DE LA RECHERCHE À L'INDUSTRIE MINES Saint-Etienne

www.cea.fr

PHYSICAL FUNCTIONS : THE COMMON FACTOR OF SIDE-CHANNEL AND FAULT ATTACKS ?

Proofs 2014, Busan, Korea

Bruno Robisson, Hélène Le Bouder

Secure Architecture and Systems Laboratory Joint team between CEA and Ecole des Mines de Saint-Etienne Gardanne, France

27 SEPT 2014

Intensive research on fault and side-channel attacks (i.e. physical attacks) since late 90's.

Several works for unifying side-channel attacks

+ Several publications on combined attacks

Unify both fault and side channel attacks (except obviously experimental setup) ?

Demonstrate on the AES-128 algorithm

Relationships

Models of physical functions

Generic key retrieving algorithms

Giraud's DFA revisited

Conclusion

<image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>

Such mathematical relationships are used for traditional cryptanalysis.

Thanks to ad-hoc experimental setup, the attacker goes « inside the circuit ».

This indirect access to the internal data that enables divide and conquer approach.

Mathematical and physical relationships REL
O,P : observables
C: internal data
G: mathematical functions
F: physical functions

Mathematical and physical relationships REL

- C: internal data
- F: (unknown) physical functions
- G: (known) mathematical functions
- O,P: (known) observables

```
P=REL(C,F,G,O)
```

There is no analytical expression of physical functions ONLY MODELS of physical functions

2 kinds of models of physical functions:

- Deterministic (one input \rightarrow one output)
- Probabilistic (one input \rightarrow probability for one or several outputs)

DETERMINISTIC MODELS OF LEAKAGE

Leakage function: DATA \rightarrow MEASURE

Example 1: power measurement

DATA = 1 byte MEASURE = Output of the acquisition chain (power probe+amplifier+oscilloscope) at one instant = power

 $\{0\ ;\ 2^{M}\text{--}1\} \to \{0; 2^{N}\text{--}1\}$

M=# of bits of the data N=vertical resolution of the oscilloscope

HW, HD, weighted HD or HW are also examples of deterministic leakage functions

DETERMINISTIC MODELS OF ERROR FUNCTIONS

 $\mathsf{Error}\;\mathsf{function}:\mathsf{DATA}\to\mathsf{DATA}$

Example: laser bench

DATA = 1 byte DATA = DATA modified by the pertubation mean = 1 byte

 $\{0; 2^{M}-1\} \rightarrow \{0; 2^{M}-1\}$ M=# of bits of the data

Bit flip, set, reset, stuck-at, etc. are also examples of deterministic error functions

Deterministic physical functions are used for DPA, DBA, FSA, etc.

Limitation : experimental setup and other data introduce NOISE \rightarrow has to taken into account in the models

Our proposal :

Probabilistic physical function = Joint probability mass function (pmf)

Example 1: DATA: $D \rightarrow R$ and MEASURE: $M \rightarrow R$

DATA and MEASURE are considered as two discrete random variables with sample spaces D={0 ; 2^{M} -1} and M={0; 2^{N} -1}

The joint pmf of the discrete variables DATA*MEASURE is $f_{DATA*MEASURE}$: $R^2 \rightarrow [0;1]$ defined such that $f_{DATA*MEASURE}(x,y)=Pr(DATA=x,MEASURE=y)$ whatever x and $y \in R$

• 32-bit microcontroler evaluation board (without countermeasure)

EXAMPLE 2 : REAL LEAKAGE FUNCTION

- Software implementation of the AES-128
- Oscilloscope Tektronix DPO 7104 (1 GHz)
- Plain texts (known) : XX 00 00 00 00 00 00 00 00 (XX \in [0:255])
- Key (known): 43 00 00 00 00
- Measure = power consumption during round 1
- Data = output of Sbox 1

Pmf of a power consumption measured on a 32 bit microcontroller (S Box1, round 1):

Saint-Étienne

EXAMPLES OF PMF: MEASURE OF LEAKAGE FUNCTION

Start of round

« Start of middle round »

« End of middle round »

Impact of sample instant

PAGE 15

22

EXAMPLE 4 : REAL ERROR FUNCTION

Characteristics of clk generator :

- resolution of ΔT : ~ 35 ps à 100 MHz,
- low cost platform (FPGA Xilinx),
- easy set-up.

<u>Target</u>

- AES-128 on FPGA (virtex 3 board)
- Fault during the computation of round 9, i.e fault on round[10].start
- • Δt from 50 to 130 (*35ps) by step of 1

- \bullet reduction of one period of the clock ($\Delta T)$,
- fault injection by clock set-up time

Saint-Étienne

EXAMPLE 4: REAL ERROR FUNCTION

Pmf of an error function measured on an FPGA implementation of the AES (start, round 10) faulted by using clock glitch :

Modified Data $\in \{0; 2^{M}-1\}$

 \mathbb{C}

For all the models of indexes i and j, predict $Pr(P_{Mod(j,i)})$ from the same values of O

Compute the pmfs

$$P_{Mod(j,i)} = REL(c_i, f_i, O) \longrightarrow$$

 $Pr(P_{Mod(i,j)}, O)$

Any measure of « similarity » between these two pmf (see [Cha])

GIRAUD MONOBIT

Relationship : $C^* = SR(SB(e(SB^{-1}(C + k[10])))) + k[10])$

Hypothesis : Random monobit on round[10].start ;

Distinguisher: Sieve

GIRAUD MONOBIT REVISITED

Relationship : $C^* = SR(SB(e(SB^{-1}(C + k[10])))) + k[10]$

Hypothesis : Random monobit on round[10].start

GIRAUD MONOBIT REVISITED

RESULTS

A long list of physical attacks are covered by this formalism:

Described by only three main parameters

- -Relationships
- -Models of physical function
- -Distinguisher

Attack	Relationships	Physical function	Kind of physi-	Similarity and
	_	-	cal functions	distance tools
Semi-	R_0	f(x) = x if x is	Determ.	All
exhaustive	$O = \{plain\}$	the j th octet		
(on octet j)	$P = \{cipher\}$	f(x) = 0 else		
	$C = \{k_sch[0]\}$			
	R_1	$f(x) = R_{\Omega}(x)$ with	Determ.	All
μ -probing	$O = {plain^{j}}$	$\Omega \in \{1, 2, 4, \dots, 128\}$		
	$P = \{probe\}$			
	$C = \{k_sch[0]^{j}\}$			
	R_2	$f(x) = R_{\Omega}(x)$ with	Determ.	DoM
DPA [8]	$O = {cipher^{j}}$	$\Omega \in \{1, 2, 4, \dots, 128\}$		or
	$P = \{Power\}$			Pearson
	$C = \{k_sch[10]^{j}\}$			correlation
	R_1	$f(x) = HW(x \oplus \Omega)$	Determ.	Pearson
CPA [3]	$O = \{plain^{j}\}$	with $\Omega \in [1, 255]$		correlation
	$P = \{power\}$			
	$C = \{k_sch[0]^{j}\}$			
MIA [18]	R_1	f(x) = HW(x) + N with	Probab.	Mutual
	$O = \{plain^j\}$	N a Gaussian noise		information
	$P = \{power\}$			
	$C = \{k_sch[0]^{j}\}$			
	R_3	$f(x) = x \oplus \Omega$ with	Probab.	Sieve
DFA1 [7]	$O = \{cipher^{j}\}$	$\Omega \in \{1, 2, 4, \dots, 128\}$		
	$P = {faulted^{j}}$	and $(Pr(\Omega) = 1/8) \forall \Omega$		
	$C = \{k_sch[10]^{j}\}$			
	R_4	$h(x) = x$ and $g(x, \Omega) = x \oplus \Omega$	Determ.	Count
DFA2 [16]	$O = {cipher^{j}}$	with $\Omega \in [1, 255]$		
	$P = \{faulted^j\}$	$f(y, \Gamma) = y \oplus \Gamma$ with		
	$C = \{k_sch[10]^j,$	$\Gamma \in [1, 255]$		
	$round[9].m_col^{j}$			
	R_4	h(x) = HW(x)	Determ.	Pearson
DFA+ [16] DBA [15]	$O = {cipher^{j}}$	f and g as above		correlation
	$P = \{power\}$			
	$C = \{k_sch[10]^j,$			
	$round[9].m_col^{j}$			
	R_1	$f(x) = (R_{\Omega}(x) == 0)$ with	Determ.	Pearson
	$O = \{plain^{j}\}$	$\Omega \in [1, 255]$		correlation
	$P = \{behavior\}$			
	$C = \{k_sch[0]^{j}\}$			
	R_2	f(x) = HW(x) or	Determ.	Pearson
FSA [12]	$O = \{cipher^{j}\}$	$f(x) = R_{\Omega}(x)$ with		correlation
	$P = \{intensity^j\}$	$\Omega \in \{1, 2, 4, \dots, 128\}$		
	$C = \{k_{sch}[10]^{j}\}$	· · · · · · · · · · · · · · · · · · ·		

Table 2. Examples of physical attacks and associated parameters

CONCLUSION AND PERSPECTIVES

Conclusions

- Proposal of a model of physical functions
- Create a formal link between a wide class of fault and sidechannel attacks
- Choice of the model more important than the choice of the distinguisher

Perspectives

- Extend to other attacks (for example on public key algorithms)
- Determine new relationships and combine existing attacks
- Analyze the impact on protections
- Answer many open questions, among them
 - How to find the physical function which leaks the most?

Thanks to D. Aboulkassimi, J.-M Dutertre, I. Exurville, J. Fournier, R. Lashermes, J.-B. Rigaud, A. Tria and Jean-Yves Zie for their help on this work.

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019

Institut CEA Tech en Région Département PACA Laboratoire SAS