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Abstract. We have observed propagation of Edge Magneto-Plasmon (EMP) modes

in graphene in the Quantum Hall regime by performing picosecond time of flight

measurements between narrow contacts on the perimeter of micrometric exfoliated

graphene. We find the propagation to be chiral with low attenuation and to have a

velocity which is quantized on Hall plateaus. The velocity has two contributions, one

arising from the Hall conductivity and the other from carrier drift along the edge,

which we were able to separate by their different filling factor dependence. The drift

component is found to be slightly less than the Fermi velocity as expected for graphene

dynamics in an abrupt edge potential. The Hall conduction contribution is slower than

expected and indicates a characteristic length in the Coulomb potential from the Hall

charge of about 500 nm. The experiment illustrates how EMP can be coupled to

the electromagnetic field, opening the perspective of GHz to THz chiral plasmonics

applications to devices such as voltage controlled phase shifters, circulators, switches

and compact, tunable ring resonators.
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1. Introduction

Edge magnetoplasmons (EMP) are a set of elementary excitations of edge charge

distribution which propagate along the periphery of 2-dimensional systems of charge

in magnetic field. They arise by the action of the Lorentz force in accumulating charge

against the constraining wall of the sample edge and can be thought of as a dynamic

manifestation of the Hall effect, the symmetry properties of which are reflected in the

chirality of propagation of the EMP. Their propagation velocity is a function of the Hall

conductivity and of properties specific to the type of edge and particle dynamics. They

have been observed in both classical[1, 2, 3] and quantum[4, 5, 6, 7, 8, 9] systems with

inertial dynamics and soft electrostatic edges and are usefully reviewed in reference[10].

It is of fundamental interest to observe them in graphene which has non-inertial, ultra-

relativistic type dynamics and a hard edge, both from the point of view of the excitations

themselves and of the light they can shed on graphene. They show promise too of forming

the basis of chiral plasmonics.

Graphene is a monatomic layer of sp2 bonded carbon atoms which form a two

dimensional planar honeycomb array. Its electron dynamics is determined by the

linear crossings of the band energies at two degenerate but inequivalent points K and

K ′ on the Brillouin zone edge which set the Fermi level for global charge neutrality

[11]. The linear dispersion around these points indicates constant speed (magnitude

of velocity) ultra relativistic-like massless dispersion. Neutrality can be broken by

capacitive charge transfer to explore a reciprocal space Fermi circle on either side

of the crossing points. Although the remarkable through-transport properties of this

system have been much studied, particularly in the Quantum Hall Effect (QHE) regime

that led to the positive identification of single layer graphene [12, 13], few experiments

have as yet explored the low energy collective excitation spectrum. Monochromatic

laser source experiments [14, 15] have probed the wavelength of room temperature

zero-field plasmons by observing the interference pattern between a point excitation

source and reflection from a line boundary. Broadband far infrared experiments[16]

on periodic strips of graphene have given independent information on density and

wavevector dependence of room temperature zero field plasmon absorptions. Other

infrared experiments show the spectral behaviour in magnetic field of an array of

dots [17] and the field dependence of the absorption lines for a continuous sheet of

graphene in the presence of substrate disorder [18]. The latter two works revealed modes

decreasing in frequency with magnetic field in accordance with an evolution towards a

low frequency, possibly edge localised mode as observed in conventional 2D electronic

systems (2DES) with Newtonian dynamics.

The present work investigates directly how an electrical perturbation applied on the

edge of an exfoliated sample of graphene in the QHE regime is transmitted to a local

probe placed further along the edge. The electrical perturbation, set up by a fast voltage

pulse, creates an EMP wavepacket of edge charge whose time of flight to another edge

electrode is recorded. The technique[9] enables an immediate demonstration of chirality
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and edge propagation, a measurement of the propagation velocity and an estimate of

attenuation. The experiment reveals a branch of low frequency gapless modes which

propagate unidirectionally around the edge with exceptionally low loss at a velocity

which is the sum of single particle drift and Hall conductance whose sign (product of

charge and applied magnetic field direction) determines the chirality. It is a good tool

for investigating the nature of the edge and shows promise of opening up a new branch

of chiral plasmonics with several foreseeable applications for the manipulation of radio

to infrared electromagnetic waves.

First results of this work have been reported in reference[19] and similar work has

been reported very recently on edge mode propagation in larger samples at slower time

scales in graphene formed on silicon carbide[20].

2. Experiment

2.1. Principle

The core idea of the experiment is to investigate the propagation of an electrical

perturbation between two points on the edge of an exfoliated graphene sample. We

measured the time of flight of a 7 ps rise time voltage pulse applied to a ∼ 2 × 2

µm2 electrode on the sample edge to a similar electrode placed about 1/3 the way

around the ∼ 40 µm perimeter as indicated in Figure 1. Although considerably faster

and on a smaller sample, the technique is similar to the pulsed EMP experiment on

conventional 2DES [9]. The spatial and temporal definition of the pulse sets up a

wavepacket superposition of charge density which propagates out from the source and

can be detected by the remote detector as the density waves arrive. The arrival time,

spread and amplitude of the signal give information on propagation path, dispersion

and scattering of the excitations. We interpret the results of the experiment in terms of

edge propagating density waves in the Coulomb interacting plasma of excess charge.

2.2. Fabrication

We fabricated the sample by mechanically exfoliating graphene from natural graphite

onto a thermally grown 290 nm silicon-oxide surface of a high resistivity Si wafer (8 kΩ-

cm at 300 K). The high resistivity avoids microwave loss and the oxide film facilitates

visual identification of single layer graphene[21]. Identification and sample quality were

confirmed by micro-Raman spectroscopy which indicated low disorder by the relative

areas of the 2700 cm−1 and 1600 cm−1 Raman peaks[22]. Spuriously deposited graphite,

a possible source of unwanted signal and electrical short circuiting, was removed by

oxygen plasma etching using a bilayer of PMMA (PolyMethylMethAcrylate) and e-beam

polymerised HSQ (Hydrogen SilsesQuioxane) as an etching mask (see Fig. 2). After

liftoff only graphene remained on the wafer onto which were then patterned broadband

(50 GHz) tapered Ti/Au coplanar waveguides (CPW) by standard e-beam lithography.

The extremities of the CPW centre conductors contact the sample edge over a 2×2 µm2
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Figure 1. Schematic diagram of the experimental principle. A fast step excitation

voltage pulse is applied through the left hand ohmic contact to create a wavepacket

of the excitation, the spatial form of which is illustrated in the middle (red) sketch.

Upon arrival at the capacitive receiver contact a time s0/v later, where s0 is the path

length and v the propagation velocity, it is differentiated to give the temporal form

sketched on the right. The propagation path is represented by the red arrow along the

sample boundary. The gold coloured strips overlapping the edge of the sample by about

2 µm represent the extremities of tapered coplanar 50 GHz bandwidth transmission

lines. Only that part of the signal which is modulated by the sample density variation

imposed by VMOD of the figure is retained in order to eliminate effects of cross talk

between transmission lines.

area, one resistively and the other capacitively. A sample photo and further fabrication

details are given elsewhere[19]. The resulting 3× 3 mm2 sample “flip-chip” is mounted

face down on a sample holder (see Figure 3) on which the CPWs are continued to mini-

SMP strip-to-coaxial microwave connectors to join the vertical coaxial transmission lines

which exit the cryostat insert. Elasticity of the flip-chip to sample holder contacts was

carefully engineered to ensure flatness and good electrical connection across the entire

CPW (left, right and centre) when pressed into place. Soldering was avoided entirely

because the subsequent annealing of the graphene at 150◦C for several hours would have

risked melting the solder and contaminating the sample.

The sample holder, shown in Figure 3, was designed using CST Microwave Studio

(3D Maxwell equation solver) and fabricated on a high dielectric constant ceramic wafer

Rogers TMM10 with copper ground and top planes joined by a set of densely spaced

vertical interconnection via holes and thin enough not to support transverse standing

modes over the 50 GHz frequency band. The assembly was mounted in vacuum in a

cryogenic insert which fits into the liquid helium filled bore of a 19 T magnet at 2.2 K.

2.3. Experimental Procedure

We conducted time domain measurements using a Tektronix DSA8200 digital serial

analyzer and sampling oscilloscope with time-domain reflectometry (TDR) 80E10
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Figure 2. Removal of graphite from the sample. Panels from left to right: a bilayer of

PMMA and HSQ is deposited, e-beam lithography on the positive resist HSQ defines

the etching mask, oxygen plasma etching of graphite, liftoff.

Figure 3. Sample holder showing coplanar waveguide with the 50GHz bandpass

designed for the experiment. The flip chip with graphene is placed over the hole in the

bottom right hand corner.

(50GHz bandwidth) and 80E08 (30GHz bandwidth) modules in transmission mode. A

7ps (80E10)/11ps (80E08) rise time voltage step was injected into one side of the circuit

and the response voltage measured at the other as a function of time. A low frequency

(1Hz) square wave voltage is added at the ohmic input via a bias tee in order to modulate

the density on the edge with the aim of separating out the density sensistive graphene

signal from crosstalk. For each excursion of the modulation the signal is averaged over

a maximum of pulse injections (∼ 103) and the resulting picosecond files subtracted to

demodulate and thereby retain only that part which is sensitive to variation in edge

density of the sample. The procedure for extracting arrival times from the demodulated

signal is described below.

2.4. Results

The absolute signal arrival time includes the travel time through the transmission lines

and therefore it is necessary to determine the zero time, i.e. the moment the excitation
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signal reaches the sample, in order to extract the time of flight. We set the zero by the

arrival time for zero field, supposing it to originate in the surface propagation of the

fast surface plasmon mode, as there is nothing to impose chirality and the surface mode

propagation time is of the order of 1ps, which is comparable with our time resolution.

Figure 4. Transmitted voltage as function of time and magnetic field. Left: colour

plot of signal amplitude. Right: traces for several field values, corresponding to the

integer filling factors ν = 2, 6, 10,∞ [19]

.

We employ the fitting procedure described below to extract the signal propagation

times for the longer and shorter paths as a function of field and we find that they scale

as the path lengths (see Figures 4,5). Taken together with the absence of a simultaneous

counter-propagating signal, the scaling shows clearly the unique chirality of the modes.

The propagation time is a non linear function of field and exhibits a plateau-like

structure (see Figure 5) which we attribute to the onset of the quantum Hall effect. We

are able to identify the ν = 2 and ν = 6 plateaus and although we were unable to make

DC transport measurements on this sample to confirm the plateau sequence, we have

done so on similarly fabricated samples which all show the characteristic onset of a very

wide ν = 2 plateau characteristic of graphene. Since the ν = 6 plateau is narrow and

centered on 6T we infer the centre of the ν = 2 plateau to be at 18 T and tentatively

pick out the ν = 10 to be at 3.6 T although clear identification of this latter plateau is

lacking. A seemingly anomalous feature is the dip at 8 T in the propagation times for

the shorter path only. We were unable to ascertain the origin of this dip.

Arrival times are extracted from the demodulated signal by a functional fitting

procedure. A typical measured modulated voltage as function of time is given in

Figure 6 in black. The excitation step voltage is not an ideal Heaviside function
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Figure 5. Left: Propagation time as function of field. Right: Propagation velocity as

function of field[19].

Figure 6. Example of functional fit for extracting arrival time. The experimental

signal in black is fitted to a weighted sum of first (dashed blue) and second (dashed

pink) derivatives of a Fermi function representing modulation of attenuation and

velocity respectively. The blue filled dot indicates the arrival time. See text.

but has exponentially rounded corners which are well represented by a Fermi function

f(t) = (expα(t − t0) + 1)−1, where α is a parameter set by the rise time and t0 the

position of the step. We suppose this to set up an EMP wavepacket of the same shape

which propagates as sketched in red in Figure 1, later times appearing closer to the

injection point. When this wavepacket arrives at the receiver electrode it is transformed

into a time domain signal which is differentiated by the RC of the capacitive contact.

The slow uniform modulation of edge density has a twofold effect: it can modulate

the amplitude of the wavepacket, which does not change its arrival time, and it can

modulate its propagation velocity which changes its arrival time, but not its amplitude.

Taking account of the additional RC differentiation, the attenuation action gives rise to a
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symmetric first derivative and the velocity action to an antisymmetric second derivative

in the demodulated signal (supposing the action of each to be linear in modulation

voltage). The relative contributions of the two effects can differ in different conditions,

but the arrival time is common to both. We therefore fit each demodulated signal

individually to a weighted sum of first and second derivatives of a Fermi function with

a common arrival time as shown in Figure 6 where an experimental signal is shown in

black and the two derivative components in dashed blue and pink, their sum being the

fit in red. The arrival time is represented by the blue dot. Modulation acts differently

on and off a plateau since the relative contributions of attenuation and propagation

velocity vary, resulting in a change of shape with field.

The relative amplitude of the signal along the longer and shorter paths informs us

on attenuation over the difference in path lengths and we are able to estimate roughly

an attenuation length of 70 ± 30 µm corresponding to a relaxation time of 50 ± 20

ps, three orders of magnitude longer than the Drude relaxation time relevant for the

damping of surface plasmons as deduced from the DC mobility µ = eτ/m∗ → evF
h̄kF

τ [23]

measured on similar samples (see below for origin of effective inertial mass m∗).

2.5. Summary

The experiment has shown that:

(i) The perturbation is transmitted from one contact to the other with a time delay

that is proportional to the perimeter path length, the shorter or longer path being

chosen by the sign of the applied perpendicular magnetic field. There is no evidence for

simultaneous propagation along both. This establishes chirality and edge propagation.

(ii) The time of flight is a function of magnetic field and shows quantisation on QHE

plateaus. This identifies the excitation to be associated with the QHE.

(iii) The shorter path length gives a larger signal amplitude. This enables us to estimate

the attenuation length of the wave by comparing the relative signal amplitudes for left

and right paths.

The ensemble of data features is well described in terms of edge magnetoplasmons.

3. Plasmons

3.1. Surface plasmons

It is helpful to situate the edge magnetoplasmons in the more general context of

plasmons. Plasmons are propagating charge density waves whose restoring force arises

from Coulomb interaction. The Fourier transform E
(D)
k ∼ k(2−d)n

(D)
k in dimension

D = d of the Coulomb field from charge density variation n
(D)
k cosk.r is the root of

the dimension sensitive frequency-wavevector dispersion: finite dispersionless frequency

in 3-, square root in 2- and linear in 1-dimension. Graphene has two-dimensional ultra-

relativistic type dynamics according to which a force cannot change the magnitude vF
but only the orientation θ of the velocity which is always aligned with the particle



Edge magnetoplasmons in graphene 9

momentum. The momentum p is tilted by δθ ∼ Fdt/p by the action of a force

F for a time dt leading to a change in velocity dv ∼ vF δθ ∼ (vF/p)Fdt which,

somewhat paradoxically, behaves like an effective inertial mass m∗ ∼ pF/vF . Although

this does not change the wavevector dependence, ω ∼ k1/2, the appearance of the

density dependent Fermi momentum kF =
√
πns does alter the density dependence

from ω ∼
√
nsk for inertial 2DES dynamics to ω ∼

√

n
1/2
s k and in practice scales the

dispersion to much higher frequency. A fuller, quantum description can be found in

reference[24].

We attribute the arrival time at zero field in Figure 5 to surface plasmon propagation

whose group velocity diverges as k−1/2.

3.2. Edge plasmons

In perpendicular magnetic field the dynamics is dominated by mass independent Lorentz

force drift, as in conventional 2D electron systems (2DES), because fundamentally it

only depends on the Lorentz transformation to the electron velocity frame. We can

therefore transfer to graphene much of the insight gained from the study of inertial

2DES. As observed in those systems, upon applying a magnetic field perpendicular to the

graphene the longitudinal plasmon modes split into frequency increasing and frequency

decreasing branches. While for the former the wave amplitude remains spread over the

whole interior of the sample, for the latter it progressively confines itself to the sample

boundary. This is the creation of the edge magneto-plasmon (EMP) mode with which

we identify the observed propagation of edge charge.

This low frequency gapless (ω → 0 as q → 0) mode is a quasi one dimensional

charge density wave propagating around the edge of the electron pool. In a classical

description[1, 2, 10, 25] an EMP wave propagates by depositing charge on the edge by

virtue of internal drift currents set up by the field of its own periodic edge charge

distribution. The particle motion associated with the wave is Lorentz drift in the

superposition of the single particle constraining edge potential and the electrostatic

interaction potential of the edge charge density variation. The velocity vD of the drift of

electrons along the edge potential determines a reference frame for the Hall conduction

propagation, adding to its propagation velocity when seen from the laboratory. The

Hall conductance contribution always dominates the propagation velocity in the usual

semiconductor heterojunction 2DES except in the fractional QHE regime[8] but not, as

we shall see, in graphene. The currents are confined to a depth given by the shorter of

the screening length or the wavelength. They propagate unidirectionally along the edge

with chirality determined by the Lorentz drift, imposing propagation in a direction set

by the sign of the Hall conductance σxy = nsec
B

≡ ν e2

h
if the filling factor is regarded as

carrying the sign of the product of the signs of excess charge and magnetic field. They

propagate at group velocity

vg =
dω

dq
=

2 σxy

ǫeff

(

ln
2

| q|w + C − 1

)

+ vD, (1)
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where ǫeff is the effective dielectric substrate screening constant, q the wave vector,

w a lower cut off length associated with effective penetration of the distribution of

charge accumulated at the edge or by the screening length set by the mobility of the

compressible parts of the 2D gas. C is a density profile sensitive constant of order 1[25].

We associate the higher field (B > 2.5 T) part of Figure 5 with these excitations.

3.3. Electronic structure of the edge

A more detailed analysis of the EMP propagation velocity calls for a model of the edge.

It will situate the relative importance of the single particle and interaction (Hall effect)

contributions and make more explicit the quantum description of EMPs.

Inspired by Halperin’s early work[26] we think of the graphene edge, i.e. the border

of the carbon network, as a wall beyond which the electron wavefunction must vanish. By

virtue of being squeezed between the sample edge and the position set by the wavevector

parallel to the edge (in the Landau gauge), it acquires extra quantum confinement

energy. The electronic edge is then not the sample edge but rather the position at

which the energy of the lowest Landau level crosses the Fermi level. The characteristic

energy for the crossing, h̄vF/ℓB, is reached over a magnetic length ℓB =
√

h̄c/eB (the

width of a wavefunction) from which it is straightforward to estimate vD = cEc/B ∼ vF ,

the electric confinement field Ec representing the slope of the Landau level energy on

approaching the edge. The interaction (QHE) contribution to the velocity at the lowest

integral filling factor ν = 2 is proportional to 2e2/hǫeff and ≈ 7×107 cm s−1, comparable

to the Fermi velocity vF ≈ 108 cm s−1. It is interesting to note that, for conventional

2DES too, vD ∼ vF/ν
1/2, but there vF is set by the average electron spacing rather than

the band crossing slope which is related to the carbon-carbon spacing of the graphene

lattice.

Thus far we have implicitly assumed that the value for the electronic density at

the edge is that associated with the stationary QHE on the grounds that the edge is

also where the transport current flows and the Hall charge accumulates. To link it to

the value in the interior we have to take into account the charge distribution across the

sample which is set principally by electrostatics modified somewhat by the Landau level

structure [27]. In our configuration there is no screening back gate, only a surrounding

ground plate a few micrometres distant by which we electrostatically modulate the

charge density. If we were to think of the sample as a conducting disc of radius R

without nearby screening electrodes, the electrostatic solution for excess charge density

as a function of the radial coordinate r would be n(r) = n0

(1−(r/R)2)1/2
which diverges

at the edge as (R − r)−1/2 as it must on approach to the edge of any unscreened

2D conductor, at least over a distance comparable to that to the nearest screening

electrode. The implicit assumption in this electrostatic result is that the charges are

held in by the edge of the electrode. This is to be contrasted with a depletion edge

commonly met in conventional 2DES where an outside electrode imposes a potential

which would call for a charge deficit at the edge in order for the sample to remain
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everywhere a conductor. Unlike a simple metal, mobile excess charge of a semiconductor

with a gapped electronic band structure, or mobile charge on an insulating substrate,

can be pushed away from the edge leaving a charge depleted insulating strip until the

potential reaches the point where charges from the band on the other side of the gap

can furnish charge of opposite sign (inversion). The general form of the charge density

on approach to a depletion edge, n(r) ∝ (R−r)1/2 is very different. Graphene, however,

has no gap, only a crossing (Dirac) point at which it remains conducting. Evolution

from excess to deficit (hole) charge is continuous as in a metal and there is always a

density divergence on the edge (except for the special point where the edge coincides

with charge neutrality). In magnetic field, the electrostatic solution minimising the

Coulomb energy still globally dominates, but the Landau level structure does modify

the electrostatic density distribution locally on either side of areas of complete Landau

level filling where the addition of a particle requires a Landau level spacing energy. This

gap incompressibility leaves constant density, filled Landau level, narrow strips within

which no screening occurs and the potential varies by the Landau energy gap. They

separate wider, unfilled Landau level, constant potential varying density bands across

the sample, but the smoothed average of the density follows closely the electrostatic

distribution [27, 28]. Quantum Hall plateaus result when the Fermi level lies between

Landau levels in the sample interior and the filled levels emerge from the Fermi sea at

the edge. The EMP modes are carried along these emergence lines as QHE excitations.

3.4. Quantum description of EMP and drift velocity

The quantum description of the EMP wave can now be understood as a propagating

variation in local chemical potential which, according to the QHE, is accompanied by a

periodic Hall current. The spatial variation of the current redistributes the charge along

the edge by shrinking or expanding the electron pool [8]. The local chemical potential

is determined by the combination of the electrostatic interaction and position of the

electronic edge in the the single particle quantum confinement energy of the Landau

level. The result for the velocity in the simple case of a single conduction channel i is

the same as in the semi-classical picture outlined above, v
(i)
D = c

eB

∂W
(i)
LL

∂r
|µ (in terms of

the quantum capacitance per unit length CQi = ∂N ie/L
∂µ/e

= e2 B
Φ0

dri

dµi , v
(i)
D = σ0

CQi for each

channel i, σ0 = e2/h being the conductance quantum). W
(i)
LL = W

(i)
LL(r) is the energy of

the corresponding Landau level and the derivative is evaluated at the equilibrium Fermi

level µ = µF . Charge spread is expected to be of order of the magnetic length ℓB. When

ν ≥ 1, multiple Landau levels emerge through the Fermi level and the question arises of

how to take into account differing drift velocities of multiple channels. If the differences

of drift velocities between channels are small compared with the EMP velocity, the

drift velocity for the EMP mode associated with the ν interacting channels is a simple

average 〈vD〉 = ν−1
ν
∑

i=1
v
(i)
D of the drift velocities at the points where each Landau level

emerges through the equilibrium Fermi level (in the language of quantum capacitance



Edge magnetoplasmons in graphene 12

〈vD〉 = σ0ν
−1

ν
∑

i=1

1
CQi ). The group velocity would then become

vg =
dω

dq
=

2 σxy

ǫeff

(

ln
2

| q|w − γ − 1

)

+ 〈vD〉 (2)

if all the levels are supposed to emerge at the same position. The electrostatic potential

has here been assimilated to that from a circular wire of diameter 2w and γ ≈ 0.577... is

the Euler constant. The degrees of liberty introduced by multiple Landau levels allow for

higher order modes, analogously to the classical system[29, 30]. In the quantum picture

they are described by different weights of chemical potential variation over the multiple

Landau level channels. The EMP mode corresponds to in phase charge oscillations

over all the channels together and constitutes the fastest mode. The higher, multipolar

modes propagate more slowly, approximately at drift velocity little influenced by the

EMP mode. They are however not expected to be excited by our electrodes which are

considerably larger than the magnetic length. The characteristic length in the log of

Equation 2 results from the electrostatic potential of a strip of width w with periodic

charge distribution along its length. w ∼ ℓB in the quantum picture. Equation 2

supposes all the Landau levels to emerge from the Fermi sea at the same location and to

have the same width, but in reality they emerge in groups corresponding to the Landau

level indices. The effect of taking into account the separation between different groups

is to reduce the electrostatic contribution due to the separation. For our situation, the

reduction is estimated to be of order 10% for ν=6 and 20% for ν=10[31].

3.5. Calculation of drift velocities in graphene for a hard wall

Berry and Mondragon solved the Dirac equation with perpendicular magnetic field

considering hard wall confinement of the sample edge which enters into the equation

as an infinite mass term, rather than an infinite electrostatic barrier[32]. They also

formulated the appropriate boundary conditions which for graphene are different for

a zigzag or an armchair edge[33]. We consider a zigzag edge which we believe to be

more appropriate to a random edge obtained by oxygen plasma etching. Following

this approach and along the lines adopted in other papers [34, 35, 36] we calculate

numerically the Landau level energies WLL for graphene for a hard wall and a zigzag

edge as a function of distance to the edge as shown on the left hand panel of Figure 7.

The splitting of levels at the edge corresponds to lifting of valley degeneracy. The right

hand panel shows the spatial derivative of the energies from which the drift velocities

v
(i)
D = 1

h̄

dW
(i)
LL

dk
= c

eB

∂W
(i)
LL

∂r
are deduced by transposing the positions at which the energy

levels cross the Fermi level in Figure 7(a) to the derivative curves in Figure 7(b). The

Fermi level µ for a given filling factor ν is taken to be midway between the Landau levels

of indices N = (ν − 2)/4 and N + 1 far from the edge as appropriate to a QHE. The

drift velocities for the valley split branches are evaluated individually for each quantum

Hall plateau. The results for the positions and individual drift velocities for ν = 2, 6, 10

as well as their averages are recorded in Table 1 together with the measured group
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Table 1. Measured group velocity vg and calculated Hall velocity coefficients v0,

Landau level positions s and drift velocities vD at Fermi level µ = µν .

ν N µ/∆01 vg (108 cm s−1) v0 (108 cm s−1) s/ℓB vD/vF 〈vD/vF 〉

2 0 0.500 1.4± 0.2 0.21 -0.97 0.65 0.65

6 0 1.207 1.8± 0.2 0.64 +0.34 0.83

1 -0.83 0.40 0.55

-1.29 0.42

10 0 1.573 2.5± 0.3 1.07 +0.97 0.87

1 +0.35 0.64

-0.33 0.64 0.56

2 -1.27 0.33

-1.77 0.34

velocities and the Hall effect coefficient v0 =
νσ0

εeff
multiplying the (ln(2/qw)−γ−1) term

of Equation 2. The Landau levels in play for each filling factor ν are labeled by their

indices N and the broken valley degeneracy is shown explicitly whereas spin degeneracy

is not; ∆10 is the energy splitting between the N = 0 and N = 1 Landau levels and

vF ≈ 108 cm s−1.
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Figure 7. (a) Left panel: Landau level energies for graphene in the presence of a hard

wall potential as a function of distance to the edge. (b) Right panel: slope of energies in

panel (a) from which the drift velocity for each channel is evaluated by transposing the

crossing points between the Landau level energies in (a) with the appropriate Fermi

level µν . The example of ν = 2, N = 0 is illustrated by the two black dots. The

velocities are recorded in Table 1.

Table 2 illustrates the different steps in our analysis of the data. The initial step is to
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derive the log term of Equation 2 by fitting vg = βv0+〈vD〉 to the measured velocities vg
at each filling factor upon taking 〈vD〉 from the above calculation. Equation 2 identifies

β with (ln(2/qw) − γ − 1) enabling us to evaluate qw. q is deduced from the pulse

rise time which we assimilate to one side of a Gaussian in time which we convert to a

spatial Gaussian of half width ℓ = vgτ , the Fourier transform of which gives a Gaussian

distribution of half width q = ℓ−1. Given q we go on to evaluate the effective width w.

In the last column of the table we compare w with the magnetic length ℓB =
√

h̄c/eB

at the field of the experiment(ℓB ∼ 25.6 nm for 1 tesla). Because the exponential

is strongly non linear over the range of the experimental error limits, we have given

the asymmetric limits for w on either side of the median value corresponding to the

extremes of the experimental error estimations. The argument of the log term, which

is the ratio of the EMP wavelength/2π to the unspecified effective width w, is expected

to be ≫ 1. As is clearly seen in the table, the slow log dependence in that region has

the consequence that the relative precision in qw is much reduced over the precision in

the measured group velocity (limited primarily by the temporal resolution of our finite

bandwidth setup). From Table 2 we see a window of 200 < w < 700 nm, some 30-50

times the magnetic length ℓB. Even though it scales roughly like ℓB we feel that because

the factor is so large it is probably unconnected.

An alternative method to analyze the data was to keep the product of the edge width

and wave vector qw and the Fermi velocity vF as two fitting parameters. By dividing

Eq. (2) by v0 we obtain vg/v0 = κ + (1/v0)〈vD/vF 〉vF , where κ = ln(2/qw) − γ − 1.

We measure vg, calculate 〈vD/vF 〉 and keep κ(qw) and vF as fitting parameters. In

this case the fit turns out to be rather good in terms of linearity (see Figure 8), but

overestimates the Fermi velocity to 1.7 ∗ 108 cm s−1 and we find qw = 0.1. We have

estimated q = 14µm (ν = 2), 18µm (ν = 6), 25µm (ν = 10) from the spatial width of the

measurement pulse rise time as mentioned previously, and that yields w of the order of

1 µm.

Figure 8. Measured EMP group velocity as function of the calculated drift velocity

for the three filling factors ν = 2, 6, 10. Both quantities are scaled by the filling factor

dependent velocity v0(ν). The slope of this curve is the Fermi velocity vF and the

y-axis intercept is related to the width of the electrostatic edge w, see text.
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Table 2. Parameters extracted from experimental results

ν β 1/qw w(nm) w/ℓB

2 3.6± 0.95 222 > 85 > 33 63 < 160 < 400 10 < 25 < 70

6 1.97± 0.35 25 > 17 > 12 300 < 1000 < 1500 30 < 100 < 150

10 1.87± 0.35 22 > 16 > 11 1000 < 1500 < 2000 70 < 100 < 150

Large w represents slow propagation, slower than expected by a factor of ∼
ln(w/ℓB) ∼ 3.5. Although this may be good news for edge plasmonics (see next

section), it is unsatisfactory for our understanding. The reduced Coulomb interaction

between channels mentioned earlier would only reduce v0 by about 10% for ν=6 and

20% for ν=10. A less fundamental, though technically important possibility is that the

edge formed by the oxygen plasma etch meanders across w ∼ 500 nm on length scales

∼ q−1 over which the electrostatic potential averages. That possibility could be checked

using an imaging technique like atomic force microscopy or alternatively by doing EMP

experiments on well defined regular edges. As concerns the importance of the drift term,

we remark that if it were absent altogether the argument of the log term would have to

change by three orders of magnitude in order to account for the measured change of the

group velocity between filling factors 2 and 10, posing an even greater challenge to our

understanding.

3.6. Chirality and scattering

The Lorentz force dynamics imposes chirality. The low frequency, edge magnetoplasmon

branch is confined to the edge and travels to the left or right according to the sign of

the Hall conductance set by the product of the signs of perpendicular field (up or down)

and excess charge (electrons or holes). The other, high frequency, branch is delocalised

over the sample, has opposite chirality and is gapped by the cyclotron frequency. This

raises questions on when chirality sets in and its effect on the attenuation of the wave.

Guidance can be sought from the classical analysis of a circular sample [2] where opposite

chiralities are labelled by positive and negative azimuthal quantum numbers ±m whose

frequencies are degenerate at zero field where they combine to form a longitudinally

propagating non-chiral surface plasmon mode. One of these states evolves with magnetic

field to localise on the edge while the other remains delocalised over the surface and

participates in the gapped magnetoplasmon branch. Such a pair of states can be mixed

by an electrical potential which breaks the continuous rotational symmetry with a 2m-

polar moment produced by a random set of impurity scattering potentials. We are

therefore led to expect that chirality and confinement to the edge set in properly only

once the magnetic splitting becomes large in comparison with the random potential

created by the impurities. Once it has established its unidirectionality and has become

confined to the edge it has no counter-propagating wave into which it can elastically

scatter since the counter-propagating interior modes all have higher frequencies as long
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as ωplasmon < ωcyclotron. The EMP modes can then no longer be attenuated by energy

conserving back scattering. In contrast, if there were a gapless branch propagating in

the backwards direction strong elastic backscattering off random impurities or roughness

could result. As it is, elastic backscattering can only occur into the opposite edge, but

even that is considerably reduced by virtue of confinement of the EMP to the edge and

the separation between edges.

4. Chiral plasmonics

The chirality, the ease of electrical control and the low attenuation of EMP in graphene

point to interesting applications in the rising field of plasmonics. Three port miniaturised

microwave circulators become possible in the GHz to THz range and particularly flexible

by virtue of the electrical tuning possibility: the propagation velocity can be varied

linearly with gate voltage and even have its chirality reversed in a few picoseconds by

the flip of a switch. This feature also confers the possibility of using the circulator as a

microwave switch between a left or right port and a two port device could be made into

a voltage variable phase shifter. These applications would require a static magnetic field

of a few tesla, but only over the extent of the sample which can be restricted to a few tens

of microns. Inasmuch as the propagation impedance of the wave is the Hall resistance

RH = ν−1h/e2 ≈ 12.5/ν kΩ, however, the problem of impedance matching the device

to external electromagnetic transmission lines would have to be overcome. Nonetheless

EMP based devices would seem to have certain advantages over zero-field plasmon based

devices in the much reduced attenuation and in the linear rather than fourth root gate

voltage dependence of propagation velocity, although impedance matching would be

somewhat easier for surface plasmons in that it can be tuned by varying the width of

the sample rather than the number of Landau channels on the edge.

5. Conclusion

The experiments have demonstrated that edge magneto-plasmons exist on the perimeter

of graphene samples and that they are described by Hall effect dynamics superimposed

on the single particle Lorentz drift perpendicular to the force field created by the

quantum confinement energy of the Landau level upon approach to the sample edge.

The velocity of the drift is found to be close to the Fermi velocity and of the same order

as the Hall conductance contribution to the propagation velocity at the lowest filling

factor ν = 2. They have been shown to be chiral with a relaxation time three orders of

magnitude longer than that of non-chiral, zero magnetic field plasmons. In the quantum

Hall effect regime, the propagation velocity is quantized in the same manner as the Hall

conductance. Both the single particle drift and the Hall contributions are sensitive to

the structure of the edge, a feature of considerable interest for distinguishing zig-zag

from armchair edges when these become available in pure, well defined form. On a more

applied front, these excitations extend the already promising applications of graphene
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for plasmonics to chiral plasmonics for use in wide bandwidth, voltage tunable and

reversible devices such as circulators and phase shifters.
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