of
S+A in the ensemble E .

4. Final states for arbitrary subensembles. We have
shown how D̂(t) evolves from D̂(0) to D̂(tf) =

∑
i piD̂i

for the large set E of runs. Our next task consists in
proving, again dynamically, that S+A ends up in a state of
the form (4), D̂sub(t) =

∑
i qiD̂i, for all possible subsets5

Esub of E . If the density operator D̂(tf) did behave as
an ordinary probability distribution, this result would be
obvious, as the form

∑
i piD̂i of D̂(tf) would mean that E

contains a proportion pi of individual runs having ended
up in the state D̂i; the form (4) of D̂sub would follow for
any subset gathering a proportion qi of runs i. However,
in quantum mechanics, contrary to standard probability
theory, specifying the state D̂ for an ensemble E (with N
elements), that is, the correspondence Ô 7→ 〈Ô〉 = tr D̂Ô,
does not imply the existence of probabilities for individual
systems (§1) so that the above reasoning is fallacious [16].

Indeed, when an ensemble E (withN elements described

6Several processes are involved in the CW model1. Over the short
time scale h̄/g

√
N , truncation results [6, sect. 5] from the dephasing

between the oscillations yielded by the factor exp 2ith̄−1
∑N

n=1
gσ̂

(n)
z

entering R̂↑↓(t), which have different frequencies (due to the ran-

domness of σ
(n)
z in the initial paramagnetic state of A). Information

is thereby lost through a cascade of correlations of higher and higher
order, less and less accessible, between the spins of A, and R̂↑↓(t)
practically tends to zero as regards the accessible observables. Re-
currences are wiped out [6, sect. 6], either by the coupling γ with
the phonon bath (provided T/J � γ � g/NT ), or by a spread δg

in the couplings g of ĤSA (provided δg � g/
√
N).

7Authors do not always give the same meaning to the various
words used. We term as truncation the disappearance of the off-
diagonal blocks of the density matrix of S+A under the effect of
an arbitrary mechanism, and specialise decoherence to the produc-
tion of this effect by interaction with an environment or a thermal
bath. We term as registration the process which leads each diagonal
block to the correlated state r̂i⊗R̂i, and as reduction the transition
from r̂(0) to some r̂i for an individual run. While much attention
has been paid to the vanishing of the off-diagonal blocks, the re-
laxation of the diagonal blocks is too often disregarded, although
it produces the correlations that ensure registration. In the CW
model [6, sect. 7], this process is triggered by ĥi which makes R̂(0)
unstable and should be sufficiently large to exclude false registra-
tions (g � J/

√
N). Later on, the relaxation of R̂ii(t) to R̂h

i , and

finally to R̂i after ĤSA is switched off, is governed by the dumping
of free energy from the magnet to the phonon bath; its characteristic
duration is the registration time h̄/γ(J − T ).

by D̂) gathers a subensemble Esub (with 0 < Nsub < N
elements described by D̂sub) and its complement, one has

D̂(t) = kD̂sub(t) + (1− k)D̂Csub(t), (7)

involving the weight k = Nsub/N and the nonnegative
density operator D̂Csub(t) of the complement of Esub.

However, if we conversely consider some decomposi-
tion of a known mixed state D̂ having the form (7), we
run into a severe difficulty. Due to the matrix nature of
quantum states, nothing tells us that the set E described
by D̂ may be split into two subsets that would be de-
scribed by the two terms D̂sub and D̂Csub. We have to

face a quantum ambiguity: A mixed state possesses D̂
of S+A many different mathematical decompositions (7)
which are physically incompatible [16]. A well known ex-
ample is the state of an unpolarised ensemble of spins,
which can be decomposed both as 1

2 |z〉〈z| + 1
2 |−z〉〈−z|

and as 1
2 |x〉〈x| + 1

2 |−x〉〈−x|, where |a〉 denotes a pure
state polarised in the a-direction; if these two decompo-
sitions were meaningful, there would exist subensembles
of spins polarised simultaneously in two orthogonal direc-
tions! Likewise, the mixed state D̂ of S+A possesses many
mathematical decompositions (7) which are mutually con-
tradictory, so that we cannot infer from its sole knowledge
whether a term D̂sub issued from some decomposition of
D̂ is a density operator describing a real subset of runs or
not. (We keep the notation D̂sub also in the latter case.)
In particular, the form (3) of D̂, though suggestive, is not
sufficient to imply the existence of subensembles of runs
that would be described by D̂i.

In order to overcome this quantum ambiguity, we adopt
the following strategy. We start from the state D̂(tsplit),
taken at a time tsplit earlier than tf but sufficiently late

so that D̂(tsplit) has already reached the form
∑
i piD̂i,

after ĤSA has been switched off. We consider all math-
ematically allowed decompositions of D̂(tsplit) of the form
(7), involving two nonnegative Hermitean operators. Al-
though nothing ensures that the operators D̂sub(tsplit) thus
defined are physically meaningful, we are ascertained that
their class includes all physical states associated with real
subsets of runs. Our purpose is then to show, by taking
D̂(tsplit) as initial condition and solving for t > tsplit the

equations of motion for D̂(t) governed by the Hamiltonian
ĤS+ĤA, that any admissible candidate D̂sub(t) for a phys-
ical state ends up in the expected form D̂sub(tf) =

∑
i qiD̂i.

We shall thereby have proven the relaxation towards the
required equilibrium form (4) for all physical subsets of
runs, although it will be impossible before the reasoning
of §5 to know which among the operators D̂sub(tf) thereby
constructed are the physical ones.

We begin with the determination of the general form,
issued from (7), of the initial operators D̂sub(tsplit). To
simplify the discussion, we assume here the eigenvalues of
ŝ to be non degenerate8 so that r̂i = Π̂i = |si〉〈si|. As A is

8For degenerate eigenvalues si, the only change in the forthcom-
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macroscopic, the fluctuations of ĤA around 〈ĤA〉 and of
the pointer observable around the macroscopic value Ai
are relatively small, and we can replace in D̂(tsplit) the

canonical equilibrium states R̂i by microcanonical ones,
R̂µi . Within the Hilbert space of A, we denote as |Ai, η〉
a basis of kets characterised by a value of Â close to Ai
(within a small margin δAi), and by a value of the energy
corresponding to the microcanonical equilibrium state R̂µi .
As the spectrum is dense, the index η may take a very large
number Gi of values, and R̂µi is expressed by

R̂µi =
1

Gi

∑
η

|Ai, η〉〈Ai, η|. (8)

The state D̂(tsplit) '
∑
i pir̂i ⊗ R̂

µ
i thus involves only di-

agonal matrix elements within the Hilbert subspace Hcorr

of S+A spanned by the correlated kets |si〉 |Ai, η〉. Hence,
since both operators on the right side of (7) must be non-
negative, their matrix elements must lie within this Hilbert
subspace Hcorr, so that any initial (normalised) operator
constrained by (7) has the form

D̂sub(tsplit) =
∑
i,j,η,η′

|si〉|Ai, η〉K(i, η; j, η′)〈sj |〈Aj , η′|. (9)

The evolution for t > tsplit of the operator D̂sub(t) is-

sued from (9) is governed by ĤS + ĤA, and, as in section
3, ĤS is ineffective. The Hamiltonian ĤA of the appara-
tus is chosen so as to involve interactions inducing among
the kets |Ai, η〉 rapid transitions9 that modify η without
affecting the macroscopic value of Ai. Apart from the ex-
istence here of several thermodynamic equilibrium states10

ing derivation, if the states r̂i ≡ |i〉〈i| are pure, is the replacement
of |si〉 by |i〉. If r̂i is mixed, we note that this operator of S is not
modified by the process, while remaining fully coupled with Ai for
t > tsplit. We should therefore preserve this property when we split

D̂ so as to build the candidates D̂sub for states of physical subensem-
bles. The microcanonical relaxation of A then produces again the
final state (10), at least for all physical subensembles.

9Two different mechanisms achieving such a process have been
studied for the CW model [6, §11.2], and it has been shown that
they produce the result (10). In the more realistic one [6, Appen-
dices H and I], the transitions that modify η are produced by an

interaction V̂ between the magnet and the bath which has a vari-
ance v2 = tr V̂ 2; an average delay θ separates successive transitions.
Microcanonical relaxation may take place even if V̂ is not macro-
scopic, with a variance scaling as v ∝ Na (a < 1) for large N . For
a short θ, scaling as θ ∝ 1/Nb (a < b < 2a), the characteristic time
τsub = h̄2/v2θ scales as 1/Nc where c = 2a − b, 0 < c < a < 1;
it is short compared to the registration time, which dominates tf
because registration involves a macroscopic dumping of energy from
the magnet to the bath, in contrast to the present relaxation.

10This type of relaxation also occurs in the dynamics of finite-
temperature quantum phase transitions with spontaneously broken
invariance, explaining within quantum theory why the order param-
eter may take a well-defined value in a single experiment. This ana-
logue of the measurement problem is solved along the same lines for
macroscopic systems, so that the community has rightfully not been
bothered about it. But the problem remains for phase transitions in
finite systems, which require an analysis of time scales.

labelled by i, the mechanism is the same as in the stan-
dard microcanonical relaxation [17–20] which leads to the
equalisation of the populations of the microstates for a
single microcanonical equilibrium. Such a “quantum col-
lisional process” is irreversible for a large apparatus. Act-
ing on both |Ai, η〉 and 〈Aj , η′| in (9), it produces over the
same time scale τsub two different effects. (i) For i 6= j, all
contributions to (9) fade out. (ii) For i = j, all terms such
that η 6= η′ disappear, while the coefficients K(i, η; i, η) of
the various terms η all tend to one another, their sum re-
maining constant. The duration τsub of these relaxations
being much shorter9 than tf , the mechanism is already ef-
fective before tsplit, so that anyway D̂sub reaches at the
final time tf > tsplit + τsub the microcanonical equilibrium

D̂sub(tf) =
∑
i

qir̂i ⊗ R̂µi , qi =
∑
η

K(i, η; i, η). (10)

Since the above derivation holds for arbitrary operators
D̂sub issued from a mathematical decomposition (7) of D̂,
it encompasses all the physical subsets Esub of runs, which
therefore end up in the required form (4). The coeffi-
cients qi of the various physical subensembles are related
to one another by a hierarchic structure: If two disjoint

subensembles E(1)sub and E(2)sub of E , described by D̂(1)
sub and

D̂(2)
sub, and having N (1) and N (2) elements, respectively,

merge into a new subensemble Esub, the above proof im-
plies for the coefficients the standard addition rule

[
N (1) +N (2)

]
qi = N (1)q

(1)
i +N (2)q

(2)
i . (11)

5. Emergence of classical probabilistic interpretation.
In order to elucidate the measurement problem for ideal
quantum measurements, it remains to show that the op-
erators D̂i are not only the building blocks of the final
density operators D̂(tf) of S+A (associated with the full
ensemble E of runs) and D̂sub(tf) (associated with its
subensembles Esub), but also that they describe the out-
comes (1) of individual runs. However, we have stressed
(§1) that quantum mechanics, in its statistical formu-
lation, does not deal with individual systems but only
provides information on statistical ensembles – possibly
gedanken but physically consistent. In the strict frame-
work of quantum statistical mechanics, the most detailed
result about ideal measurements that can be derived is
the structure (4) of the final density operators of S+A for
all possible subensembles Esub of E . An essential feature
of this result will allow extrapolation to individual runs,
to wit, the elimination owing to dynamics of the quan-
tum ambiguity, yielding the hierarchic structure (11) of
the states of the subensembles Esub.

Indeed, the latter structure is just the same as the one
that lies at the core of the definition of ordinary probabil-
ities when they are interpreted as relative frequencies of
occurrence of individual events [21]. Once the quantum
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ambiguity has been removed and the property (11) estab-
lished, it is natural to complement the inherently proba-
bilistic principles of quantum mechanics with the following
interpretation of the final mixed states (4) associated with
the various subensembles Esub: A coefficient qi that arose
abstractly from the above relaxation process is identified11

as the proportion of runs having produced the outcome Ai
in the subensemble Esub; each Ei contains Born’s propor-
tion pi of runs. An individual run then belongs to some
subset Ei and can be assigned the state D̂i, so that a so-
lution of the quantum measurement problem is achieved.

The runs are tagged by the value Ai of the pointer vari-
able, which characterises the factor R̂i of D̂i and which
can macroscopically be observed or registered. By pick-
ing out the runs having yielded Ai, one extracts from the
whole ensemble E the subensemble Ei that ends up in the
state D̂i. Two steps are thus necessary to go from the
initial state D̂(0) to D̂i. First, the Hamiltonian evolu-
tion (irreversible since A is large) of the coupled system
S+A for the full ensemble E leads to the state D̂(tf) ex-
pressed by (3); correlations are created, and information
is transferred from S to A with some loss. However, the
subsequent reduction of the state from D̂(tf) to one of
its components D̂i is not a consequence of some evolution,
but the mere result of selecting the particular outcome Ai.
This change of state, associated with the extraction from
E of the subset Ei is merely an updating of information12,
in the same way as the change of an ordinary probability
distribution resulting from some gain of information. A
further step is involved in the reduction of the state of S
from r̂(0) to r̂i, the disregard of A after selection of Ai.

A “state” defined by the mapping Ô 7→ 〈Ô〉 = trD̂Ô has
only a mathematical nature; the c-numbers 〈Ô〉 present
only a formal analogy with ordinary expectation values.
However, at the end of a measurement, the coefficients
pi = 〈Π̂i〉 = trSr̂(0)Π̂i can be identified with ordinary
probabilities in the frequency interpretation. Accordingly,
〈ŝ〉 = tr r̂(0)ŝ =

∑
i pisi and Ai = trAR̂iÂ appear as or-

dinary statistical averages, and 〈ŝ2〉 − 〈ŝ〉2 as an ordinary
variance; the correlation between ŝ and Â in D̂(tf) has
a classical nature. As usual in statistical mechanics, the
macroscopic behaviour of the apparatus, in particular the
irreversibility of the process, emerges from the underly-

11In other words, there exist subensembles Ei for which all but one
of the coefficients qi vanish. This property, together with (11), was
included in the definition of probabilities as frequencies [21].

12Measurements involve both a physical process of interaction be-
tween S and A and a selection of outcomes for repeated experiments.
If we do not select the indications of A, knowledge about S is up-
dated by replacing r̂(0) by

∑
i
pir̂i. If the tested observable is not

fully specified, the least biased subsequent predictions should rely on
a state obtained by averaging over all possible interaction processes.
If for instance, one is aware that an ensemble of spins initially pre-
pared in the state r̂(0) have been measured in some direction, but if
one knows neither in which direction nor the results obtained, one
should assign to the final state the density operator 1

3
[1̂ + r̂(0)] as

being the best (but imperfect) description. Indeed, a quantum state
is not an intrinsic property of a physical system but it reflects our
knowledge about the ensemble in which it is embedded.

ing reversible microscopic theory. But moreover another
remarkable type of emergence occurs at the end of the
measurement process: Classical probabilities emerge from
quantum theory, although the underlying “quantum prob-
abilities” were non-commutative and could not a priori be
regarded as frequencies in the absence of an experimental
context. Certain properties of S, encoded statistically in
the initial state r̂(0) of the ensemble E , are selected by the
measurement context and revealed by the outcomes of the
individual runs of the process.

Thus all the features of ideal measurements, including
the measurement problem and the classical aspects of the
outcomes, have been explained by the sole use of a min-
imalist and abstract formulation of quantum theory, ap-
plied to a large apparatus satisfying adequate dynamical
properties. Interpretation came out naturally, but only in
the end. Since alternative interpretations involve unnec-
essary assumptions of one kind or another, the usage of
the statistical formulation in teaching is advocated.
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