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We show that the prediction for the primordial tensor power spectrum cannot be modified at leading
order in derivatives. Indeed, one can always set to unity the speed of propagation of gravitational waves
during inflation by a suitable disformal transformation of the metric, while a conformal one can make the
Planck mass time independent. Therefore, the tensor amplitude unambiguously fixes the energy scale of
inflation. Using the effective field theory of inflation, we check that predictions are independent
of the choice of frame, as expected. The first corrections to the standard prediction come from two
parity violating operators with three derivatives. Also the correlator hγγγi is standard and only receives
higher derivative corrections. These results hold also in multifield models of inflation and in alternatives to
inflation and make the connection between a (quasi-)scale-invariant tensor spectrum and inflation
completely robust.
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Introduction.—We are entering an exciting period for
primordial gravitational waves, since BICEP2 [1] has
shown that the experimental sensitivity to B modes is
now at the level of an interesting regime for tensors,
provided foreground contamination is under control. The
importance of primordial tensor modes lies in their robust-
ness: while scalar perturbations are sensitive to many
details (the shape of the potential, the speed of propagation
of scalar fluctuations cs, the number of fields and their
conversion to adiabatic perturbations) and can also be
viably produced in noninflationary models, tensor modes
are much more model independent. In this Letter we
strengthen this robustness, showing that one cannot change
the tensor quadratic and cubic action at leading order in
derivatives. Since the inflaton defines a preferred frame, the
time and spatial kinetic term of gravitons can have in
general different time-dependent coefficients. However,
without loss of generality, one can always make the
graviton speed equal to unity by doing a suitable disformal
transformation. A conformal transformation can then
remove any time dependence of the overall normalization
of the action, i.e., the Planck mass, so that the dynamics of
gravitons is completely standard.
Disformal vs Einstein frame.—We work here with the

(single-field) effective field theory of inflation [2,3] and we
will comment on generalizations later. Working in unitary
gauge, where the inflaton perturbations are set to zero, the
speed of gravitons can be changed by the operator
δKμνδKμν, where δKμν is the perturbation of the extrinsic
curvature of the spatial slices, Kμν [3–5]. This kind of
modifications arises when considering higher derivative

operators for the inflaton, such as in Horndeski theories [6].
We are free to subtract δK2, which at quadratic order
contains only scalars. As shown below, the combination
δKμνδKμν − δK2 does not change the sound speed of scalar
fluctuations. Thus, we consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
Pl

2
½R − 2ð _H þ 3H2Þ þ 2 _Hg00

− (1 − c−2T ðtÞ)ðδKμνδKμν − δK2Þ�; ð1Þ
where H ≡ _a=a is the Hubble rate and the first line
describes a minimal slow-roll model [3].
We will use the usual ADM decomposition,

ds2 ¼ −N2dt2 þ hijðNidtþ dxiÞðNjdtþ dxjÞ; ð2Þ
and describe scalar and tensor perturbations as [7]

hij ¼ a2e2ζðeγÞij; γii ¼ 0 ¼ ∂iγij: ð3Þ

In these variables the extrinsic curvature is given by

Kij ¼
1

2N
ð _hij −∇iNj −∇jNiÞ: ð4Þ

The coefficient in the second line of Eq. (1) is chosen such
that the tensor quadratic action reads

Sγγ ¼
M2

Pl

8

Z
d4xa3c−2T

�
_γ2ij − c2T

ð∂kγijÞ2
a2

�
: ð5Þ

The second line of (1) modifies the time kinetic term of
gravitons; the only other way to change tensor modes at
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quadratic order is to modify the spatial kinetic term with the
operator ð3ÞR, the 3D Ricci tensor. The two choices are
related by the Gauss-Codazzi identity,

R ¼ ð3ÞRþ KμνKμν − K2 þ 2∇μðKnμ − nρ∇ρnμÞ; ð6Þ
where nμ is the unit vector perpendicular to the surfaces of
constant time.
The main point of this Letter is that it is possible to set to

1 the speed of propagation of gravitons in action (5) by a
proper redefinition of the metric. Metric transformations
that change the light cone are known as disformal trans-
formations [8], so that we denote the metric used to write
Eq. (1) as the disformal metric. We first perform a disformal
transformation which leaves the spatial metric in unitary
gauge unchanged

gμν ↦ gμν þ ½1 − c2TðtÞ�nμnν: ð7Þ
In terms of the inflaton field ϕ, the new metric reads
gμν ↦ gμν − ð1 − c2TÞ∂μϕ∂νϕ=ð∂ϕÞ2. A similar transfor-
mation was also employed for instance in [9] to set an
action with modified graviton sound speed in the standard
Einstein-frame form. In unitary gauge, this transformation
does not affect Ni and hij while N ↦ cTN. Thus,
Kij ↦ Kij=cT , while ð3ÞR is not changed. In this way
the relative coefficient between the time and the spatial
kinetic term of gravitons can be set to one and combined to
give the 4D Ricci scalar through (6). However, the
normalization of the Einstein-Hilbert term is now non-
standard and given by 1

2
M2

PlR=cTðtÞ. This can be cast in the
standard form by going to the Einstein frame with a
conformal transformation of the metric,

gμν ↦ c−1T ðtÞgμν: ð8Þ
Notice that in doing the disformal and conformal trans-
formations the FLRW line element becomes
d~s2 ¼ c−1T ½−c2Tdt2 þ a2d~x2�. It is thus convenient to
redefine the time coordinate and the scale factor as

~t≡
Z

c1=2T ðtÞdt; ~að~tÞ≡ c−1=2T aðtÞ: ð9Þ

Under this combined set of transformations the compo-
nents of the metric in the Einstein frame read ~g00 ¼ g00

(g00 ¼ −1=N2), ~Ni ¼ c1=2T Ni, and ~hij ¼ c−1T hij. Using
these relations it is straightforward to compute the
Einstein-frame action,

S ¼
Z

d~td3x
ffiffiffiffiffiffi
−~g

p M2
Pl

2

�
~R − 2ð _~H þ 3 ~H2Þ þ 2

_~H ~g00

þ
�
2ð1 − c2TÞ _~H −

3

2
α2 − c2T

�
_αþ ~Hαþ 1

2
α2
��

×
�
1 −

ffiffiffiffiffiffiffiffiffiffi
−~g00

q 	
2 þ 2αδ ~Kð1 −

ffiffiffiffiffiffiffiffiffiffi
−~g00

q
Þ


; ð10Þ

where α≡ _cT=cT . Here, and in the action above, time
derivatives are with respect to ~t. The last term in the action
is obtained when using the Gauss-Codazzi identity to
combine 3D quantities to form the 4D Ricci scalar, by
integrating by parts the last term of (6). The first line has the
expected dependence on the background evolution in
Einstein frame, while the rest starts quadratic in the
perturbations. In this frame, the kinetic term of gravitons
is the standard one, given by the Einstein-Hilbert term. If
α ¼ 0 we just have a polynomial in ~g00 þ 1, which
describes an inflationary model with a Lagrangian of the
form P(ϕ; ð∂ϕÞ2).
We stress that in doing disformal and conformal trans-

formations one changes the way other particles are coupled
to the metric; this, however, is immaterial, since it does not
enter in the inflationary predictions.
Frame independence of predictions.—Since the defini-

tion of ζ and γij is the same in the disformal and Einstein
frame, we expect all the inflationary predictions to remain
unchanged, as we are now going to show. We start by
discussing the scalar fluctuations. It is important to note
that in the disformal frame, for significant modifications of
c2T , the coefficient in front of δKμνδKμν − δK2 in action (1)
is of order M2

Pl. Thus, one cannot rely on the decoupling
limit when deriving predictions from this action.
As anticipated above, the operator in the second line of

Eq. (1) does not contribute to scalar fluctuations up to
quadratic order. Indeed, to fixN we need the solution of the
momentum constraint, which is the same as in the standard
cT ¼ 1 case, i.e., N ¼ 1þ _ζ=H [7] [use, for instance,
Eq. (74) of [10]]. Thus, from Eq. (4) the scalar contribu-
tions toKij fromN and _hij cancel and we are left with those
coming from Ni which, in the combination that appears in
Eq. (1), only give a total derivative. Thus, the scalar sound
speed in the disformal frame is cs ¼ 1.
Since in the Einstein frame tensor modes propagate on

the light cone, we expect the scalar speed of propagation to
be ~cs ¼ 1=cT . For a constant cT (α ¼ 0), this can be easily
seen from the first term on the second line of action (10).
Indeed, introducing the scalar Goldstone boson ~π associ-
ated with the breaking of time-diff invariance by the time
transformation ~t ↦ ~tþ ~πð~t; ~xÞ, and expanding up to cubic
order in the decoupling limit, the action becomes

L ¼ ~a3M2
Plj _~Hjc2T

�
_~π2 − c−2T

ð∂i ~πÞ2
~a2

− ð1 − c−2T Þ _~π ð∂i ~πÞ2
~a2

�
:

ð11Þ

One can verify that ~cs ¼ 1=cT , as expected, also when
α ≠ 0 [use, e.g., Eq. (69) of [11]].
Let us now check that the spectrum of gravitational

waves is the same when computed in either frame. For the
quadratic action (5), scale invariance is obtained for
ac−1=2T

R ðcT=aÞdt≃ const (we do not assume cT slowly
varying, see [12]). Perturbations evolve with an effective
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scale factor ac−1=2T so that the gravitational wave spectrum
becomes

hγs~kγ
s0
~k0
i ¼ ð2πÞ3δð~kþ ~k0Þ 1

2k3
ðH − α=2Þ2

M2
PlcT

δss0 : ð12Þ

(The polarization tensors ϵsij are normalized as ϵsijϵ
s0
ij ¼

4δss0 where s, s0 denote the helicity states.) Using Eq. (9),
the Einstein frame Hubble rate is ~H ¼ c−1=2T ðH − α=2Þ,
implying that Eq. (12) is simply the standard spectrum for
gravitational waves with unit sound speed in Einstein
frame. It is straightforward to verify, using again Eq. (9),
that also the scalar power spectrum is the same in both
frames.
Given that the relation between the two frames does not

involve the spatial coordinates, also the tilt of the tensor and
scalar power spectra remains the same. For tensors, this is

given by the usual formula nT ¼ 2
_~H= ~H2. In the disformal

frame, it is possible to obtain a blue tilt by a time varying
cT , keeping _H < 0. In this case one does not violate the null
energy condition (NEC) and, indeed, there is no sign of
instability. It is interesting to see how this translates in the

Einstein frame where a blue tilt requires _~H > 0. One can
check that the usual gradient instability associated with the
violation of the NEC is cured by the last term of action (10),
as showed in [2]. For example, this operator arises in
Galileon models that violate the NEC [13].
We conclude that there is no loss of generality in

assuming that gravitons have a standard kinetic term. In
particular, this implies that the amplitude of tensor modes is
fixed by the vacuum energy of inflation and that a blue

spectrum of gravitational waves, nT > 0, requires _~H > 0,
i.e., a violation of the NEC in Einstein frame. Moreover, the
observation of an approximately scale-invariant tensor
spectrum would imply an approximately time-independent
~H. While one can make a scale-invariant scalar power
spectrum playing with a variable speed of sound cs and
equation of state ϵ≡ − _H=H2 [12], tensors are absolutely
robust and sensitive only to ~H. It is worthwhile to stress that
these conclusions do not change if we consider multifield
models of inflation, or even alternatives to inflation.
However, our conclusions do not apply to cases with a
different symmetry structure, like solid inflation [14] (in

this case one can have nT > 0 with _~H < 0) or gauge
flation [15], or when tensors are produced not as vacuum
fluctuations [16].
Non-Gaussianity.—We now show the equivalence

between the two frames beyond linear order, taking cT
time independent for simplicity. We saw that in Einstein
frame the scalar has a nontrivial sound speed ~cs ¼ 1=cT .
This implies a cubic interaction ∝ ð1 − ~c−2s Þ, as in Eq. (11).
In the disformal frame this is not obvious, since the second
line of action (1) does not contribute to the action of π in the

decoupling limit. However, as mentioned above, one
cannot rely on this limit, but has to solve the constraints.
The linear Hamiltonian constraint fixes the scalar part of
the shift. Crucially, this gets rescaled by a factor c2T with
respect to the standard case [use Eq. (75) of [10]],

ψ ≡ ∂−2∂iNi ¼ −c2T
ζ

a2H
þ χ; ∂2χ ¼ ϵc2T _ζ: ð13Þ

Using this solution, after several manipulations and inte-
gration by parts, one obtains that the leading interaction in
the slow-roll limit, up to field redefinitions which die out on
super-Hubble scales, is

Lζζζ ¼ aϵð1 − c2TÞ
_ζ

H
ð∂iζÞ2; ð14Þ

which yields fNL ∼ 1 − c2T ¼ 1 − ~c−2s .
Let us now discuss cubic interactions involving grav-

itons. As already noticed in [17], the second line of Eq. (1)
does not contain cubic graviton vertices. Therefore, in both
frames hγγγi coincides with the minimal slow-roll result of
[7]. To study interactions involving two gravitons and one
scalar we need to expand the action to cubic order and plug
in the linear solutions to the constraints, i.e., N ¼ 1þ _ζ=H
and Eq. (13). After some manipulations and integrations by
parts (see [7]) one obtains, at leading order in slow roll,

Lγγζ ¼
M2

Pl

8
a3c−2T

�
ϵζ

�
_γ2ij þ c2T

ð∂γijÞ2
a2

�
− 2_γij∂γij∂χ

�
:

ð15Þ
In the Einstein frame the cubic interaction is standard [see
Eq. (3.17) of [7]] except for a factor of c2T in the solution for
χ due to the scalar speed of sound [see Eq. (4.9) of [18]].
Taking into account Eq. (9) and the different wave
functions, one can check that hγγζi computed in the two
frames coincide. This correlator goes as hγγζi ∼ ϵhζζihγγi,
since the cubic γγζ action is suppressed by ϵζ compared to
the graviton kinetic term. This holds also for the term
including χ in the limit ~cs ≪ 1 since, in the Einstein frame,

Lγγζ

M2
Pl

⊃ _γ∂γ∂χ ∼ ϵ~c−2s _γ∂γ∂−1 _ζ ∼ ϵ_γ∂γ ∂
~H
ζ ∼ ϵ_γ2ζ; ð16Þ

where we used _ζ ∼ ~c2s∂2ζ= ~H. Indeed, given the different
dispersion relation, ζ is already frozen when tensor modes
exit the Hubble radius. This result differs from the one of
[5] obtained in the decoupling limit. Finally, it is straight-
forward to verify that also the prediction for hγζζi is the
same in the two frames and coincides with the minimal
slow-roll model [7].
Quadratic terms with three derivatives.—We have seen

that it is possible, without loss of generality, to cast the
graviton kinetic term in the standard form. From now on we
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assume to be in Einstein frame and we drop the tildes.
Notice that the operators _γ2ij and ð∂lγijÞ2 are the only
quadratic operators with two derivatives. Indeed, one could
imagine a term with one time and one space derivative, in
the parity violating combination εijk∂iγjl _γlk, where εijk is
the totally antisymmetric tensor. However, it is easy to see
that this is a total derivative.
The first possible corrections to the tensor power

spectrum come from terms with three derivatives. The
combinations with an even number of spatial derivatives,
_γij ̈γij and ∂lγij∂l _γij, are total derivatives, so we are left to
consider parity-violating terms with one or three spatial
derivatives. There are two possible combinations,

εijk∂i _γjl _γlk; εijk∂i∂mγjl∂mγlk: ð17Þ

The first term comes from 4
R
d4xε0ijk∇iδKjlδKlk. The

second term comes from the 3D Chern-Simons term,

−4
Z

d4xεijk
�
1

2
3Γp

iq∂j
3Γq

kp þ
1

3
3Γp

iq
3Γq

jr
3Γr

kp

�
; ð18Þ

where 3Γi
jk are the Christoffel symbols of the 3D metric.

The impact of these terms on primordial gravitational
waves has been studied in the context of Horava-
Lifschitz gravity in [19,20]. Parity violation in the context
of inflation [21] is usually discussed in terms of the
topological current

Kμ ¼ 2εμαβγ
�
1

2
Γσ
αν∂βΓν

γσ þ
1

3
Γσ
ανΓν

βηΓ
η
γσ

�
; ð19Þ

which satisfies

∂μKμ ¼ 1

4
εμναβRσ

ραβR
ρ
σμν: ð20Þ

It is easy to see that the operator −2
R
d4xK0 gives,

at quadratic order in γ, the linear combination
εijk∂i _γjl _γlk − εijk∂i∂mγjl∂mγlk. Notice, however, that in
general the relative coefficient of the two operators in
Eq. (17) is not fixed by symmetry.
It is easy to study the effect of the two three-derivative

operators on the power spectrum of tensor modes. The
standard quadratic action is modified by the addition of

−
M2

Pl

8

Z
d4x

1

Hη

�
α

Λ
εijk∂iγ

0
jlγ

0
lk þ

β

Λ
εijk∂i∂mγjl∂mγlk

�
;

ð21Þ

where a prime denotes the derivative with respect to the
conformal time η≡ R

dt=a, α and β are dimensionless

coefficients, and Λ is the scale that suppresses these higher
dimension operators. We are going to assume an exact de
Sitter background and take α and β, which could depend on
time, to be approximately constant. In this limit the dilation
isometry of de Sitter guarantees the spectrum to remain
scale invariant also in the presence of the new operators. We
are going to treat the corrections due to these terms
perturbatively, i.e., assume that the energy scale of the
problem, the Hubble scale H, is small compared to Λ. The
action (21) violates parity and induces opposite corrections
to the power spectrum of gravitons with opposite helicities.
Indeed, the polarization tensors ϵ�ij of the two helicities

satisfy iklεjlmϵ�im ¼ �kϵ�j
i . The interaction Hamiltonian

Hint in Fourier space is thus given by

Hint ¼ � M2
Pl

2HΛ

Z
d3k
ð2πÞ3

k
η
½αγ�0

~k
γ�0
−~k

þ βk2γ�~k γ
�
−~k
�: ð22Þ

For the other helicity we would have an overall minus sign.
It is straightforward to study the effect of this term in the
usual in-in formalism [7]. The correction to the power
spectrum is given by

δhγ�~k γ
�
~k0
i ¼ ∓i

Z
η

−∞
d~ηhγ�~k ðηÞγ

�
~k0
ðηÞHintð~ηÞi þ c:c: ð23Þ

In the late-time limit, η → 0, the result does not depend on
α and the power spectrum is modified to

hγ�~k γ
�
~k0
i ¼ ð2πÞ3δð~kþ ~k0Þ H2

2M2
Plk

3

�
1� β

π

2

H
Λ

�
: ð24Þ

The same result was obtained in [22]. For a large back-
ground of tensor modes, r ∼ 0.1, one will be able to
distinguish a 50% difference in the power spectra of the
two helicities [23].
Enhanced graviton non-Gaussianity?—We saw above

that it is not possible, at the lowest derivative level, to
change the predictions for the power spectrum of tensor
modes. We now check that the same happens for the cubic
correlator hγγγi. In pure de Sitter space, i.e., in the absence
of a breaking of time diffs due to the inflaton, this correlator
is strongly constrained by the isometry of de Sitter space, so
that it can be fixed in terms of three constants, without
relying on a derivative expansion [17]. In the presence of
the inflaton one cannot get such a general result, but one
can rely on the derivative expansion: the correlator will be
dominated by operators with the lowest number of deriv-
atives. With three gravitons, the minimum number of
derivatives is two. If they are both w.r.t. time, schematically
_γ _γ γ, one is forced by invariance under time-dependent
spatial diffs to promote _γ to the extrinsic curvature. The
only operator that one can write is thus δKijδKij; as
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discussed before, this operator does not contain a cubic
graviton interaction. It is straightforward to realize that it is
impossible to write an operator with one time and one
spatial derivative: one may include the totally antisym-
metric ε tensor but cannot build an invariant geometric
operator. If the derivatives are both spatial, the operator has
only to do with the 3D geometry. The only scalar that one
can write with two derivatives is the 3D Ricci scalar; we
saw above this term can always be cast in the standard form
inside the 4D Ricci. We conclude that, at the two derivative
level, the correlator hγγγi has always the standard form,
first calculated in [7]. Higher derivative corrections start
with three derivatives; parity violating operators were
discussed above, while parity-conserving ones may have
three time derivatives (e.g., δKijδKjlδKli) or one time
derivative (e.g., δKijδ

ð3ÞR).
It is difficult to reach general conclusions involving

mixed correlators. For example, one can induce an arbi-
trarily large hζγγi with the operators δNδKijδKij and
δNδð3ÞR, though this may be quite unnatural. On the
other hand, the hγζζi correlator comes, in the standard
case, from the tadpole g00; it is thus impossible to enhance
this correlator, unless one relies on higher-derivative
operators.
Conclusions.—We showed that the tensor power-

spectrum formula hγγi ¼ ðH=MPlÞ2=ð2k3Þ, with H and
MPl Einstein frame quantities, is completely general and
only receives (small) higher-derivative corrections. In
particular, the tensor amplitude fixes the energy scale
of inflation. The tilt of the power spectrum cannot be
modified by a time-dependent speed of tensor modes: a
blue tensor tilt requires violation of the NEC in the
Einstein frame.
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