

FIRE DES

Le Bouder

Smart Trusted Technologies & Services for the Networked Society September 25-27, 2013 – Nice, French Riviera

Fault Injection to Reverse Engineer DES-like Cryptosystems

Hélène Le Bouder, Sylvain Guilley, Bruno Robisson, Assia Tria

26 September 2013

- In contradiction with Kerckhoffs' principle [?], private algorithms are still used.
- Creating a strong new cryptosystem from scratch is not easy.
- These algorithms respect some properties identical to algorithm which has gained one's spurs.
- When the goal of an attacker is to retrieve information on a private algorithm, his attack is termed reverse engineering.
- Pseudo DES with customized s-boxes.
- Even if an algorithm is securely designed, it may be vulnerable to physical attacks as fault injection attacks.
- The fault injection attacks consist in disrupting the circuit behaviour.
- FIRE Fault Injection for Reverse Engineering.

Le Bouder

æ

▲口 > ▲圖 > ▲ 国 > ▲ 国 >

3/1

FIRE DES

Le Bouder

FIRE DES Le Bouder

09/26/13

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

DES Data Encrytption Standard

- Established by the NIST [?]
- A symmetric cryptosystem, specifically a 16-round Feistel cipher.
- Starts by IP, a permutation of 64 bits and finishes by its inverse IP⁻¹.
- The round function F on 32 bits consists in 4 steps.
 - Expansion *E* which maps 32 bits in 48 bits by duplicating half of the bits.
 - \oplus with the 48 bits of round key K_j , $j \in \llbracket 1, 16 \rrbracket$.
 - 8 S-boxes S_i : boolean functions $6 \rightarrow 4$
 - Permutation P of 32 bits.

Le Bouder

- S-boxes S_i, i ∈ [[1,8]] substitute a 6-bits input m_i for a 4-bits output y_i.
- $S_i(m_i) = y_i$
- S-boxes are represented with a table of 4 lines and 16 columns.
- Let m_i be one input, the first and the last bit establish the line number. The bits in the middle establish the column number. To sum up m_i defines the position in the s-box of a cell and y_i defines the value in the same cell.

FIRE DES Le Bouder

09/26/13

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

જીવ€

First FIRE attack [?]

- A single bit fault occurs in R15.
- C and C* are known thus L16, R16, L16* and R16* can be obtained with IP.
- $m = E(R15) \oplus K16 = E(L16) \oplus K16$ $m^* = E(R15^*) \oplus K16 = E(L16^*) \oplus K16$
- L15 is unknown, the s-boxes outputs y and y* cannot be retrieved.
 y = P⁻¹(R16 ⊕ L15)
 y* = P⁻¹(R16* ⊕ L15)
- $\Delta_y = y \oplus y^* = P^{-1}(R16 \oplus R16^* \oplus L15 \oplus L15) = P^{-1}(R16 \oplus R16^*)$
- $S_i(m_i) \oplus S_i(m_i^*) = \Delta_{y_i}$
- S-boxes are defined up to a translation.
- They finish with an exhaustive search.

FIRE DES

∃ >

FIRE DES Le Bouder

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

9/1

The Attack Path

• A single-bit fault is injected in *R*14.

Le Bouder

- The fault is more propagated than in *R*15, i.e. more bits in the s-boxes inputs of the last round are faulted.
- In R15 two s-boxes can have faulty inputs i.e
 1 or 2 different impacted s-boxes.
- In R14 all s-boxes can have faulty inputs i.e 1,2,3,4,5,6,7 or 8 different impacted s-boxes.

09/26/13

Chip-to-

Propagation of the faulty bits

E can multiply the numbers of bits by 2.

FIRE DES

Propagation of the faulty bits

E can multiply the numbers of bits by 2.

Le Bouder

FIRE DES

After S-boxes of round 15, the numbers of faulty bits can be equal at 8.

09/26/13

Security Forur

Propagation of the faulty bits

- E can multiply the numbers of bits by 2.
- After S-boxes of round 15, the numbers of faulty bits can be equal at 8.
- Finally thank to the E in round 16, the numbers of faulty bits can be equal at 16.
- The permutation P dispatches the faulty bits and the 8 s-boxes can have faulty inputs.

Inputs are known

• As in [?] *R*16, *L*16, *R*16* and *L*16* are known.

FIRE DES

Inputs are known

 As in [?] R16, L16, R16* and L16* are known.

Le Bouder

FIRE DES

 \Rightarrow Thus the inputs of s-boxes *m* and *m*^{*} are known.

09/26/13

Security Foru

• As in [?] *R*16, *L*16, *R*16* and *L*16* are known.

 \Rightarrow the inputs of s-boxes *m* and *m*^{*} are known.

•
$$R14^* = L15^* \neq L15.$$

 $\Rightarrow \Delta_y = P^{-1}(R16 \oplus R16^* \oplus L15 \oplus L15^*)$ is unknown.

FIRE DES

Le Bouder 09/26/13

Security Een

- We can known the differential at the outputs s-boxes in round 15.
- Finally we have only two possible fault values in *R*14*.
- This uncertainty in taken in account in Δ_y .

09/26/13

Le Bouder

臣

17/1

We can consider two properties of s-boxes justified by Brickell in [?].

- Changing 1 input bit of an s-box results in changing at least 2 output bits.
- 2 Each line of an s-box is a permutation of the integers 0 to 15.

FIRE DES Le Bouder

09/26/13

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

19/

- •
- •
- •
- •

Le Bouder

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

20/1

Results

Le Bouder

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

21/1

Results

Statistics about the number of faults necessary to succeed an attack (estimated from 1000 attacks)

statistic	without	with
tool	P1 and P2	P1 and P2
mean	423.07	234.76
standard derivation	63.30	34.08
median	413	231
minimum	313	168
maximum	654	394

Le Bouder

Results Exhaustive search

The results are for 100 attacks with different numbers of faults

Number	Average of number	Median of maximal	Maximum number
of faults	of s-boxes which	number of guesses	of guesses
	are retrieved	to define s-boxes	to totaly
	up to a translation	up to a translation	define s-boxes
120	0.04	$4.549 \cdot 10^{42}$	2 ¹⁷⁴
140	0.89	$9.5105 \cdot 10^{14}$	2 ⁸²
160	2.76	62208	2 ⁴⁷
180	4.53	16	2 ³⁶
200	6.06	8	2 ³⁵
220	6.93	4	2 ³³
240	7,5	0	2 ³²

・ロト ・聞 ト ・ 言 ト ・ 言 ト … 言

FIRE DES Le Bouder

09/26/13

▲口 > ▲圖 > ▲ 国 > ▲ 国 >

S Le Bouder

۲

•

09/26/13

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Bibliographie Bibliographie I

FIRE DES

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

Bibliographie Thank you for your attention

Do you have any questions?

