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Out-of-plane precession of an in-plane magnetized free layer submitted to the spin-transfer torque
of a perpendicular polarizer: An analytical perturbative approach
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An analytical perturbative approach is presented to calculate the out-of-plane precessional motion of the
magnetization of an in-plane free layer submitted to the spin torque of a perpendicular polarizer in the macrospin
model. We consider the effects of the uniaxial anisotropy field, of an in-plane applied field, and of the perturbation
due to the in-plane reference layer on the otherwise circular and monochromatic oscillations of the free layer.
We calculate the frequency change due to these perturbations, the amplitude of the second harmonics, and the
critical current for the existence of oscillations. This approach is rather general in the treatment of harmonics in
spin torque oscillators.
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I. INTRODUCTION

Spin torque oscillators (STOs) are spintronics nanodevices
that produce radio frequencies in the gigahertz range with a
dc current.1–3 Due to spin-transfer torque, a spin polarized
current flowing through a free magnetized layer is able to
modify its magnetization orientation, producing self-sustained
oscillations of the free-layer magnetization4 that can be
measured through a variation of the giant magnetoresistance
(GMR), for spin valves, or the tunnel magnetoresistance
(TMR) for magnetic tunnel junctions (MTJ). While most
devices take advantage of in-plane precession (IPP) of the free-
layer magnetization,5 recent studies have shown the possibility
of fabricating STOs in which the free-layer magnetization
undergoes out-of-plane precessional motion (OPP).6,7 Such
devices are based on an in-plane magnetized MTJ, comprised
of an in-plane magnetized free layer and an in-plane analyzer
producing a magnetoresistive signal, with the addition of
a perpendicular polarizer. The effect of the spin-transfer
torque (STT) due to the perpendicular polarizer is to pull
the free-layer magnetization out of plane, and due to the
strong demagnetizing field, the free-layer magnetization then
precesses around the direction normal to the plane. One
advantage of the OPP over IPP is the large amplitude of the
OPP oscillations, which gives a larger resistance variation, and
therefore a larger RF output signal.

The most simple macrospin models of an in-plane MTJ
with a perpendicular polarizer take into account only the
demagnetizing field and the spin torque from the perpendicular
polarizer,8,9 as more general models do not seem to be solvable
analytically. Here, we present a perturbative approach that
allows to estimate the effect of the applied field, the anisotropy
field, and the spin torque from the analyzer on the OPP state.
We were able to compute the change in frequency due to these
perturbations and the critical current for the existence of the
OPP steady state submitted to these perturbations.

This approach is different from earlier studies of the
STO dynamics10–12 for which the dynamical steady state was
calculated as a small deviation from the equilibrium state. It
differs also from the planar approximation,13 which applies in
the assumption that the dynamics is almost in-plane. Here, the
dynamical steady state is a deviation from another limit cycle
with a simpler expression.

Summary of results. Let z0 < 1 be the average out-of-plane
angle of the free-layer magnetization, which is proportional to
the applied current I : z0 = h̄

2e

ηPERPI

αμ0M2
s V

. The main results of this
paper are summarized in the table below, where we present
the frequency change from the unperturbed frequency f0, the
amplitude of the second harmonic, and the critical current Ic4,
the lower boundary for the existence of OPP, with respect to
the perturbation due to an in-plane applied field, Hx or Hy ,
due to the in-plane uniaxial anisotropy field Hk , and due to the
STT of the reference layer px :

Hx ,Hy Hk px

(f − f0)/f0 − 1

2z4
0

(Hx/y

MS

)2
− 1

32z4
0

( Hk

MS
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MS

)2

2nd harmonic Hx/y/z
2
0 0 px/z0

Ic4 ∼ · · · α
√

Hx/yMs α
√

HkMs 0

II. MACROSPIN EQUATION AND SOLVABLE CASE

A. LLGS equation

In the system described in Fig. 1(a), the free-layer magne-
tization m is the solution of the following Landau-Lifschitz-
Gilbert-Slonczewski (LLGS) equation in the macrospin ap-
proximation:

dm
dt

= −μ0γ (m × Heff) + α

(
m × dm

dt

)
−μ0γ [m × (m × Mpol)]. (1)

Here, γ is the gyromagnetic ratio, μ0 is the vacuum per-
meability, and α is the Gilbert damping constant. dm

dt is the
time derivative of the free-layer magnetization m. Heff is the
effective field that derives from the magnetic free energy E0,
and Mpol is the spin torque vector:

Heff = − 1

μ0MSV

∂E0

∂m
,

Mpol = −aJ LONGmLONG + aJ PERPmPERP.

MS is the saturation magnetization and V is the volume
of the layer. mLONG (respectively, mPERP) is the unit vector
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FIG. 1. (Color online) (a) Schematics of the in-plane MTJ with
a perpendicular polarizer. The applied field can be in any direction.
(b) Unperturbed trajectory for different current density J : 2, 6, 10, and
14 × 1011 A/m2. (c) Perturbed trajectory for J = 1.5 × 1011 A/m2

and different anisotropy field Hk: 0, 24, and 48 kA/m.

collinear to the magnetization of the longitudinal (respectively,
perpendicular) polarizer. Namely, mLONG = ux and mPERP =
uz. There is a minus sign in front of the term coming from
the longitudinal polarizer because the perpendicular polarizer
is situated above the free layer, whereas the perpendicular
polarizer is below. For i = (LONG , PERP), aJ i is the spin
torque amplitude due to the corresponding polarizing layer. Its
expression is given by14

aJ i = h̄

2e

J

μ0MSt

ηi

1 + λim · mi

,

where t is the free-layer thickness, ηLONG and ηPERP are the spin
polarizations of the polarizing layers, and we call λLONG and
λPERP the spin polarization asymmetries. The spin polarization
asymmetry depends on the nature of the nonmagnetic spacer
layer separating the free layer from the polarizer, it is almost
zero for a tunnel barrier and around 0.5 for a copper spacer.14,15

Equation (1) can be written in a more convenient way, with
γ0 = μ0γ /(1 + α2), as

dm
dt

= −γ0m × Heff − γ0αm × (m × Heff)

+ γ0αm × Mpol − γ0m × (m × Mpol). (2)

For convenience, we introduce P0, which we call the spin
torque potential, given by

P0 = − h̄

2e
JSηLONG

ln(1 + λLONGmLONG · m)

λLONG

+ h̄

2e
JSηPERP

ln(1 + λPERPmPERP · m)

λPERP
.

Here, S is the free-layer area through which the current flows.
The spin torque vector Mpol derives from P0:

Mpol = 1

μ0MSV

∂P0

∂m
.

P0 has the advantage of being coordinate independent, making
the change of variables easier. For λLONG = 0, P0 is defined by
taking the limit when λLONG → 0 and similarly for λPERP = 0.

We also introduce the two scalar functions H and G, which
are base invariant:

H = γ0
E0 + αP0

μ0MSV
, G = γ0

αE0 − P0

μ0MSV
. (3)

Equation (2) becomes

dm
dt

= m × ∇mH + m × (m × ∇mG). (4)

H is equivalent to a Hamiltonian, it is a conservative term,
whereas G is a dissipative term. Without spin torque, H and G
are proportional, their ratio being α, but this simple relation is
not valid anymore when we take into account the spin-transfer
torque.

Using the condensed notation FX = ∂F

∂X
, Eq. (4) simplifies

in spherical coordinates:

mx = sin θ cos φ,

my = sin θ sin φ,

mz = cos θ,

θ̇ = − Hφ

sin θ
− Gθ , φ̇ sin θ = Hθ − Gφ

sin θ
. (5)

In the following, we consider a thin free layer. Its magnetic
free energy is the sum of three contributions, respectively, the
demagnetizing energy, a uniaxial anisotropy energy, and the
Zeeman energy:

E0 = 1
2μ0V M2

Sm2
z + KuV

(
1 − m2

x

) − μ0MSV m · Ha.

Ku is a uniaxial anisotropy energy constant, related to the
uniaxial anisotropy effective field Hk = 2Ku

μ0MS
. The uniax-

ial anisotropy accounts for magnetocrystalline and shape
anisotropy and it favors x-axis orientation, which is the
easy axis of magnetization. Here, the applied field Ha =
(Hx,Hy,Hz) is in an arbitrary direction, with norm Ha .

The two scalar functions defined above, the conservative
H and dissipative G terms, have the following expressions in
spherical coordinates:

H = γ0

[
MS

2
cos2 θ − Hk

2
sin2 θ cos2 φ − Hx sin θ cos φ

−Hy sin θ sin φ − Hz cos θ

+ αpz

λz

ln(1 + λz cos θ ) − αpx

λx

ln(1 + λx sin θ cos φ)

]
,
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G = γ0

[
px

λx

ln(1 + λx sin θ cos φ) − pz

λz

ln(1 + λz cos θ )

+α
MS

2
cos2 θ − α

Hk

2
sin2 θ cos2 φ

−αHx sin θ cos φ − αHy sin θ sin φ − αHz cos θ

]
.

Here, px = h̄
2e

JηLONG

μ0MSt
, pz = h̄

2e

JηPERP

μ0MSt
, λx = λLONG, and λz =

λPERP for compactness. The demagnetizing energy is assumed,
henceforth, to be the dominant term of the magnetic free
energy. In fact, we suppose that MS � Hk,Ha,aJ , which is
generally the case for thin films in nanopillars. Therefore
the dominant term of the conservative part H comes from
the demagnetizing energy MS

2 cos2 θ . The dissipative term G
is smaller compared to the conservative part, by a factor α,
and it is dominated by the spin torque pz cos θ/(1 + λz cos θ )
and the damping of the demagnetizing field α MS

2 cos2 θ . The
uniaxial anisotropy field and the Zeeman field give a smaller
contribution. As shown in Fig. 1(c), changing the anisotropy
field, for instance, does not change much the magnetization
trajectory. In fact, the trajectory of the dynamical system with
a uniaxial anisotropy, an applied field, or an analyzer spin
torque is very close to the trajectory with none of them. Hence
it is reasonable to study first the simplest dynamical system
describing a limit cycle, and then to treat the addition of other
terms as perturbations around this limit cycle.

B. Unperturbed system

In a first attempt to describe the out-of-plane precession
state of the free-layer magnetization with a perpendicular
polarizer, we will consider only the demagnetization energy
MS

2 cos2 θ in the total energy, and only the z component of
the spin torque pz, in the particular case of an MTJ (λz = 0
and P0 = pzmz).8,16 Neglecting other terms, the trajectory
is exactly circular [see Fig. 1(c)], and because they are the
dominant terms, it is a good approximation of the complicated
trajectory including all the terms. In this framework, the
Hamiltonian and dissipative terms have simple expressions:

H = γ0MS

2
cos2 θ + αγ0pz cos θ,

G = α
γ0MS

2
cos2 θ − γ0pz cos θ,

The equation of motion then writes as:

θ̇ = αγ0MS cos θ sin θ − γ0pz sin θ,
(6)

φ̇ sin θ = −γ0MS cos θ sin θ − αγ0pz sin θ.

We set: ω0 = γ0pz

α
and z0 = pz

αMS

.

With the change of variables z = cos θ , Eq. (6) becomes

ż = −αω0(1 − z2)

(
z

z0
− 1

)
,

(7)

φ̇ = −ω0

(
z

z0
+ α2

)
.

This equation can be solved explicitly for the variable
z by separation of variables and using partial fraction

decomposition:

∣∣∣∣ z − z0

zi − z0

∣∣∣∣
∣∣∣∣ (1 + z)(1 − zi)

(1 − z)(1 + zi)

∣∣∣∣
z0/2

√
1 − z2

i

1 − z2
= e−β0ω0t .

Here, zi and φi are the initial out-of-plane magnetization
and in-plane phase. The initial time is taken to be zero. We set
β0 = α(1 − z2

0)/z0, with the inverse relaxation time β0ω0 =
αMSγ0(1 − z2

0) always positive. As the left-hand side tends
towards zero when time tends to infinity, the right-hand side
must also tend towards zero. Except for the degenerate case
of zi = ±1, this condition means that z → z0 for long-term
time. Therefore after a certain time, the condition |z − z0| � 1
will be fulfilled, and we can derive an approximation for the
out-of-plane magnetization z and the phase φ:

z − z0 = (zi − z0)e−β0ω0t ,
(8)

φ − φi = −ω0(1 + α2)t + zi − z0

z0β0
(e−β0ω0t − 1).

Equation (8) describes the unperturbed out-of-plane preces-
sion of the magnetization. In permanent regime, the precession
is characterized by a constant out-of-plane magnetization
mz = z0 and a constant frequency f0, which is proportional
to the applied current J 9 [see Fig. 1(b)]:

f0 = ω0(1 + α2)

2π
= γh̄ηPERP

4πeαMSt
J. (9)

This trajectory is in fact an attractive limit-cycle of the
dynamical system described by Eq. (7). In the general case,
the study of limit-cycle stability requires to define a Poincaré
map but in the present case, where the geometrical space is
two dimensional, one can directly extract the eigenvalue of the
linearized Poincaré map, also known as multiplier μ1:

μ1 = exp

{∫ T

0
div F[x0(t)]dt

}
, (10)

where T is the period of the limit cycle, F(x) is the vector
field of the dynamical system ẋ = F(x), and x0(t) is a
parameterization of the limit cycle. Expressed in spherical
coordinates, Eq. (10) can be simplified with the expression of
the vector field taken from the left-hand side of Eq. (5):

μ1 = exp

{
−

∫ T

0

[
cot θ Gθ (x0(t))

+Gθθ (x0(t)) + Gφφ(x0(t))
sin2 θ

]
dt

}
. (11)

Notice that only the dissipative term appears in this
expression. In the simplified case of Eq. (7), the time-
parameterized spherical equation of the limit cycle is x0(t) =
[θ0, − ω0(1 + α2)t] (z0 = cos θ0). The expression of div F
is then −γ0pz

1+2z0 cos θ−3 cos2 θ

z0
and the period T = 1/f0 =

2π
ω0(1+α2) . The multiplier of the Poincaré map is then μ1 =
exp(− 2πβ0

1+α2 ). The multiplier is the relaxation rate towards the
limit cycle from a state slightly deviated, for instance, by
thermal fluctuations.16 Because μ1 is less than unity in absolute
value, the limit cycle is hyperbolically stable.

054425-3



LACOSTE, BUDA-PREJBEANU, EBELS, AND DIENY PHYSICAL REVIEW B 88, 054425 (2013)

C. High-symmetry system

In addition to the previous simple case, we can add some
terms that present the same symmetry as the unperturbed
equation, as treated in previous papers.8,16 We consider terms
that are independent of the in-plane angle φ: the spin torque
amplitude is angle dependent (λz �= 0) and there is an out-of-
plane applied field Hz. The out-of-plane applied can describe
the stray field created by the perpendicular polarizer, or an
external applied field. Eq. (5) is then

θ̇ = αγ0MS cos θ sin θ − γ0pz sin θ

1 + λz cos θ
− αγ0Hz sin θ,

(12)

φ̇ sin θ = −γ0MS cos θ sin θ − αγ0pz sin θ

1 + λz cos θ
+ γ0Hz sin θ.

As for the unperturbed system, the vector field is only θ -
dependent, hence we can solve analytically the system. We
expect to find at least one limit cycle, so we directly look for
the permanent regime solution, with a constant angle θ . By
changing the variables z = cos θ and using the parameters ω0,
z0, and νz = γ0Hz/ω0, one can directly find the (nontrivial)
solutions (z+,z−) of ż = 0:

z± = −1 − λzz0νz

2λz

± 1

2λz

√
(1 + λzz0νz)2 + 4λzz0.

The positive solution z+ tends toward z0 when the parameters
λ and νz tend toward zero: it is the perturbed solution. As
we are interested here in solutions with a small out-of-plane
magnetization z for application in precessional switching, we
will focus only on the z+ solution. Notice that z− does not
always exist (if |z−| > 1 for instance), and when it does, it does
not always describe an attractive limit cycle. With the constant
out-of-plane magnetization z+, the frequency of the precession
is also changed compared to the unperturbed frequency f0 =
ω0(1 + α2)/2π :

f = f0

1 + λzz+
.

For a small λz parameter, we obtain the approximation by
Taylor expansion f = f0[1 − λzz0(1 + νz)]. See Fig. 2 for
comparison of the analytical expression of the frequency with
λ �= 0 and numerical simulations.

The high-symmetry system is not of real interest for
applications in precessional switching, as an important pa-
rameter is omitted, the uniaxial anisotropy. However, since the
approximation at order 1 is close to the exact solution, this
gives credit to this approach and encourages the investigation
of other additional perturbative terms.

The stability of the out-of-plane precession state (OPP)
is insured by the condition μ1 < 1. It also means that if
LLGS (6) is slightly modified, for instance, by adding the
term associated with a uniaxial anisotropy, the OPP state
will remain a limit cycle, for small enough perturbations.16

In the following section, we will start from Eq. (6), henceforth
called the unperturbed case, and study the general case with
the general assumption that the solutions are very close to
the unperturbed case. The unperturbed dynamical system will
be modified by perturbations, namely, uniaxial anisotropy
field, applied field, and longitudinal polarizer.

FIG. 2. (Color online) Oscillation frequency vs applied current
density J . Comparison between macrospin simulation with λz = 0.5
(red full line) and analytical expressions at order 0 in λz (green
dotted line) and order 1 (blue dashed line). The other simulation
parameters are α = 0.02, MS = 1.2 × 106 A/m, ηPERP = 0.6, t =
3 nm, and Hz = 0.

III. PERTURBATION THEORY

A. Uniaxial anisotropy

Compared to the previous case, including the uniaxial
anisotropy term in Eq. (5) makes the vector field not only
θ -dependent but also φ-dependent. Exact analytical solutions
are then much more difficult to obtain, so we use a perturbative
approach to approximate the solution,17 using a Lindstedt’s
expansion.18 When a periodic dynamical system is perturbed,
the perturbated solution will also be periodic, by continuity.
The perturbated solution is approximated by a generalized
asymptotic expansion that preserves the periodicity of the
solution, the Lindstedt’s series for which the frequency is
also expanded with respect to the perturbation parameter
ε. The only assumption on the perturbation parameter is
that it is small compared to the nonperturbated frequency,
hence the equations are normalized to the frequency. Thus
the approximation error is of order O(ε) on a time scale of
O(1/ε), which is sufficient if the functions are periodic with a
normalized period of 1.

On top of the uniaxial anisotropy perturbation, all the
following cases will also be solved using this approach. From
the unperturbed Eq. (6), we add the uniaxial anisotropy term:

θ̇ = γ0

[
αMS cos θ sin θ − pz sin θ − Hk

2
sin θ sin(2φ)

+α
Hk

2
sin θ cos θ (1 + cos(2φ))

]
,

φ̇ sin θ = γ0

[
− MS cos θ sin θ − α

Hk

2
sin θ sin(2φ)

−αpz sin θ − Hk

2
sin θ cos θ (1 + cos(2φ))

]
. (13)

We use again the notation ω0, z0, and ε defined below. For
clarity, the time variable is changed to τ :

ε = α

1 + α2

Hk

2pz

, τ = ω0(1 + α2)t.
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The time derivative Ẋ is also changed to X′, which means
a derivative with respect to τ . We define r0 =

√
1 − z2

0 and
β = αr2

0 /[z0(1 + α2)]. As α � 1, the parameter β is very
close to β0 previously defined. For convenience, we use the
functions

gθ (θ ) = α

1 + α2
sin θ

(
cos θ

z0
− 1

)
,

(14)

hφ(θ ) = −cos θ + z0α
2

z0(1 + α2)
sin θ.

We also define two perturbation functions, which in the case
of the uniaxial anisotropy have the following form:

f ε
θ (θ,φ) = − sin θ sin(2φ) + α sin θ cos θ (1 + cos(2φ)),

f ε
φ (θ,φ) = − sin θ cos θ (1 + cos(2φ)) − α sin θ sin(2φ).

(15)

Hence Eq. (13) takes the simplified form

θ ′ = gθ (θ ) + εf ε
θ (θ,φ),

(16)
φ′ sin θ = hφ(θ ) + εf ε

φ (θ,φ).

To solve this system, the following assumptions are made:
(i) ε � 1 (see Appendix) and (ii) the functions θ (τ ) and φ(τ ),
solutions of Eq. (16), are written as a power series of the
parameter ε. In the framework of the Lindstedt’s series, we
also consider that the period of the limit cycle can be written
as a power series of ε, to get rid of the secular terms. In fact,
we change the time variable τ ′ = ωτ . Hence ω, θ , and φ will
be written (up to the second order) as

θ = θ0 + εθ1 + ε2θ2 + . . . ,

φ = φ0 + εφ1 + ε2φ2 + . . . , (17)

ω = 1 + εf1 + ε2f2 + . . . .

The development of the calculations is made in Appendix.
For the uniaxial anisotropy, we find the trajectory equations
up to first order:

θ0(τ ′) = arccos(z0), φ0(τ ′) = −τ ′,{
θ1(τ ′) = a0 + a2 cos(2τ ′) + b2 sin(2τ ′),

φ1(τ ′) = c2 cos(2τ ′) + d2 sin(2τ ′),
(18)

with the coefficients defined by:

a0 = (1 + α2)z2
0

/
r0,

a2 = r0

4 + β2
(αβz0 − 2),

b2 = r0

4 + β2
(2αz0 + β),

c2 = − (1 + α2)β2/2 + αβz0 + 2α2

α(4 + β2)
,

d2 = − 2αz0 + β

α(4 + β2)
.

The frequency f of the periodic orbit is changed only at
the second order in the parameter ε:

f1 = 0, f2 ≈ − 1 + 4z2
0

8z2
0 + 2α2

. (19)

FIG. 3. (Color online) Macrospin simulation (red full line) and
analytical expression at first order in ε (green dashed line). (a) and
(b) Out-of plane component of the magnetization mz vs time, with
applied current density of Japp = 2 × 1011 A/m2 (z0 = 0.13) and with
(a) Hk = 24 kA/m (ε = 0.05) and (b) Hk = 48 kA/m (ε = 0.1). (c)
Frequency of the in-plane component mx vs anisotropy field Hk .
The other used parameters are given in the text.

With the expression of the unperturbed frequency f0 found in
Eq. (9), we obtain

f = f0

(
1 − ε2 1 + 4z2

0

8z2
0 + 2α2

)
. (20)

These analytical expressions were compared to the results of
10-ns-long macrospin simulations. For the simulations, α =
0.02, MS = 1.2 × 106 A/m, t = 3 nm, and ηPERP = 0.2.

Figures 3(a) and 3(b) show the out-of-plane component of
the free-layer magnetization mz in the permanent regime (8 ns
after the application of the current pulse) for an applied current
density of Japp = 2 × 1011 A/m2. We compare the macrospin
simulation in red full line with the analytical expression at
first order in ε, in green dashed line. In Fig. 3(a), for Hk =
24 kA/m, corresponding to ε = 0.05, the analytical expression
is very similar to the macrospin simulations. The phase shift
with the simulation is due to the transient regime that is not
taken into account in the analytical expression. However, in
Fig. 3(b), for Hk = 48 kA/m, and so ε = 0.1, the trajectory
from the macrospin simulation is not exactly sinusoidal and it
cannot be described by the first-order approximation only. As
seen also in Fig. 3(c), for larger value of the perturbation Hk ,
the frequency change is not well described by the second-order
approximation anymore. Notice that the anisotropy induces
a perturbation of twice the natural frequency because of
the symmetry of the anisotropy term. The applied field and
analyzer spin torque induce a perturbation at the natural
frequency.

The trajectory of the magnetization is very close to the
trajectory of the unperturbed system, as shown in Fig. 1(c). It
validates the use of a perturbation expansion. The perturbed
trajectory has a larger out-of-plane component mz close to
the easy-axis ±ux directions, and mz is smaller close to the
hard-axis directions ±uy . The magnetization also spends more
time along the ux axis than along the uy axis because the
in-plane angle time derivative is smaller along the easy axis.
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The magnetoresistive signal that can be measured with
an in-plane analyzer depends on mx = sin θ cos φ. Therefore
the signal has a fundamental frequency and higher-order
harmonics, of which the amplitude can be estimated as

mx = sin(θ0 + εθ1) cos(−τ + εφ1)

≈ r0 cos τ + ε(z0θ1 cos τ + r0φ1 sin τ ).

Because θ1 and φ1 oscillate at twice the fundamental frequency,
the second harmonic vanishes.

B. Applied field

We next discuss the perturbative effect of the applied field
along the easy axis Hx and along the in-plane hard axis Hy .
They are treated in the same section because they yield similar
results. However, the respective perturbative developments
were done separately.

We introduce the dimensionless variables

νx = α

1 + α2

Hx

pz

, νy = α

1 + α2

Hy

pz

.

The perturbation functions on the angles θ and φ are,
respectively,

f
νx

θ (θ,φ) = α cos θ cos φ − sin φ,

f
νx

φ (θ,φ) = −α sin φ − cos θ cos φ,
(21)

f
νy

θ (θ,φ) = α cos θ sin φ + cos φ,

f
νy

φ (θ,φ) = α cos φ − cos θ sin φ.

After solving the system up to second order, we find the
expressions of the perturbed frequencies and the perturbed
trajectories for the two directions of the applied field. In both
cases,

f1 = 0, f2 = − (1 + α2)2

2z2
0 + 2α2

,

{
θ i

1(τ ′) = ai
1 cos τ ′ + bi

1 sin τ ′,

φi
1(τ ′) = ci

1 cos τ ′ + di
1 sin τ ′,

(22)

with the coefficients for the field along the x axis given by:

ax
1 = −1 − αβz0

1 + β2
,

bx
1 = β + αz0

1 + β2
,

cx
1 = −αβz0 + β2(1 + α2) + α2

αr0(1 + β2)
,

dx
1 = − β + αz0

αr0(1 + β2)
,

and the coefficients for the field along the y axis given by:

a
y

1 = β + αz0

1 + β2
,

b
y

1 = 1 − αβz0

1 + β2
,

c
y

1 = − β + αz0

αr0(1 + β2)
,

d
y

1 = αβz0 + β2(1 + α2) + α2

αr0(1 + β2)
.

FIG. 4. (Color online) Macrospin simulation (red full line) and
analytical expression at first order in νx (green dashed line). (a) and (b)
Out-of plane component of the magnetization mz vs time, with applied
current density of Japp = 3.1 × 1011 A/m2 (z0 = 0.19) and with
applied field (a) Hx = 10 kA/m (νx = 0.044) and (b) Hx = 20 kA/m
(νx = 0.088). (c) Frequency of the in-plane component mx vs applied
field Hx .

Figure 4 shows the comparison with macrospin simulations
using the same numerical values as previously, except that
Japp = 3.1 × 1011 A/m2 and with an in-plane applied field
along ux . Figures 4(a) and 4(b) represent the out-of-plane
component of the magnetization mz after the transitory regime,
for Hx = 10 kA/m (νx = 0.044) and Hx = 20 kA/m (νx =
0.088), respectively. In both cases, the analytical expression
is in good agreement with the simulations. The frequency
versus applied field, in Fig. 4(c), shows also a good agreement
between the simulations and the approximation at second order
in νx up to Hx = 20 kA/m.

Concerning the harmonics of the magnetoresistive signal,
the second harmonic has a nonvanishing amplitude, using the
formula of the previous section. Here, we consider that the
applied current density is large enough so that β � 1 and
small enough so that z2

0 � 1. For i = (x,y), the two directions
of the in-plane applied field are

mx = r0 cos τ + νi

2

[(
z0a

i
1 − r0d

i
1

)
cos(2τ )

+ (
z0b

i
1 + r0c

i
1

)
sin(2τ )

]
.

Let ψ be a constant phase. The in-plane component mx is
approximately given by

mx ≈ r0 cos τ + νi

2z0
cos(2τ + ψ).

C. Spin torque from the reference layer

In this section, we focus on the perturbation due to the spin
torque of the longitudinal polarizer, initially with λx = 0. We
introduce the variable

ξ = α

1 + α2

px

pz

.

The associated perturbation functions are given by

f
ξ
θ (θ,φ) = − cos θ cos φ − α sin φ,

(23)
f

ξ
φ (θ,φ) = + sin φ − α cos θ cos φ.
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In experiments, the reference layer is most often separated
from the free layer by a tunnel barrier, whereas the perpen-
dicular polarizer is separated by a metallic barrier.19,20 This
choice is made in order to maximize the amplitude of the
output TMR signal. Consequently, the ratio r = px/pz is
greater than unity. The variable ξ can only be treated as a
perturbation because of the α coefficient. Therefore the effect
of the longitudinal polarizer on the OPP state is stronger than
for other contributions. The solutions are given by

f1 = 0, f2 = (1 + α2)2z2
0

2(1 + α2z2
0)

, (24)

{
θ1(τ ′) = a1 cos τ ′ + b1 sin τ ′,

φ1(τ ′) = c1 cos τ ′ + d1 sin τ ′,
(25)

with the coefficients defined by:

a1 = −α + βz0

1 + β2
,

b1 = αβ − z0

1 + β2
,

c1 = α + βz0

αr0(1 + β2)
,

d1 = −αβ + α2z0 + z0β
2(1 + α2)

αr0(1 + β2)
.

The comparison with macrospin simulations with Japp =
1 × 1011 A/m2 is shown in Fig. 5. The analyzer spin polariza-
tion ηLONG is ηLONG = r × ηPERP = 0.2r , where r is the ratio
px/pz that varies from 0 to 80 in the simulations. This should
give values of ηLONG larger than 1, which are unphysical, but
they correspond to physical situations by rescaling the applied
current density. Hence the absolute value of ηLONG is not so
important, and only r matters. Figures 5(a) and 5(b) show
mz versus time for r = 10 (ξ = 0.2) and r = 20 (ξ = 0.4)
respectively. For r = 10, the analytical expression is offset
compared to the simulations, showing that there must be a

FIG. 5. (Color online) Macrospin simulation (red full line) and
analytical expression at first order in ξ (green dashed line). (a) and
(b) Out-of plane component of the magnetization mz vs time, with
applied current density of Japp = 1 × 1011 A/m2 (z0 = 0.06) and with
a ratio r = px/pz (a) r = 10 (ξ = 0.2) and (b) r = 20 (ξ = 0.4).
(c) Frequency of the in-plane component mx vs ratio px/pz.

constant term arising from the second-order development that
is not taken into account here. For r = 20, the simulated mz

is not sinusoidal, giving rise to a frequency mismatch with the
first-order analytical expression. The frequency change versus
ratio r shown in Fig. 5(c) shows that it is at least a third-order
perturbation, as second-order frequency change cannot explain
the frequency drop for large r .

Because the perturbation in first order has a frequency that
is the fundamental frequency, like for the applied field, the
second harmonic amplitude is nonzero:

mx ≈ r0 cos τ + 2ξ cos(2τ + ψ ′).

Here, β � 1 and z2
0 � 1 were assumed, and ψ ′ is a constant

phase.

D. Interplay of two contributions

The power series expansion was only carried up to second
order, because of the difficulty of developing further the
analytical solutions and also because second order is sufficient
regarding the negligible size of other terms. So far, only one
contribution was considered at a time, but if we consider
two simultaneous contributions, the perturbed expressions
are changed. In first order, the influence of the different
contributions can be added directly to determine the analytical
expression for the angle θ and φ, there is no interaction
between the contributions. However, at second order, the
different contributions do not simply add together; there is also
an additional term of interaction. Sometimes the interaction
term vanishes, for instance, with the uniaxial anisotropy
combined with the longitudinal spin torque or the applied field.
However, if the longitudinal spin torque px and the applied
field Hx (similar for Hy) are taken into account, an interaction
term is added to the perturbed frequency.

We perform an expansion by setting ς = Hx

px
and expanding

with respect to ξ . The frequency correction is given by the term
coming from Hx alone multiplied by ν2

x , the term coming from
px alone multiplied by ξ 2, plus the interaction term, multiplied
by ξνx :

f2 = − (1 + α2)3z2
0

α
(
1 + α2z2

0

)(
α2 + z2

0

) .

We can also treat the case of an angle-dependant spin torque
amplitude with uniaxial anisotropy. First, we replace pz by
pz/(1 + λz cos θ ) and treat λz as a perturbative parameter.
Without any other perturbation, the variation of the frequency
was derived exactly in the high-symmetry case, f = f0/(1 +
λzz+), and its Taylor expansion versus λz corresponds to the
terms derived by the technique used here. However, there
is an interaction with the uniaxial anisotropy term at the
second order. On top of the uniaxial anisotropy and the spin
torque asymmetry, 2λ2

zz
2
0, terms, there is an interaction term

multiplied by λzε:

f2 = z2
0(1 + α2).

Finally, we study the case of an angle-dependent spin torque
along the x axis. There is an interaction between the angle-
independent term px and the asymmetry parameter λx . For this
we use the Taylor expansion versus λx of the full expression

px sin θ cos φ

1+λx sin θ cos φ
. We compute the perturbation approximation by
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expanding with the parameter ξ , and by λx if necessary. The
frequency change is given by the term on ξ only, plus a first-
order and a second-order terms depending on λx also:

f ≈ f0

[
1 + ξλx

z0

2α
(1 + α2) + ξ 2λ2

x

z2
0

4α2
(1 + α2)2

+ ξ 2 (1 + α2)2z2
0

2
(
1 + α2z2

0

)]
.

IV. CRITICAL CURRENTS

A. Stability criterion

The expressions of the OPP trajectory with perturbation up
to first order define a stability criterion for these trajectories.
Regarding the Poincaré’s map multiplier for the trajectories up
to first order, |μ1| < 1 for all the perturbations treated in this
paper, regardless of the amplitude of the perturbation. It means
that the corrected trajectories are stable to sufficiently small
thermal fluctuations. However, the multiplier does not give any
information on the maximum amplitude of the perturbations
up to which the out-of-plane precession is maintained.

For this we use the Melnikov function.8,21 This function can
be extracted from the equation of motion (4). By operating the
vectorial product of this equation by dm, then taking the scalar
product with m, we get

(m × ∇mG + ∇mH) · dm = 0.

If the trajectory of the system is periodic, the closed integral
of the Hamiltonian part of the previous expression vanishes,
namely, ∮

�

∇mH · dm = 0.

Only the second part of the expression remains,
∮

(m × ∇mG) ·
dm = 0. Using the expression of dm from the equation of
motion, we obtain

M(�) =
∮

�

[∇mH · ∇mG − (m · ∇mH)(m · ∇mG)] dt = 0.

The above integral is called the Melnikov function. If the
path � follows a periodic orbit solution of the equation of
motion, then the Melnikov function vanishes. In the framework
of weakly perturbed time periodic Hamiltonian systems, the
Melnikov function is approximated by evaluating the closed
loop integral over the trajectory �0 of the unperturbed system
(G = 0) with constant energy w. The condition that the
Melnikov function must vanish for a periodic orbit gives a
constraint on the parameters of the system, namely the current
density J .

The issue of calculating the critical parameters for which
the periodic orbit is maintained has already been addressed by
Ebels et al.8 in the case of a free layer with a perpendicular
polarizer and an applied field along the easy axis (x axis).
They use a similar technique of zeroing the Melnikov function
to obtain the critical current Jc4 below which no periodic
orbit is possible. It is important to be precise that the present
paper focuses on determining the critical current Jc4 and not
Jc1, of which the origin and expression come from stability
conditions of the in-plane equilibrium state. Ebels et al.8

extracted numerical data for the critical current Jc4 with respect

to the applied field, the anisotropy field Hk (named Hu in
Ref. 8), the saturation magnetization MS , and the damping
constant α. Unfortunately, no analytical expression was found.

Critical currents for stability of the periodic out-of-plane
precession can be derived using the expressions computed in
the previous section. Using the expressions of the angles θ and
φ at first order in the perturbation parameter, we can check that
the in-plane angle variation φ̇ never vanishes. Otherwise, the
precessional motion would be stopped. Using this criterion,
critical spin torque amplitudes were computed, with only one
perturbation at a time. The critical current Jc is proportional to
the critical spin torque amplitudes pzc. The critical spin torque
amplitudes are given beneath for the different perturbation
cases, respectively, uniaxial anisotropy, in-plane applied field
(there is no distinction between Hx and Hy direction, so we
use Ha pointing in any arbitrary in-plane direction), and spin
torque from the longitudinal polarizer. Here, we considered the
case where α2 � (Ha/Ms,Hk/Ms), which is more common in
experiments, so that β � 1.

For the uniaxial anisotropy and the applied field, the
out-of-plane precessional state is allowed as long as pz > pzc.
For these two perturbations, the stability criterion defines
a minimal spin torque amplitude for the existence of the
precessional state:

anisotropy: pzc = α

2

√
HkMS, (26)

in-plane applied field : pzc = α
√

HaMS. (27)

Figures 6 and 7 present the average in-plane component
mx of the free-layer magnetization with an applied current
pulse of 10 ns from macrospin simulations. The average is
taken between 8 and 10 ns to avoid the transient regime.
The magnetization is initially almost completely out-of-plane
(mz ≈ 1) to favor the OPP steady state that appears when
the magnetization relaxes towards the plane. The average
magnetization is represented versus the applied current den-
sity, the anisotropy field in Fig. 6, and the in-plane applied
field along ux in Fig. 7. The blue and red colors correspond
to an average magnetization in equilibrium in the plane,
〈mx〉 = ±1, respectively. The light green color corresponds

FIG. 6. (Color online) From macrospin simulations, the average
in-plane component mx of the magnetization in permanent regime vs
applied current density and anisotropy field. Dark blue and red colors
correspond to the equilibrium states 〈mx〉 = ±1, respectively. Light
green color corresponds to 〈mx〉 = 0, the out-of-plane precessional
steady state. The analytical critical current is represented by the black
dashed line.
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FIG. 7. (Color online) Same as Fig. 6 with the applied field
along ux .

to 〈mx〉 = 0, representative of the OPP steady state. We can
extract the critical current Jc4 from the boundary between
light green and dark blue/red regions. The analytical critical
line from expression (27) is represented in black dashed line.
For the highest value of anisotropy and applied fields used
in the simulations, the analytical critical current differs from
the simulations value by 20% and 10%, respectively. Notice
that for the anisotropy figure, the equilibrium region is not
uniformly colored and presents blue and red stripes because
depending on where the OPP is stopped, the magnetization
relaxes to mx = −1 or 1. The final states actually depend
on the transient regime, they are of little interest here. The
critical currents obtained by finding numerically the root of the
Melnikov function, as in Ebels et al.,8 are also in agreement
with the analytical expressions. In fact, they match with an
error of less than 10% as seen on Fig. 8, which represents
the critical spin torque amplitude find by numerical methods,
normalized by the analytical expression, versus applied field.

For the analyzer spin torque, the same criterion used for
anisotropy and applied field defines a maximal spin torque
amplitude for which the periodic orbit exists. The critical
current density depends on the ratio r = px/pz of the two
spin torque contributions:

pzc = αMS(1 − α2r2) for 2αr < 1,
(28)

pzc = α2MS√
4α2r2 − 1

for 2αr > 1.

The phase diagram of Fig. 9 represents the average of the
in-plane magnetization mx from macrospin simulations with
different applied current density and ratio r = px/pz. The
analytical expression for the critical current density is drawn
in black dashed line. The analytical critical line corresponds

FIG. 8. Critical spin torque amplitude computed with the
Melnikov function vs applied field Hx along ux . The critical spin
torque amplitude is normalized by the analytical expression.

FIG. 9. (Color online) Same as Fig. 6 with the ratio r = px/pz.

qualitatively to the region boundary of the diagram. However,
for a given current density, the corresponding critical ratio
is 35% smaller with the analytical expression than found by
macrospin simulations. On the critical line, the ratio is around
40, giving a perturbation parameter ξ = 0.8. In this range, we
should consider higher orders to obtain a better accuracy on
the critical current.

V. DISCUSSION

The perturbative approach developed here shows good
agreement with macrospin simulations even at low order.
For the anisotropy and the applied fields, we were able to
calculate the frequency change due to these perturbations,
except close to the range where the frequency vanishes.
For these perturbations, we were also able to give a good
approximation of the critical current Jc4 at which the OPP state
disappears. In fact, the perturbation parameter, for instance ε, is
more or less inversely proportional to the frequency of the OPP,
so it is clear that the perturbative expansion is less precise when
the frequency vanishes, or close to the critical current, which
is determined by this same criterion. Another limit is when the
applied current density tends towards zero, that corresponds
also to a vanishing frequency. However, this limit is not
very relevant physically as the dynamical system studied here
presents another critical current density, usually called Jc1,
below which the magnetization remains in static equilibrium
in-plane. So the dynamical system presents a bifurcation
between an equilibrium and a limit cycle not associated with
this equilibrium, and the frequency is nonvanishing close to
the critical current Jc1.

This study has been carried out for an in-plane mag-
netized MTJ with additional perpendicular polarizer. The
same perturbation expansion could also be done with a MTJ
with in-plane precession (IPP) steady state. A good starting
point to treat this case would be to consider the Landau-
Lifshitz-Gilbert equation in complex numbers as described
by the Kim, Tiberkevich, and Slavin (KTS) theory;10–12 if
we write the complex differential equation as a couple of
differential equations for the amplitude and the phase, the
amplitude would play the role of θ here, and the phase the
role of φ. By rescaling the time with the eigenfrequency ω0

corresponding to the FMR frequency, we expect to carry out
the Lindstedt’s series expansion of the trajectory with constant
energy, considering α as a small parameter. It should give a
good approximation of the nonlinear parameters modifying the
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frequency and the linewidth, and also the relative amplitude
of the second harmonics, which are not treated by the present
theory. However, this is beyond the scope of this paper.
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APPENDIX: LINDSTEDT’S SERIES EXPANSION

The Lindstedt series expansion is a method used to obtain an
approximation of the solution of a dynamical system (S) with
a small perturbation, by using the solution of an unperturbed
system (S0). Let (S) and (S0) be the following systems, and
X0 be the solution of (S0):

(S) : Ẋ = F(X) + εG(X),

(S0) : Ẋ0 = F(X0).

In order to find the solution of (S), we suppose that the
solution X of (S) can be written as a power series of the small
parameter ε:

X = X0 + εX1 + ε2 X2 + . . . .

We can then replace X by the following power series in the
system (S):

Ẋ0 + ε Ẋ1 + ε2 Ẋ2 + . . . = F(X0 + εX1 + ε2 X2 + . . .)

+ εG(X0 + εX1 + ε2 X2 + . . .).

Then the perturbed dynamical system (S) becomes (S1) at the
first order in ε:

(S1) : Ẋ0 + ε Ẋ1 = F(X0) + ε dF(X0)[X1] + εG(X0).

Here, dF(X0) is the differential of the vector field F evaluated
at X0. By identification, we obtain two differential equations,
where the first one is the unperturbed system (S0):

Ẋ0 = F(X0),

Ẋ1 = dF(X0)[X1] + G(X0).

This method theoretically allows to calculate the solution
up to any order. However, if the solution Ẋk at order k is
periodic, the resolution of the dynamical system at order
k + 1 may give rise to nonperiodic secular terms, often
t cos(ω0t) terms, or, for the equation addressed in this
paper, t terms. In order to get rid of the secular terms,
we also suppose that the angular frequency can be written
as a power series of ε: ω = ω0 + εω1 + ε2ω2 + . . . .

By rescaling time with the change of variables τ = ωt , we

rewrite system (S) as

(ω0 + εω1 + ε2ω2 + . . .)(Ẋ0 + ε Ẋ1 + ε2 Ẋ2 + . . .)

= F(X0 + εX1 + ε2 X2 + . . .)

+εG(X0 + εX1 + ε2 X2 + . . .). (A1)

Henceforth, Ẋ denotes a derivation with respect to τ . The
first-order system becomes

Ẋ1 + ω1 Ẋ0 = dF(X0)[X1] + G(X0).

The value of ω1, and higher-order terms ωk , is set so that
secular terms are canceled. In the majority of the cases treated
in this paper, it appears that ω1 = 0 because no secular terms
appear at order 1. However, at order 2, in order to cancel the
secular terms, ω2 needs to be nonzero.

However, this way of solving the perturbed system does
not account for an additional temporal dephasing between the
angles θ and φ. According to the exact solutions of Eq. (8), the
second term of the right-hand side from the expression of φ is a
dephasing term that accounts for the initial condition zi . In this
particular case, the angle θ is constant in the permanent regime
so this dephasing has no effect. However, solving a perturbed
system gives rise to oscillating terms on the angle θ , for which
the exact dephasing with the angle φ is important, specially
for second-order terms. In fact, the second-order terms partly
account for an interaction between θ and φ harmonics. In order
to solve this issue, we first calculate the equation of the angle
θ with respect to φ, then the expression of θ (τ ) and φ(τ ). By
dividing the first equation of Eq. (16) by the second equation,
we obtain the differential equation governing θ (φ):

dθ

dφ
= sin θ

gθ (θ ) + εf ε
θ (θ,φ)

hφ(θ ) + εf ε
φ (θ,φ)

. (A2)

Both sides of this equation can be Taylor expanded with respect
to ε by using the expressions for θ and φ from Eq. (17).
Hence the expression of θ with respect to φ is computed
up to any given order k. The assumption that ε � 1, or
that the perturbation is small compared to the nonperturbated
frequency, is critical here.

Thereafter, the expression of θ (φ) at order k is injected in
the differential equations (16) of θ and φ versus time τ to
obtain the precession harmonics and the frequency changes,
using the Lindstedt’s series.

The results of Sec. III were obtained with the computer
algebra system MAXIMA,22 by differentiating Eq. (A1) with
respect to ε to get the equations at the different orders in ε.
At order 2, the solutions already hold many terms that are
not shown here because we were only concerned about the
frequency change. The computation of higher-order terms is
rather complicated.
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