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Numerical simulations and experiments on nanostructures out of equilibrium usually exhibit strong finite size
and finite measuring time tm effects. We discuss how these affect the determination of the full counting statistics
for a general quantum impurity problem. We find that, while there are many methods available to improve upon
finite-size effects, any real-time simulation or experiment will still be subject to finite-time effects: In short size
matters, but time is limiting. We show that the leading correction to the cumulant generating function (CGF)
at zero temperature for single-channel quantum impurity problems is proportional to ln tm, where the constant
of proportionality is universally related to the steady state CGF itself for non-interacting systems; universal in
this context means independent of details of the quench procedure, i.e., independent of the switching on of
both voltage and counting field. We give detailed numerical evidence for the case of the self-dual interacting
resonant level model that this relation survives the addition of interactions. This allows the extrapolation of finite
measuring time in our numerics to the long-time limit, in excellent agreement with Bethe-ansatz results.
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Finite measuring time effects play a crucial role in the
analysis of out-of-equilibrium properties of nanostructures [1].
This is clear in numerical simulations where, rather than solve
an equilibrium eigenvalue problem, one time evolves from the
nonequilibrium initial condition:

|�(t)〉 = e−i�H(t−t0)|�(t0)〉. (1)

Time evolving a many-body state is a computationally ex-
pensive procedure, which gives a limit on the time scales
accessible. The same is true of experiments, where one cannot
measure the system for eternity. Indeed in recent experiments
concentrating on the full counting statistics (FCS) [2–4], the
source-drain bias voltage VSD is so low that the relevant
parameter VSDtm is actually rather small.

Finite-time effects are often combined with finite-size
effects, which are ever present for systems on nanoscale
structures. In equilibrium, finite-size scaling is well under
control, and often turns out to encode fundamental properties
of the bulk system, for example, the relation between the 1/L

(L being the system size) corrections to the ground state energy
density and the central charge of the system [5,6]. The crucial
point here is the universality of this relationship, meaning that
details of the edge (such as precise boundary conditions) are
unimportant.

By analogy, one may ask the following questions: Can one
extrapolate short measuring time tm results to the long-time
limit? Is there any universality in these finite tm corrections,
and if so, can these corrections give us new information about
the system? In this Rapid Communication, we will show that
in certain situations the answer to all three of these questions
in the case of the FCS is yes. This will require us to also
disentangle the contributions that come from finite size and
finite time.

The systems we consider are quantum impurities coupled to
two noninteracting leads which are (initially) held at different
chemical potentials. The finite size in question, L, is the size of

the lead, the quantum impurity being naturally a small size. The
plan for the rest of this Rapid Communication is to introduce
the FCS, look at the intrinsically finite-size corrections, then
turn to the major issue of the work: the intrinsically finite-time
effects.

The transport properties of a nanostructure are not entirely
encoded in the average current Ī flowing for a given bias
voltage VSD—fluctuations are of crucial importance, for
example, in the determination of the charge of the carriers. The
corresponding information is conveniently assimilated within
the framework of FCS. In the traditional two-terminal setup,
one studies the probability distribution Ptm (n) that a charge
Q = ne has been transferred from the left to the right lead in the
measuring time tm (e being the charge on the electron) [7–13].
Rather than working directly with the distribution, it is usually
more informative to study the cumulant generating function
(CGF), defined as [7,8]

Ftm (χ ) = − ln

[∑
n

einχPtm (n)

]
. (2)

The irreducible cumulants of charge transfer are then obtained
via Cn = −( ∂

i∂χ
)nF (χ )|χ=0, while the periodicity of the CGF

yields information regarding the charge of the quasiparticles
involved in transport [10,14,15] which in a strongly correlated
system may not be simple electrons, and may even undergo
a change as a function of bias voltage [16,17]. In the long-
time limit, each of the cumulants (and by inference, the CGF)
is proportional to the measuring time tm; for example, the
first cumulant gives the current C1 ∼ Ī tm, while the second
C2 ∼ S̄tm, where S̄ is the zero-frequency shot noise.

In the present work, we will be interested in the leading
corrections to these expressions for finite measurement times.
However, we first discuss the corrections due to the finite size
of the leads. To make this discussion concrete, we focus on the
interacting resonant level model (IRLM), [17–26] described
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by the Hamiltonian

H =
∑

n=L,R

{
−

Mn∑
i=0

(c†n,icn,i + H.c.) + J ′c†n,0d + H.c.

+U (d†d − 1/2)(c†n,0cn,0 − 1/2)

}
. (3)

Here, d† creates a fermion on the resonant level, while c
†
n,i

creates a fermion on the right or left lead at site i, the total size
of each lead being ML,R . The hybridization between the leads
and the resonant level is J ′ (the hopping parameter on the leads
which sets the overall energy scale of the problem has been set
to 1), and U gives an interaction between the resonant level
and the leads.

There are two values of U where the model has been solved
out of equilibrium and transport properties are known: U = 0
is the noninteracting case [21–23], and U = 2 where the model
shows a certain duality [17–20] although many works exist on
the model at general U [24–26]. We imagine a situation where
the two leads are initially decoupled from the resonant level,
and exhibit a charge imbalance characterized by a difference
in potential VSD, modeling the source-drain potential in an
experimental setup. At time t = 0, the coupling J ′ is quenched
on, and a current begins to flow [27,28]; an extension of this
method to calculate the CGF of FCS was recently expounded
in [17]. We refer to the literature for a physical discussion
of the transport properties of the RLM: Here we use it as a
basis for discussions of the effects on transport of the finite
size ML,R of the leads, and the finite measuring time tm on the
FCS. We expect our results to be applicable to more generic
quantum impurity models.

One finds that there are three important consequences to
having finite-size leads. The first concerns the discrete nature
of the energy levels of the leads, leading to a finite-size energy
gap, �. This means that all important physical processes
must happen at energy scales larger than this gap. This is
a phenomenon inherited from equilibrium problems, which
remains relevant to the present nonequilibrium case. The
second consequence also relates to the finite-size energy gap
but is intrinsic to the transport—a coherent system with a
gap exhibits oscillations in the dc transport. These were
first observed in the current [19] but are also seen in all
higher cumulants (or alternatively the CGF) [17]. Even in
systems when the finite-size gap is unimportant for equilibrium
properties, the oscillations ∼� cos(VSDtm + η) may be clearly
visible in nonequilibrium dc transport. These oscillations do
not decay in time, and have the same physical origin as the
Josephson effect, with the frequency given by the source-drain
voltage VSD and the amplitude proportional to the gap [19,28],
i.e., proportional to 1/L if the leads are discretized uniformly
in energy space. Furthermore, so long as one evolves in time
for sufficiently long to see a few oscillations, results may be
fitted using the above expression; this procedure has been
remarkably successful provided the bias VSD is not too small.
The third consequence is that after a transit time tT = vcL

(where vc is the excitation velocity in the leads) the excitations
leaving one lead bounce off the edge of the other lead, which
eventually causes the current to flow the other way. For details
we refer to [28].

J’ J J J

linear real space sitesRSM

Λ1 Λ Λ Λ2 3 4
J J J J JΛ0

exponentially decreasing hopping elements

FIG. 1. (Color online) Setup of damped boundary conditions for
a resonant level coupled to a single lead via a hybridization of J ′. The
lead first consists of a homogeneous tight binding chain (hybridization
J ), followed by exponentially decreasing hopping elements with a
factor of � on each successive link in a NRG fashion. This increases
the density of states at the Fermi surface.

In certain physical systems, including the (interacting)
RLM, the finite-size gap is relatively harmless. However, in
other systems epitomized by the Kondo effect, the emergent
phenomena occur at low energy scales. In these cases � must
be smaller than any physical scale in which one is interested.
In equilibrium this problem may be solved via numerical
renormalization [29,30]. One introduces a logarithmic dis-
cretization of the leads in energy space, which is transformed
into a nearest-neighbor tight binding chain with exponentially
decreasing hopping elements, leading to an exponentially
enhanced density of states close to the Fermi surface. This
approach has been extended to nonequilibrium systems [31]
within a time-dependent NRG (td-NRG) method. Here, one
solves the noninteracting scattering problem, discretizes the
resulting scattering states in analogy to equilibrium NRG,
and switches on interactions perturbatively. The concept of
increasing energy resolution by changing the bond terms was
extended to smooth boundary conditions [32] and to damped
boundary conditions (DBC) in [33,34], where a homogeneous
tight binding chain is inserted between the impurity and the
exponentially damped region (see Fig. 1).

While this setup proved successful for the linear conduc-
tance of the IRLM [33] it is problematic for nonequilibrium
properties. In [34] it was shown that in time-dependent
simulations the exponentially decreased hopping elements
lead to an exponentially decreased excitation velocity in the
damped region, resulting in a NRG tsunami: The leads lose the
property of a nicely behaved bath (see also [35]). Additionally,
each link with changed hopping elements acts as an additional
scatterer leading to an increased backscattering.

In Fig. 2 we show the current as a function of time following
the charge imbalance quench for the noninteracting RLM with
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FIG. 2. (Color online) Time evolution of the current following a
charge imbalance quench measured to the left (L) and right (R) of
the resonant level in model (3) with U = 0 and J ′ = 0.2. The system
size here is M = 250 sites, with DBC for various values of � in the
setup shown in Fig. 1.
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J ′ = 0.2 in a system with DBC, where the hopping elements
on the last 50 sites of the left and right leads are decreasing
with a factor of � = 1.0 (homogeneous leads), 0.9, and 0.8.
The � = 1 displays the large Josephson oscillations (JO) as
discussed above until the transit time tT when we see the back
reflection of the hard wall boundaries of the leads. It is worth
noting that for this particular example though, there is a phase
shift of π between the response left and right of the impurity;
averaging over these dramatically decreases the size of the
oscillations.

As one may expect, the DBC lead to a decreased height
of the JO. However, the gain is not exponentially large, as
we are now at finite voltage VSD = 0.1J , while the DBC
lead to exponentially enhanced density of states (DOS) at the
Fermi surface only. One could use a different discretization
scheme where the enhancement of the DOS is shifted to
energies ±VSD [34]. However one still faces the problem that
each modified bond leads to a back reflection. The transit
time for the DBC systems is decreased compared to the
homogeneous case by 2MD/vc, where MD is the number of
modified bonds. Accordingly, wiggles appear shortly after
tT = (M − 2MD)/vc. In principle, by using reflectionless
DBC [36] one could avoid these wiggles, however, a reduced
transit time remains.

We now turn to this issue of transit time, which places
a hard limit on the time one may evolve the system before
finite-size effects interfere with the time evolution. Here also,
one can minimize this disruption (but only in a homogeneous
lead) by using a conformal time. In equilibrium, it is well
known how conformal invariance allows one, via a finite-
size/temperature transformation, to control the effects of finite
imaginary time [37]. The generalization to out-of-equilibrium
situations and real time amounts to replacing the measuring
time tm = t − t0 with the “conformal time”

d(tm) =
(

sin
πt

M/vc

− sin
πt0

M/vc

)
Mπ

vc

, (4)

where the counting field is switched on at t = t0, after initially
quenching the system at t = 0. While d(tm) ≈ tm at short
times, as one approaches the transit time, the above formula
captures the leading effects of back reflection from the leads
remarkably well [38] (despite not being entirely justified
theoretically [39]).

While this demonstrates an intimate connection between
finite size and finite time, one may not always be able to time
evolve the system as long as the transit time [40]. Furthermore,
even if one manages to eliminate all finite-size effects, any
real-time numerical simulation is cut off after some finite
running time. We therefore turn to effects intrinsic to the finite
measuring time of the system, studying the CGF of the FCS
as a function of tm.

As mentioned previously, one expects the CGF (2) to grow
linearly in measuring time. At zero temperature, the subleading
corrections are logarithmic [41,42],

F (χ,tm) = F̃0tm + F̃1 ln(VSDtm) + · · ·
⇒ Ḟ (χ,tm) = F̃0 + F̃1/tm + · · · . (5)

Formally, this is an expansion of the CGF in the small
parameter (VSDtm)−1. The long measuring time limit F̃0 is what

is commonly quoted and analyzed as the FCS, and is given for
noninteracting particles by the Levitov-Lesovik formula [7,8].

Here, we conjecture that the leading correction to this, F̃1,
is independent of the quench protocol (i.e., is a true steady
state property), and given in the zero-temperature limit by

F̃1 = 1

π

(
dF̃0

dVSD

)2

. (6)

Equation (6) is valid for single-channel quantum impurity
problems, for systems symmetric with respect to the sign
of the applied voltage. While it is only formally derived
for noninteracting fermions, we will present arguments and
numerical evidence that suggest it survives the addition of
interactions. However we stress that a proof of this equation, or
alternatively an understanding of the limits of its applicability,
is an open question.

Equation (6) agrees with previously derived results for
noninteracting fermions [1,41,42], where the only essential
feature that goes into deriving this term is the Fermi-edge
singularities [38]. Thus the result is limited to zero tempera-
ture, but does not involve details of the quench. For nonzero
temperatures T , we would expect the result still to hold on
time scales tm < 1/T [43]; at later times corrections to the
long-time limit are no longer universal.

The fact that the physics of F̃1 comes from the Fermi edge,
which is explicitly captured by the derivative representation,
Eq. (6), gives hope that this formula may also be valid
in the interacting case. In a nearly-free-electron picture
where interactions may be treated as perturbatively dressing
free-electron results, one would certainly imagine that the
relationship remains unchanged between F̃0 which involves
all states within an energy window of width VSD, and F̃1

which involves only the states at the Fermi edges. This can
be made more formal by looking at the second cumulant (shot
noise), where the correction according to Eq. (6) is ∝G2, G

being the differential conductance. The finite-time correction
to the second cumulant of FCS is directly related to the
finite-frequency correction to shot noise, something that has
also been investigated in detail for the third cumulant [44]. This
relation can therefore be compared to an earlier conjecture that
the frequency-dependent noise S(ω) − S(0) ∝ G2|ω|. In [45],
this was shown to be true to all orders in perturbation theory,
while other work [46] suggested that this may break down
in a nonperturbative regime. This question has been revisited
recently numerically [20,21] which supported the idea that this
simple relation holds even nonperturbatively.

While at present we are unable to give a more substantive
analytic derivation of the conjecture (6), we now back it up
with numerical evidence, using the self-dual interacting RLM.
This is chosen as it exhibits nontrivial correlations, and is one
of few such models where exact results for the FCS (in the
long-time limit) are known analytically [17]. For convenience,
the analytic results are given in the Supplemental Material [38].
In Fig. 3 we compare the real part of Ḟ obtained numerically
with the analytic result including the 1/tm correction, assuming
that Eq. (6) holds. As can be seen there is nice agreement over
four orders of magnitude. Although there appears a shift in
each curve we mention that simulations are done on a lattice,
while the analytic results are taken from a continuum theory

081401-3



RAPID COMMUNICATIONS

PETER SCHMITTECKERT, SAM T. CARR, AND HUBERT SALEUR PHYSICAL REVIEW B 89, 081401(R) (2014)

FIG. 3. (Color online) Real part of Ḟ for the SD IRLM at
VSD = 0.3, J ′ = 0.2. Symbols correspond to the numerical result, and
the lines are the analytical results. The system size is M = 240 sites.

and the only scale parameter linking the two is taken from
previous work [19]. Similar agreement is seen at other values
of VSD or J ′.

Using these results we then perform a fit as a function of
tm to the series (5). To avoid influence of the transients, we
limit the fit to d(tm) > 13. These are compared to the analytic
results in Fig. 4. One sees, in particular, very good agreement
for F̃1 until χ becomes too large, where the numerical data
is very messy for reasons not yet fully understood. This gives
excellent evidence in support of the conjecture (6). We also
plot for comparison the quadratic in χ approximation to F̃1,
which is the correction to the shot noise (we note that the
universal correction is absent for the first cumulant). It is clear
from the plot that both the true F̃1 from (6) and the numerical
data deviate significantly from the quadratic approximation—
in other words, we see beyond the lowest cumulants.

It is also worth noting the difference in scale for the F̃1

and F̃0 plots—the finite tm correction is much larger than the
long-time limit until tm ∼ 100. Nevertheless, a correct fitting
procedure as a function of measurement time allows one to
extrapolate over several orders of magnitude and see (to good
agreement with the analytic result) the bump in the long-time

FIG. 4. (Color online) Comparison of the analytical and numer-
ical results of the leading F̃0 and subleading F̃1 contributions to the
CGF of the self-dual interacting RLM. The numerical results are
obtained from fitting the real-time data in Fig. 3.

CGF F̃0; a feature that was entirely absent in the previous
analysis [17].

In summary, we have discussed how dc transport calcula-
tions are subject to finite-time and finite-size effects which are
of different nature. While finite-size effects can be controlled
by a suitable choice of boundary conditions, the situation for
finite-time effects is more difficult. By looking at the CGF one
can perform a systematic extrapolation towards the long-time
limit. In addition we showed that in the examples given the
leading finite-time corrections are related to the long-time CGF
itself [see Eq. (6)]. If such a relation holds more generally,
it provides a fantastic possibility for self-consistency checks
within time-dependent simulations. We therefore hope this
Rapid Communication stimulates further work investigating a
more general validity of (6).

We thank A. Komnik, D. Bagrets, and D. Gutman for
insightful discussions.
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