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We consider the entanglement between two one-dimensional quantum wires (Luttinger liquids) coupled
by tunneling through a quantum impurity. The physics of the system involves a crossover between weak
and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory
therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical
studies, but has remained little understood, analytically or even qualitatively. We argue in this Letter that the
correct universal scaling form of the entanglement entropy S (for an arbitrary interval of length L
containing the impurity) is ∂S=∂ ln L ¼ fðLTBÞ. In the special case where the coupling to the impurity
can be refermionized, we show how the universal function fðLTBÞ can be obtained analytically using
recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are
carefully checked against numerical simulations.
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Introduction.—The study of two one-dimensional gap-
less systems connected by some sort of interaction has
become paradigmatic in modern quantum physics. It plays
a particularly important role in the context of local
quenches, transport through quantum dots, and the dynam-
ics of magnetic impurities.
An essential feature of these systems is the existence of

crossover scales, which play a role similar to the Kondo
temperature in the Kondo problem [1], and qualitatively
separate weak and strong coupling regimes. These scales
make the methods of conformal field theory inapplicable,
and exact results are very scarce. At the same time, the
presence of the crossover indicates very rich physics.
A case in point is the so-called Kane-Fisher problem

[2], where a single impurity in a Luttinger liquid has the
dramatic effect of decoupling the two sides (repulsive
case) or disappearing (attractive case) as energy is swept
across the crossover scale TB. This problem appears in
various other guises, in particular in experiments where a
fractional quantum Hall fluid is pinched by a gate voltage
[3,4]. A quantity of crucial interest is then the entangle-
ment entropy S of a region (of length L) bounded by the
impurity with the rest of the system. In the case where
the impurity (defect) is marginal [5], or for some classes
of strongly disordered critical points [6], one can argue
that S ∝ ln L. However, when the impurity is character-
ized by a crossover scale TB, general arguments show
that S has a logarithmic behavior only in the low and
high energy limits, with different prefactors. The question
of how S interpolates between these—both qualitatively
and quantitatively—has remained largely open up to now.

An early study [7] attempted a perturbative approach,
with results in disagreement with numerics [8]. The
problem was revisited several times (see, e.g., Ref. [9]
for a review) before it was realized that, in fact, the
entanglement in this problem is nonperturbative (at
T ¼ 0) [10,11]. Similar questions arise in the—maybe
even more interesting physically—case where the tunnel-
ing between the Luttinger liquids takes place through a
resonant level (quantum dot) [16].
Unfortunately, nonperturbative approaches are few,

especially for the entanglement, which is essentially a
nonlocal quantity. Even when problems are in appearance
“free,” and involve a quadratic fermionic Hamiltonian,
the nonlocality of S makes analytical calculations diffi-
cult, much like those involving observables that are
nonlocal in terms of the fermions (e.g., the spin in the
Ising model). We report in this Letter the solution of this
problem in such a “free” fermionic case, which we obtain
by the combination of a massless form-factors approach
and a factorized scattering description that involves both
reflection and transmission channels. We obtain results
over the whole crossover, which are extremely well
matched by numerical simulations. We also give the
scaling form of the entanglement, which we argue
generalizes to interacting situations.
XXZ spin chains and impurities.—We consider two

semi-infinite spin-1
2
XXZ spin chains (spinless interacting

fermions) in the gapless Luttinger liquid (LL) phase (with
anisotropy −1 < Δ ≤ 1) connected through either a weak
link, or a quantum dot (two successive weak links). The
Hamiltonian is
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H ¼
X−2
i¼−∞

S⃗i · S⃗iþ1 þ
X∞
i¼1

S⃗i · S⃗iþ1 þHimp; (1)

where S⃗i · S⃗iþ1 ¼ Sxi S
x
iþ1 þ Syi S

y
iþ1 þ ΔSziS

z
iþ1 is shorthand

for the anisotropic interaction. The tunneling between the
two interacting wires is described by Hwl

imp ¼ J0Sþ−1S
−
1 þ

H:c: in the weak link case, or Hdot
imp ¼ J0ðSþ−1 þ Sþ1 ÞS−0 þ

H:c: in the dot case, with S� ¼ Sx � iSy. We work at zero
temperature so that the system is in a pure state.
Entanglement entropy and mutual information.—To

characterize the entanglement between the two wires, we
consider two geometries (Fig. 1). We are mostly interested
in the entanglement entropy (EE) Sðl; LÞ of an interval
½−Lþ l;l� of length L not necessarily centered on the
impurity [see Fig. 1(a)]. We characterize this asymmetry by
the parameter α ¼ l=L. Recall that the EE can be computed
as S ¼ −trρ ln ρ, where ρ is the reduced density matrix
obtained by tracing over the degrees of freedom outside the
considered interval. The symmetric case α ¼ 1

2
, which has

been studied extensively recently [9–15], is natural for the
Kondo problem, since the impurity lies at the boundary of a
half-infinite chain in a folded picture [16]. However, the
limit α → 0 is more meaningful for two wires connected by
an impurity, since it provides information on their entan-
glement. Another natural quantity is the mutual information
(MI) IðLÞ of two intervals of length L: A ¼ ½−L; 0� and
B ¼ ½0; L� [see Fig. 1(b)]. The MI of A and B, defined by
I ¼ SA þ SB − SA∪B, is positive and relates to the EE
through IðLÞ ¼ 2Sðl ¼ 0; LÞ − Sðl ¼ L; 2LÞ. The MI
characterizes the correlations between two intervals, and
provides an upper bound on their entanglement. In our
problem, the MI vanishes when the two wires are
decoupled (J0 ¼ 0). A full characterization of the entangle-
ment between the wires would require more precise
estimators such as the negativity [17] (see, e.g.,
Refs. [18–20] in the context of the Kondo problem), for
which we expect the scaling predictions of this Letter to
hold as well. We emphasize that the limit α → 0 of the EE is

crucial when computing the MI, as it contains information
on the entanglement between the two wires.
Bosonization and RG analysis.—We study the entangle-

ment in the physically interesting case where the impurity
is relevant in the renormalization group (RG) sense. We
consider energies much smaller than the bandwidth, where
field-theoretic results are applicable. The large-distance
physics of the two XXZ half chains can then be described
by a LL with Luttinger parameter g−1¼2−ð2=πÞarccosΔ
[21]. After bosonization, the LL theory consists of a
massless compactified boson, with right and left moving
components scattering on the impurity. Unfolding the semi-
infinite wires to obtain chiral bosons on the real line, one
finds

H ¼ v
2π

Z X
a¼1;2

dxð∂xϕaÞ2 þHimp½ϕað0Þ�; (2)

where a ¼ 1, 2 labels the wires. The impurity interaction
reads Hwl

imp ¼ λ cos
ffiffiffiffiffiffiffiffi
2=g

p ðφ2ð0Þ − φ1ð0ÞÞ (respectively,

Hdot
imp ¼ λSþ0

P
ae

−i
ffiffiffiffiffi
2=g

p
ϕað0Þ þ H:c:) in the weak link

(respectively, dot) case with λ ∝ J0 þ � � �. Therefore [22],
the weak link impurity has dimension g−1 and is relevant
for attractive interactions (Δ < 0, g > 1) only. The system
“heals” under renormalization, flowing to a strong-
coupling fixed point where the impurity is fully hybridized
with the wires. The crossover is characterized by the energy
scale TB ∝ ðJ0Þ1=ð1−gÞ. Conversely, the dot impurity is
always relevant, and at strong coupling the impurity is
screened over a typical length scale ξB ∼ T−1

B (the “Kondo
screening cloud”), with TB ∝ ðJ0Þ2=ð2−gÞ.
Other impurity problems can be treated similarly, includ-

ing the anisotropic Kondo problem, the interacting resonant
level model, or the tunneling between fractional quantum
Hall edges [3,4,23]. The resulting chiral field theory can be
folded back into an integrable boundary problem, which is
usually convenient to perform calculations. In our case,
however, we stress that folding procedures are incompatible
with the asymmetric geometry of Fig. 1(a), and one must
maintain the original unfolded formulation, which is non-
integrable in general.
Ultraviolet (UV) and infrared (IR) limits, perturbation

theory.—The difficulty of computing the EE Sðl; LÞ in this
impurity problem stems from the energy scale TB, and the
asymmetric geometry. The weak and strong coupling limits
can, however, easily be analyzed using conformal field
theory (CFT) results [24,25]. In the weak coupling (UV)
limit (L, l ≪ T−1

B ) the physics is essentially given by two
decoupled wires with the interval at one boundary, so the
EE reads

SUV ∼
1

6

�
ln

L − l
a

þ ln
l
a

�
; (3)

(a)

(b)

FIG. 1 (color online). Geometries considered in this Letter.
We consider two Luttinger liquids (LLs) connected through an
impurity, here a quantum dot. We are interested in (a) the
entanglement entropy Sðl; LÞ of an interval, not necessarily
centered on the impurity (l ≠ L=2), and in particular in the limit
l ≪ L, and (b) the mutual information IðLÞ of two intervals of
size L, with the impurity at their extremity.
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where a is a UV cutoff (lattice spacing), and we have
inserted the central charge c ¼ 1 of the LL liquid. For
α ¼ ðl=LÞ ≠ 0, this becomes SUV ∼ 2 × 1

6
ln L for large

L, whereas for α → 0 (i.e., l ∼ a), one has instead
SUV ∼ 1

6
ln L, since the interval contains only a single half

wire. Clearly, SUV contains nonuniversal terms when
α → 0, since the limiting procedure necessarily refers to
the lattice spacing.
In the strong coupling (IR) limit (L, l ≫ T−1

B ) the
interval is in the bulk of a single healed wire, whence

SIR ∼
1

3
ln

L
a
. (4)

Thus, for α → 0, the logarithmic term of the EE increases
under renormalization: 1

6
lnL⟶ 1

3
lnL. This increase is

expected, and witnesses to the “healing” of the chain upon
renormalization.
Concerning the MI, one has IUV ¼ 0 at high energy,

since the chains are decoupled, and IIR ∼ 1
3
ln L at low

energy. Starting from these well-understood fixed points at
tunneling amplitudes λ ¼ 0 and λ ¼ ∞, one could hope to
compute the EE or the MI perturbatively. However, the
conclusions of Ref. [10], obtained for a symmetric interval,
apply to any α. The weak-coupling expansion of Sðl; LÞ is
plagued by strong infrared divergences, indicating a non-
analytic behavior in λ, while the strong-coupling expansion
can, in principle, be computed following Refs. [11,12],
although it would fail to capture the crossover physics. The
nonperturbative nature of the weak-coupling expansion has
unfortunately been overlooked previously.
Universal scaling of the entanglement.—Even though

Sðl; LÞ (including the limit l=L → 0) cannot be computed
in general, one can still infer its universal scaling form.
For a symmetric interval (α ¼ 1

2
), it was argued [12] that

Sðl ¼ L=2; LÞ − SIR is a universal function of LTB. Also
in our case, we expect the EE to be related to a universal
scaling function, interpolating between the weak and strong
coupling regimes. However, it is clear from the evolution of
the ln L term under the RG flow discussed above that
Sðl; LÞ − SIR itself cannot be a scaling function of LTB for
all values of l=L. Instead, we shall argue that the EE admits
a general scaling

∂Sðα ¼ l=L; LÞ
∂ lnL ¼ fðLTB;l=LÞ (5)

with fð0; 0Þ ¼ 1=6 and fð0;l=L ≠ 0Þ ¼ 1=3 in the UV
limit, and fð∞;l=LÞ ¼ 1=3 at low energy. This scaling
formula is physically appealing as it somehow follows the
ln L term during the flow. Consequently fðLTB;l=LÞ can
be thought of as some kind of “effective central charge,”
thus allowing a more precise interpretation of the numerics
in Ref. [8], where a “length-dependent effective central
charge” was introduced. One must be careful, however,
since the derivative with respect to ln L obviously picks up
other terms that are not logarithmic in L.
Our main result (5) can be obtained from the scaling of

the Renyi entropy Sn ¼ ð1=1 − nÞ ln Rn, with Rn ¼ trρn

and ρ the reduced density matrix introduced above. Recall
that the EE can be computed from a replica trick as
S ¼ −ðd=dnÞRnjn¼1. The crucial point is the identification
of Rn as a two-point function of twist fields on an n-sheeted
Riemann surface [24]. In our context of a c ¼ 1 CFTwith a
relevant boundary perturbation, we expect Rn to scale as
(dropping the l dependence for simplicity)

Rn ¼ tr ρn ¼ cn

�
L
a

�
−1
6
ðn−n−1Þ

ΩðLTB; nÞ; (6)
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FIG. 2 (color online). EE scaling function fðx; αÞ with x ¼ LTB and α ¼ l=L. The FF approximation (8), shown as dashed lines, is
compared with numerics for two wires of each N ¼ 32 000 sites and several values of J0. (a) The limit α → 0. The inset shows the MI,
without numerics. (b) Different values of α. For clarity, the numerical data for all values of J0 here carry the same color.
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with c1ΩðLTB; n ¼ 1Þ ¼ 1 so that R1 ¼ 1. Here we have
separated the universal scaling function ΩðLTB; nÞ coming
from the two-point function, and the nonuniversal propor-
tionality coefficients cn that can be thought of as functions
of aTB—they can evolve during the flow, and they depend
explicitly on the UV cutoff a. The entanglement entropy
can thus be expressed as S ¼ hðLTBÞ þ kðaTBÞ, where
hðLTBÞ ¼ −∂n ln Ωjn¼1 þ 1

3
ln LTB and kðaTBÞ ¼

−∂n ln cnjn¼1 − 1
3
ln aTB. To get rid of the nonuniversal

contribution in the general case, we consider a derivative
with respect to ln L to find Eq. (5) as claimed.
Free Fermions exact solution.—At the free fermion point

Δ ¼ 0, the scaling function (5) can be computed exactly by
combining the form factor (FF) approach of Refs. [26,27]
in the massless limit [10] with the defect scattering
formalism [28], where free particles are reflected and
transmitted by the impurity with respective amplitudes
R̂ðωÞ and T̂ðωÞ depending on their energy ω. At leading
order, one finds (see the Supplemental Material [29])

Sðl; LÞ≃ −
1

4

Z
∞

0

dω
ω

e−2LωT̂ðωÞ2

−
1

8

Z
∞

0

dω
ω

½e−4lω þ e−4ðL−lÞω�R̂ðωÞ2. (7)

The IR divergence of Eq. (7) in the ω ≪ 1 limit can be
cured by Γ-function regularization techniques, or, more
elegantly, by computing the logarithmic derivative (5).
In the weak link case, one has T̂ðωÞ2 ¼ cos2ξ and

R̂ðωÞ2 ¼ sin2ξ. The parameter ξ ¼ ðπ=2Þ − 2 arctan J0 is
independent of ω, since the perturbation is exactly mar-
ginal. In this case, Sðl; LÞ can, however, be computed
exactly [5,30], so we turn instead to the more challenging
dot case. (Note that the same formalism applies also to the
weak link case with Δ ¼ −ð1= ffiffiffi

2
p Þ, which is interacting on

the lattice but can be refermionized in the scaling limit.) For
the dot case at Δ ¼ 0, one has T̂ðωÞ2 ¼ ðTB=ðTB þ ωÞÞ2
and R̂ðωÞ2 ¼ ðω=ðTB þ ωÞÞ2, and we stress that R̂2 þ
T̂2 ≠ 1 only because unitarity has been broken by a
Wick rotation in the computation leading to Eq. (7). Our
main result is then the lowest-order FF approximation to the
EE scaling function (5):

fðx; αÞ ¼ 2

3

Z
∞

0

dve−2v
�

x
xþ v

�
2

þ 2

3

Z
∞

0

dv

�
α

e4αv
þ 1 − α

e4ð1−αÞv

��
v

xþ v

�
2

(8)

with the scaling variables x ¼ LTB and α ¼ l=L. Notice
that we have multiplied the actual result of the computation
by a factor 4=3 in order to obtain the correct UV and IR
limits [10]. This renormalization is justified, e.g., by
noticing that resummation of the full FF expansion in
the UV/IR reproduces [10,27] the known CFT result

[24,25]. We note that the high-energy x ≪ 1 expansion
of Eq. (8) contains an x ln x term for all α, thus illustrating
the nonperturbative nature of the EE, as already noticed for
α ¼ 1=2 in Ref. [10].
From Eq. (8) we also obtain the FF approximation to the

MI scaling function:

∂IðLÞ
∂ ln L

≡ gðxÞ ¼ 4

3

Z
∞

0

dv

�
e2v − 1

e4v

��
x

vþ x

�
2

. (9)

In general the MI is only an upper bound on the entangle-
ment between the two wires, but in the limits gð0Þ ¼ 0 and
gð∞Þ ¼ 1=3 the bound is seen to saturate.
Numerical results.—The EE scaling function fðx; αÞ

exhibits a rich, nonmonotonic behavior in both variables
(see Fig. 2), with an especially singular—and physically
interesting—limit α → 0. We now check the accuracy of
the FF approximation (8) against extensive numerics on the
XX spin chain (Δ ¼ 0) with two weak links. Mapping the
problem onto free fermions [31], the reduced density
matrix can be obtained by diagonalizing the correlation
matrix hc†ncmi [32], which in turn can be computed exactly
from one-particle eigenstates (see the Supplemental
Material [29]). To avoid numerical instabilities, we used
both double and 50-digit numerical precision. Our largest
computations, with two wires of N ¼ 32 000 sites each, are
shown in Fig. 2. To avoid boundary effects, we considered
intervals of length L < N=10. The values of S showed
strong parity effects in L, which were attenuated by
averaging data for L and Lþ 1.
Discussion.—The agreement between the FF approxi-

mation (8) to fðx; αÞ and the numerics is excellent,
extending to more than 5 decades in x ¼ LTB and all
values of α, including the α → 0 limit. Note that our results
agree without any free parameter, as the scale TB ¼ ðJ0Þ2
can be computed exactly for Δ ¼ 0. The considerable
qualitative differences between α ¼ 1=100 and α ¼ 0 are
well reproduced by the numerics. (The case α ¼ 0 is
realized numerically by letting the interval start at the
quantum dot site.) The scaling collapse for different values
of J0 is remarkable, except for very small x (high energy)
where the lattice discretization is manifest. Presumably the
small remnant discrepancies with Eq. (8) would disappear
by taking the FF computation to the next order (see
Ref. [10] in the α ¼ 1=2 case).
More importantly, our universal scaling prediction (5)

goes beyond free-fermion systems—or interacting systems
that can be mapped onto free-fermions at low energy, and
provides the correct description of entanglement in quan-
tum impurity systems characterized by a Kondo temper-
ature TB. It would be very interesting to generalize this
prediction to nonequilibrium setups, for example in the
context of quantum quenches [33].
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