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Abstract

A method has been developed in order to assess small volume interdiffu-
sion coefficients from experimental Electron Probe MicroAnalysis concen-
tration profiles of polycrystalline materials by means of Boltzmann-Matano
or den Broeder methods and their complementary Hall method. These
methods have been used as tools for the investigation of the quasi-binary
UO2/U(1−y)PuyO(2−z) interdiffusion, for which obtaining a solid solution in
the bulk of grains is of major interest. In this paper uncertainties on the
interdiffusion coefficient as a function of concentration have been computed
for each method. Small volume coefficient measurements were enhanced by
means of a small angle acquisition profile line with respect to the interdiffu-
sion interface.

Keywords: interdiffusion, volume diffusion, Boltzmann-Matano, Hall, den
Broeder, uncertainty

1. Introduction

Experimental volume interdiffusion coefficients have to be assessed from
binary interdiffusion experiments carried out on polycrystalline materials, as
it is often the case in industrial research and development studies. They
cannot be simply obtained by means of Boltzmann-Matano [1] [2] or den
Broeder [3] methods completed in the plateau areas by Hall [4] method by
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means of discrete integration and derivation techniques from discrete exper-
imental points due to the scattering effect of grain boundary diffusion. Such
a problem has often been solved by means of a manual smoothing of the
experimental curve [5], or using Oishi model [6]. In this work the problem
was sorted out by fitting the diffusion profile with an appropriate function
which can afterwards be handled in order to compute the volume diffusion

coefficient
(
D̃
)

as a function of concentration.

For the three methods uncertainty both upon D̃ and its variable either
the concentration c or the molecular ratio y of the diffusing species has been
assessed by means of an error propagation method. J.F.Cornet [5] had coped

with this problem by first computing D̃(c) versus c, then reassessing the
concentration profile from the interdiffusion coefficient and comparing it with
the initial experimental profile.

2. Volume interdiffusion information

2.1. Acquiring concentration profiles

Interdiffusion profiles have been acquired by means of an Electron Probe
Micro Analyser (EPMA) equipped with an electron gun and 4 wavelength
dispersive spectrometers, which allow for simultaneous measurement of the
intensity of characteristic X-rays of 4 elements. Quantification of an un-
known composition is based on the measurement of standards. The analysed
sample line intensity is measured from a sample and from a standard. This
standard is a compound with known composition. The measured intensities
are corrected for dead time (detector dependent), background and line over-
lap. The relative intensity ratio of the analysed sample line intensities from
sample and standard is calculated. Finally this relative intensity ratio is cor-
rected for the atomic number (Z), absorption (A) and fluorescence (F) effect
to give the concentration of the analysed sample. For interdiffusion studies
the measurement mode used in EPMA are 1D-line scans. A linescan across
a sample is made by moving the sample stage by small 1µm-increments.

2.2. Fitting concentration profiles - Chosing a function

The raw measurement of an EPMA is the weight percent we of an element
e (in our example U, Pu and O). In this work these raw measurements we
along the acquisition axis x are first changed into concentration profiles ce(x)
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on the basis of the chemical formula of the material (e.g. U(1−x)PuyO2−z)
and of the lattice cell parameter a . The weight percent profiles of several
elements may be needed in order to compute the concentration profile of a
single element. If we consider U profile:

wU =
(1− y)MU

(1− y)MU + yMPu + (2− z)MO

(1)

where MU , MPu and MO are U, Pu and O molar atomic weight. How-
ever in our example we only used one weight percent profile at a time to
compute concentration profiles. For this non stoichiometric material z de-
pends only on the plutonium atomic ratio y on the cationic sublattice, on
temperature during the interdiffusion experiment and on oxygen partial pres-
sure pO2 (these latter are supposed constant in the volume of the material):
z = f (y, Texp., pO2). y can be deduced from (1) by solving a third degree
equation and by means of thermodynamic models ([7],[8] or [9]) in order to
compute f (y, T, pO2). Then cPu can be estimated from the cell parameter a
and the thermal expansion coefficient α. (U1−y, Puy)O2−z is a Cubic Face
Centered (CFC) solid solution the lattice parameter of which is for the 4th
order holohedral lattice cell [10]: a = [(547.0 + 30.1 z) + (11.0 z − 7.4) y] pm
and the thermal expansion coefficient of which is αz,T = αz=0,T (1 + 3.9 z)
[10]. The molar volume Vm reads:

Vm =
N
4

[
a3 (1 + α)3] (2)

and

cPu =
y

Vm
=

4 y

(A1 +B1 y)3 (1 + α)3 N
(3)

Simple fitting functions are mentioned in literature [11] in order to reduce
interdiffusion profile noise. They can be tested in order to extract solely
volume interdiffusion from profiles where intergranular diffusion also occurs.
The proposed functions assume that concentration data are antisymmetric
with respect to their inflexion point:

c(x) = 0.25 (tanh(x) + 2) (4)

c(x) = 0.75− 0.5 exp(−0.3x)3

(5)

c(x) = 0.5 +
(
3.49 · 10−3 tan−1(x)

)
(6)
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c(x) = 0.75− 0.25 erfc

(
x

4 D̃∆t

)
(7)

B.Messerschmidt [12] has carried out analytical fittings in order to facilitate

the computation of D̃ vs. c, expanding c as a polynomial in x:

c(x) =
N∑
i=0

ci x
i (8)

S.Mendez both to suppress noise and extract volume diffusion coefficient from
polycrystalline materials in the case of small diffusion coefficients used [13]:

c(x) =
1− exp(−λ1 x)

1− λ2 exp(−λ1 x)
(9)

The first four of them show a major limitation because they are well
suited only for an antisymmetric curve (relatively to its inflexion point).
Messerschmidt method is well suited only for the study of the plateaus of the
interdiffusion profiles. The last one (S. Mendez’s work) does not make these
assumptions, but implicitly makes the hypothesis that the origin has been
taken far enough from the interface so that the concentration slope can be
considered as equal to 0. An advantage of S.Mendez’s fitting function is that
it can handle interdiffusion profile data with very small diffusion coefficients
using large values of λ1 and λ3.

In this work the following function has been used:

c(x) = λ1 − λ2
1− λ3 exp

−λ4 x

1 + λ5 exp−λ4 x
(10)

with a set of parameters λi > 0 i ∈ {1, . . . , 5} which can be different
for x smaller or greater than the inflexion point abscissa x0 and denoted
by l and r subscripts for left and right hand side respectively. ln(λ5) and
ln(λ3) are preferred to λ5 and λ3 for numerical handling in software when
the diffusion coefficients are very small to avoid computational precision loss.
The smaller the diffusion coefficient is, the higher the values of λ3 and λ5 are
and intermediate values during computation may exceed machine storage
representation.
Parameters for the left and right hand side of the function are linked by the
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continuity of the function, which holds in the case of a solid solution but
which may not be the case if a demixtion occurs at the interface, as well as
by the continuity or not of the first derivative of the concentration. This
derivative might not be continuous if the interdiffusion mechanism changes
with composition (e.g. if the interdiffusion profile runs through two different

phases). In that case a discontinuity of D̃ can be balanced by a discontinuity
of the derivative of the concentration. Thus, there is an advantage expressing
c(x) in terms of λ1, λ2, x0 , c(x0) and c′(x0) for the continuous derivative
case,

λ3 = − 2x0 c
′(x0)

c(x0) + λ2 − λ1

(
1− 2 (λ1 − c(x0))

λ2

)
(11)

λ4 = − 2 c′(x0)

c(x0) + λ2 − λ1

(12)

λ5 = − 2x0 c
′(x0)

c(x0) + λ2 − λ1

(13)

whereas when the first derivative of the concentration is discontinuous at the
inflexion point c(x) can be expressed in terms of λ1, λ2, λ4, x0 and c(x0):

λ3 =

[
1− 2

(λ1 − c (x0))

λ2

]
ex0 λ4 (14)

λ5 = ex0 λ4 (15)

λi are meaningful, their value is linked to the maximum and minimum
values of the concentration c along the profile (resp. c+ and c−):

lim
x→−∞

c(x) = λl1 +
λl2 λl3
λl5

= c− (16)

lim
x→+∞

c(x) = λr1 − λr2 = c+ (17)

Expressing (10) in terms of λ1l,λ2l,x0,c (x0),c′ (x0),λ1r,λ2r can be of interest
in the case of continuity of the derivative at the inflexion point:

c (x) =

λ1 −
λ2 − (2 f (x0) + λ2 − 2λ1) e

2 f ′(x0) (x−x0)
f(x0)+λ2−λ1

e
2 f ′(x0) (x−x0)
f(x0)+λ2−λ1 + 1

 (18)

in that case the parameters are denoted mi hereafter. Some features of these
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i mi (continuous case) mi (discontinuous case)
1 λl1 λl1
2 λl2 λl2
3 x0 λl4
4 c (x0) x0

5 c′ (x0) c (x0)
6 λr1 λr1
7 λr2 λr2
8 not applicable λr4

Table 1: Meaning of mi parameters for the two fitting cases

functions make them convenient tools for diffusion studies:
- their derivatives are negative (for λi > 0 ) and tend towards 0 in ±∞:

dc

dx
= −

λ2 λ4

(
expln(λ3)−λ4 x + expln(λ5)−λ4 x

)
(expln(λ5)−λ4 x + 1)2

(19)

c(x) has to be monotoneous ( dc
dx

< 0), otherwise the direction of the flux
would change along the interdiffusion profile.

lim
+∞

dc

dx
= lim
−∞

dc

dx
= 0 (20)

This is required for interdiffusion so that when concentration is that of the
initial materials (i.e. c = cst = c+ or c− at x→ ±∞) dc

dx
= 0 and the flux is

nul.
Two of their properties are of interest for the use of both Boltzmann-Matano
and den Broeder methods as it will be described in sections 3 and 4 respec-
tively:
- they possess a reciprocal function with an analytical expression:

x(c) =
ln
(
λ2 eln(λ3)−ln(λ5)

c+λ2−λ1
− c−λ1

c+λ2−λ1

)
+ ln(λ5)

λ4

(21)

- the function g(x) = x dc
dx

has got primitives, let denote P the one which is
λ2 Ln(λ5) (eLn(λ3)−Ln(λ5)+1)

λ4
at −∞:

P (x) =
λ2 (eln(λ3)−Ln(λ5)+1) (Ln(eλ4 x−Ln(λ5)+1)+Ln(λ5))

λ4

− λ2 (eLn(λ3)−Ln(λ5)+1)x eλ4 x

eλ4 x+λ5

(22)
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The existence of such analytical functions simplifies a lot the numerical esti-
mation of D̃ vs. c.
A more mathematical approach consisting in expanding the solution of the
second Fick law on a basis of erf functions has been developed by A.G.
Nikitin [14], however this method also requires both to find the set of coef-
ficients from the experimental data (deconvolution) and then to numerically

rebuild D̃ vs. c. Handling a simple function as the one proposed in this work
is easier.

2.3. Extracting volume diffusion profiles

Experiments provide profiles acquired by means of an Electron Probe
MicroAnalyser (EPMA) which are due both to volume and faster grain-
boundary diffusion phenomena. In the case where material grains are large
enough, the contribution of grain-boundary diffusion may be substracted by
keeping along the profile the only points which pertain to the bulk of grains.
Since the microstructure (grain boundaries) may not have been revealed by
a chemical or thermal etching, a way of selecting ”good” points would be to
keep only local maxima for c < c(x0) and local minima for c > c(x0). A way
of automatizing such a procedure is to give a weight wi to each point (xi, ci),
i ∈ {0, . . . , n} smaller when the concentration is too low below the current
smoothed curve (the one of the current iteration k) on the left side of the
curve and smaller when the concentration is too high above this same curve
on the right side of the inflexion point.

A Hooke and Jeeves procedure [15] has been used in order to minimize
the test function:

χ2
k =

n∑
i=0

wki (ci − c (xi))
2 (23)

with

wki = 10−3 w0i

∣∣∣∣1− contrib χ2
k−1

χ2
k−1

∣∣∣∣p (24)

where w0i are the initial weights depending on the confidence associated with
point #i (based on the discrepancy, for instance, between the sum over all
elements of their weight percentage and 100%):

w0i = exp
− 1

2

(
100−

∑nel.
e=1 we

σw

)2

(25)
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where σw is the uncertainty upon the sum over the weight percent of the
elements.
contrib χ2

k−1 is defined by:

contrib χ2
k−1 =

wk−1i (ci − c (xi))
2

χ2
k−1

(26)

The parameters for the Hooke and Jeeves method are the mi.

This method has been used on a UO2/U1−yPuyO2−z polycrystalline sam-
ple. Figure 1 gives the raw and fitted concentration curves for λl 1 = 0.033mol. cm−3,
λl 2 = 0.0063mol .cm−3, x0 = 572.5µm, c (x0) = 0.0336mol .cm−3, c′ (x0) =
−0.0003375mol .cm−3.µm−1, λr 1 = 0.0317mol .cm−3 and λr 2 = 0.0093mol .cm−3,
so that λ3l = 3.63785 · 10+22, λ5g = 2.78188 · 10+22, λ3r = 9.71611 · 10+15,
λ5r = 7.59326 · 10+15.

A drawback of the method is the need to find a set of parameters close
enough to the one which leads to a minimum in χ2 in order to converge.
However it is not a strong constraint since equations (11), (13), (16) and
(17) help assigning first values to λi.
An advantage of this method is to give the uncertainties upon the seeked
parameters which are the values of the search steps in each direction (one
direction per parameter) when χ2 stops decreasing.

2.4. Uncertainty upon c

2.4.1. Limits of EPMA for very small interdiffusion coefficients: a source of
uncertainty

Uncertainties can be assigned to EPMA measurements using ISO/GUM
recommandation [16]. Both, physical phenomena following Poisson law (X-
Ray emission of the probed volume) and other key factors under study in
the measurement process regarded as corrections (ZAF, surface roughness...)
are taken into account:

wSpl =

(
NSpl
tSpl
−

NbckgdSpl
tbckgdSpl

)
(
Nstd
tstd
− Nbckgdstd

tbckgdstd

) wstd cZAF cinhom. croughness cn.m.el. (27)

where Spl stands for sample, wSpl: weight percent of the measured element
in the sample, NSpl: count number due to the sample, tSpl: time of acqui-
sition for the sample, bckgd: background, std: standard, wstd: the weight
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Figure 1: raw and fitted concentrations for λl 1 = 0.033mol .cm−3,
λl 2 = 0.0063mol .cm−3, x0 = 572.5µm, c (x0) = 0.0336mol .cm−3, c′ (x0) =
−0.0003375mol .cm−3.µm−1, λr 1 = 0.0317mol .cm−3 and λr 2 = 0.0093mol .cm−3(
λ3l = 3.63785 · 10+22, λ5g = 2.78188 · 10+22, λ3r = 9.71611 · 10+15, λ5r = 7.59326 · 10+15

)
.
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percent of the measured element in the standard, cZAF : ZAF correction,
cinhom.: correction due to the inhomogeneity of the material, croughness: cor-
rection due to the roughness of the sample, cn.m.el.: correction due to non
measured elements. Main of the uncertainty causes aforementioned generally
lead to very small corrections, except in the case of interdiffusion, the inho-
mogeneity inherent to the diffusion phenomenon itself. In the same manner
as raw EPMA measurements can be corrected by a factor cinhomog. due to
the inhomogeneity of the sample, the interdiffusion profile c(x) expressed in
terms of the concentration of an element (mol .cm−3) can be corrected by an
analog correction c′inhomog.. In this work the diffusion contribution to c′inhom.
has been analysed. Figure 2 represents the axis of the acquisition line along
which measurements were carried out as well as the interface of the materials.

For simplicity the measurement volume of the microprobe is supposed to be
a sphere of radius R = 0.5µm. If the acquisition line is orthogonal to the
interface and c denotes the value of c measured by the microprobe,

c (xi) =
3

4R3

∫ xi+R

xi−R

(
R2 − (x− xi)2) c(x) dx (28)

where c(x) is given by (18). As a matter of fact the measured value of concen-
tration which is fitted is already an averaged one: c cannot be measured only
c can. In order to evaluate the real point value of this function (c(x)) several
acquisitions would be needed with a varying starting point. This cannot be
the case with the EPMA sample holder the position of which can only be
shifted by 1 µm along two perpendicular directions and the process would
however be too time consumming. Evaluation of the impact of this averaging
effect is carried out on the measured concentration c instead, assuming that:

c− c ≈ c− c (29)

with c the average of the measured c concentration. This should not be too
rough an approximation as far as these differences remain small.
In order to be able to measure very small diffusion coefficients the acquisition
line makes a very small angle α with respect to the interface. Let Yi be the
orthogonal projection of the point of abscissa xi along the acquisition line
onto the Y axis (perpendicular to the interface in the plane defined by the
probed surface of the sample) and c⊥ (Yi) the concentration in the plane the
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Figure 2: EPMA acquition line on top of the sample (with iso-concentration planes)

equation of which is Y = cst = Yi.

c⊥ (Y ) = cλ1,λ2,λ3,λ4,λ5

(
Y

sin(α)
+ xi

)
= c

λ1,λ2,λ3 e−λ4 xi ,
λ4

sin(α)
,λ5 e−λ4 xi

(Y )
(30)

c (xi) becomes:

c (xi) = c⊥ (Yi)

= 3
4R3

∫ Yi+R
Yi−R

(
R2 − (Y − Yi)2) c

λ1,λ2,λ3 e−λ4 xi ,
λ4

sin(α)
,λ5 e−λ4 xi

(Y ) dY

(31)
The closer to the interface the iso-concentration planes are, the narrower
they are one from each other for a constant concentration step. Thus, it can
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Figure 3: Averaged EPMA concentration c and EPMA concentration c versus c

be expected that the averaging effect of the measurement is greater near the

interface where
∥∥∥−→∇c∥∥∥ is high except at the inflexion point if the profile is

antisymmetric (both side contributions annihilate).
Figure 3 gives the relative difference between c and c. In the following c
notation is used instead of c.

2.4.2. Uncertainty upon x

Uncertainty upon the x coordinate along the profile has been evaluated
taking into account several points:
- the surface of the sample may not be parallel to the sample-holder plane,
- the surface of the sample may not be a plane,
- the material may have a high thermal expansion coefficient so that dis-
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tances between two points when the EPMA measurement is done may be
much shorter than the distance between these same points at the tempera-
ture of the experiment.
Despite efforts made to smoothen the sample surface prior to EPMA anal-
ysis, on a millimeter scale (i.e. interdiffusion profile length), the surface of
the sample may not be a plane. Or, even for a perfectly planar sample, its
plane may not be perfectly parallel to the sample-holder surface. The equa-
tion of the mean plane of the sample surface in the axis of the microprobe
is obtained as follow. The three coordinates relatively to the sample-holder
axis system of each acquisition point along a profile, as well as those of at
least two extra reference points, e.g. these denoted A and B in Figure 4 are
used for the determination of the mean least-square plane. In the case of

Figure 4: EPMA Pu X map with an acquisition line and the two points A and B at each
end of the interface
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several acquisition profiles in the same area of the material points from all
the profiles are taken into account. The initial points are projected onto this
plane and then projected onto a least-square line in the projection plane.
Least-square uncertainties upon these coordinates are then calculated. A
subsequent correction is done along a profile on the basis of the Pu weight
content and on the stoichiometry (deduced from Pu weight content, temper-
ature and oxygen potential) and temperature in order to compute a thermal
expansion coefficient and correct point spacing along an acquisition profile.
In the case of our materials, and in the specific thermodynamic conditions
used (composition, temperature, oxygen potential), the overall correction,
obtained as the uncertainties associated to the least square fitting methods
was close to 1/1000 which means u(x) ' 0.5µm near the inflexion point x0

(the first measurement point was chosen as the origin and the profiles have
approximately 1000 points).
In the case of Boltzmann-Matano method (see section 3), this uncertainty is
taken into account as the uncertainty upon x0 and xM , in the case of den
Broeder method (see section 4) as the uncertainty upon x0, whereas in the
case of Hall method as that upon x− xM (see section 4.3).

2.4.3. Uncertainty upon c function

Uncertainty upon concentration function has got several origins,
- the acquisition technique (here the EPMA), its limitations have been de-
scribed hereabove, its contribution on the uncertainty upon c is utech.(c) = δc,
- the choice of the fitting function: small variations in the value of parameters
mi can give acceptable values for the fitting curve, for the case of a concen-
tration function c(x) the derivative of which is continuous at the inflexion
point the contribution to u(c) reads:

ufitt.(c)
2 =

(
∂c
∂λl1

)2

u (λl1)2 +
(

∂c
∂λl2

)2

u (λl2)2 +(
∂c
∂x0

)2

u (x0)2 +
(

∂c
∂c(x0)

)2

u (c (x0))2 +
(

∂c
∂c′(x0)

)2

u (c (x′0))2 +(
∂c
∂λr1

)2

u (λr1)2 +
(

∂c
∂λr2

)2

u (λr2)2

(32)
all these partial derivatives have been computed analytically from equation
(18).

In order to express final D̃ values versus the atomic ratio y of one cation
of the interdiffusion species (here Pu), the relationship (34) between y, c and
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z (y = y (c, z)) is used.
If U concentration is considered:

cU =
4 (1− y)

(A1 +B1 y)3 (1 + α)3 N
(33)

or Pu concentration:

cPu =
4 y

(A1 +B1 y)3 (1 + α)3 N
(34)

in both cases it can be noticed that y is a root of a third degree polynomial
depending on c and z values, and its uncertainty, u(y), depends both on
u(c) and u(z). ∂y

∂c
and ∂y

∂z
have been computed anatlytically according to the

propagation linked to the third degree polynomial resolution method.

u(y)2 =

(
∂y

∂c

)2

u(c)2 +

(
∂y

∂z

)2

u(z)2 (35)

u(c) is computed as afore mentioned.
It could sound surprising that y be computed from c if we refer to (2.2). In
section (2.2) values of c and y are those at the experimental points whereas
in this section their value are considered at any point x along the acquisition
line whether it is at the same location of an experimental point or not and
thus in this section y is deduced from c.
Thus, the third origin of uncertainty is the partial lack of knowledge of the
chemical composition of the particular sample we used: both initial parts
of the sample had been finely characterized but as the heat treatment was
stopped at the end of the interdiffusion experiment the oxygen content in-
formation from EPMA was not quantitative enough all along the profile to
be used and the oxygen content had to be calculated by means of a thermo-
dynamic model using temperature, oxygen potential and Pu EPMA concen-
tration profile.
Table 2 sums up the different uncertainties used for the example of our study.

3. Boltzmann-Matano volume interdiffusion coefficient D̃

Although Boltzmann-Matano method is less used because of more re-
cent advanced methods such as Sauer and Freise [17], Wagner [18], and den
Broeder modifications, it remains a straightforward starting point to evaluate
interdiffusion coefficients.
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parameter value uncertainty
λl1 0.033 (mol .cm−3) 0.001
λl2 0.0063 (mol .cm−3) 0.0002
x0 572.5 (µm) 0.5

c (x0) 0.0336 (mol .cm−3) 0.0006
c′ (x0) −0.0003375 (mol .cm−3µm−1) 0.0000025
λr1 0.0317 (mol .cm−3) 0.001
λr2 0.0093 (mol .cm−3) 0.0002
α 0.03176(rd) 0.00046
z computed 0.013
λl3 computed : 3.63785 · 10+22 −
λl5 computed : 2.78188 · 10+22 −
λr3 computed : 9.71611 · 10+15 −
λr5 computed : 7.59326 · 10+15 −

Table 2: Parameter uncertainties set by the user in the studied example

3.1. Boltzmann-Matano method

According to Boltzmann-Matano method D̃ expression is the following:

D̃ (c∗) = −sin
2(α)

2 ∆t

∫ x∗
−∞(x− xM) dc

dx
dx

dc
dx
|x∗

(36)

where α is the angle between the acquisition line and the interface and ∆t the
duration of the interdiffusion experiment (in isothermal conditions). In this
work the abscissa xM of ’Matano plane’, (the one crossed by an equal amount
of matter one way and the other) can be expressed using c(x) definition (18)
and its properties:

xM =
(c(x0)+λl 2−λl 1)

(
x0+

log(2) (c(x0)+λl 2−λl 1)
c′(x0)

)
c−−c+

+
(c(x0)+λr 2−λr 1)

(
x0− log(2) (c(x0)+λr 2−λr 1)

c′(x0)

)
c−−c+

(37)

For x < x0: ∫ x∗

−∞
(x− xM)

dc

dx
dx = P (x∗, λr i)− xM(c− c+) (38)
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while for x ≥ x0:∫ x∗

−∞
(x−xM)

dc

dx
dx = P (x0, λr i)+P (x∗, λl i)−P (x0, λl i)−xM(c−c+)) (39)

In any case:

dc
dx
|x∗ = − λ2 λ4

eλ4 x
∗−Ln(λ5)+eLn(λ5)−λ4 x+2

+ λ2 λ4

(eλ4 x
∗−Ln(λ3)+eLn(λ5)−Ln(λ3)) (eλ4 x

∗−Ln(λ5)+1)

−λ2 λ4 eLn(λ3)−Ln(λ5)

eλ4 x
∗−Ln(λ5)+1

(40)
Figure 5 gives Boltzmann-Matano interdiffusion coefficient as a function of
uranium concentration cU . As concentration is close to its limits (c−, c+) the

values of D̃ obtained by Boltzmann-Matano method are abnormally high as
c tends towards its limits c+ and c−. The uncertainty upon D̃ is discussed
hereafter.

3.2. Uncertainty upon Boltzmann-Matano interdiffusion coefficient

Such uncertainty assessment with a fitting function have already been
carried out: B. Messerschmidt [12] had calculated an uncertainty upon D̃ (c)
on the basis of the polynomial expansion of c (x) but with the aim of em-
phasizing the weakness of Boltzmann-Matano method in the plateau areas.
J.F.Cornet used an iterative method [5].

The uncertainty upon D̃ from Boltzmann-Matano method with our fitting
function has been studied hereafter. Several sources of uncertainties have
been considered and are described hereafter.

3.2.1. EPMA averaging effect

The averaging effect of the EPMA has already been described for con-
centration c. The same assumption as that of section 2.4.3 is made here:

|δD̃| = |D̃(c)− D̃ (c) | ≈ |D̃ (c)− D̃
(
c
)
| (41)

which leads to a contribution to u
(
D̃
)

:

utech.

(
D̃
)

= δD̃ (42)

Although
∫

(x− xM) dc
dx

has got an analytical expression on the basis of
cλ1,λ2,λ3,λ4,λ5 , as well as dc

dx
, it is not the case for analog expressions with c.
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Figure 5: Boltzmann-Matano interdiffusion coefficient (D̃) as a function of uranium con-
centration (cU )

.
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For this reason analog expressions related to c such as the integral in (31)
can only be computed numerically. They have been evaluated by a Gauss-
Legendre method with 24 points ξj in the reduced interval [−1; 1].

dc
dx
|Yi = sin(α)

4
3
R3

∫ Yi+R
Yi−R (−2Yi + 2Y ) c

λ1,λ2,λ3 e−λ4 xi ,
λ4

sin(α)
,λ5 e−λ4 xi

(Y ) dY

= sin(α)
4
3
R3 R

∑24
j=1wj (−2Yi + 2 (Rξj + Yi)) cλ1,λ2,λ3 e−λ4 xi ,

λ4
sin(α)

,λ5 e−λ4 xi
(Rξj + Yi)

(43)
where ξi are Gauss-Legendre reduced abscissa and wi their associated weights.
Since the analog computation of D̃(c) is numeric its value may be slightly af-

fected by the integration method, both D̃(c) and D̃(c) have been computated

numerically as far as the evaluation of |D̃(c) − D̃ (c) | was concerned. For
this purpose

∫
(x− xM) dc

dx
is approximated by means of a simple trapezium

rule scheme, and dc
dx

by a simple forward finite differences method.
Since the uncertainty due to the averaging effect of the measurement tech-
nique (the main cause of EPMA uncertainty in our case) is of prime interest,
it is compared to the value of the interdiffusion coefficient. Figure 6 shows the
uncertainty upon D̃ due to this averaging effect denoted δD versus concentra-
tion for our example (λl 1 = 0.033mol .cm−3, λl 2 = 0.0063mol .cm−3, x0 =
572.5µm, c (x0) = 0.0336mol .cm−3, c′ (x0) = −0.0003375mol .cm−3.µm−1,
λr 1 = 0.0317mol .cm−3 and λr 2 = 0.0093mol .cm−3). Hence, in this spe-
cific case, it can be concluded that in the studied range of U concentra-
tion EPMA averaging measurement process can be regarded as negligible
leading to reliable values of D̃ whereas for smaller interdiffusion coefficients
other techniques may be required. For instance Rutherford Back Scattering
(RBS) can be used if both parts of the interdiffusion couple are taken apart
at the end of the experiment for analysis in the range 0.1µm up to 2µm
[19] or, on a decreasing scale with tens nanometer resolution, Secondary Ion
Mass Spectrometry (SIMS) can be applied [20] to analyse each separated
part of the interdiffusion couple, or, with 1 nanometer resolution, coupled
with Transmission Electron Microscopy (TEM) with high angle annular dark
field (HAADF) imaging, Electron Dispersive Spectroscopy (EDS) and paral-
lel electron energy loss spectroscopy (PEELS) [21] .
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3.2.2. Uncertainty upon xM
Uncertainty upon xM value is taken into account, which is at the origin

of the development of other methods such as den Broeder’s method.

u (xM)2 = δ2xM+(
∂xM
∂λl1

)2

u (λl1)2 +
(
∂xM
∂λl2

)2

u (λl2)2 +(
∂xM
∂x0

)2

u (x0)2 +
(

∂xM
∂c(x0)

)2

u (c (x0))2 +
(

∂xM
∂c′(x0)

)2

u (c (x′0))2 +(
∂xM
∂λr1

)2

u (λr1)2 +
(
∂xM
∂λr2

)2

u (λr2)2

(44)
Except for δxM , analytical expressions have been used for the caculation of
the partial derivatives ∂xM

∂mi
In the case of the studied profile u (xM) = 0.5 and xM = 576.3± 0.5µm.

This uncertainty leads to a contribution to the uncertainty upon D̃:

u
(
D̃
)

=
∂D̃

∂xM
u (xM) (45)

This effect is also given in Figure 6 and cannot be neglected as c → c−. A
way of avoiding such a high uncertainty on this side of the concentration
range would be for this half part of the domain (c ≥ c (xM)) to evaluate D̃
by means of:

D̃ (c∗) =
sin2(α)

2 ∆t

∫ +∞
x∗

(xM − x) dc
dx
dx

dc
dx
|x∗

(46)

instead of (36).

3.2.3. Uncertainty upon α

D̃ depends also on the angle α of the acquisition line with the interface:
∂D̃
∂α

= 2 cos(α)
sin(α)

D̃. Although the choice of a small α angle leads to a high depen-

dency of D̃ on α, it has to be noticed that it increases the number of points
in the vicinity of the interface, i.e. where concentration varies a lot and thus
increases the precision upon λl1,...,λr2. The number of significant points Ns

(i.e. with a high weight because they influence greatly the shape of the curve

c = c(x)) increases by a factor 1
sin(α)

and u (mi)α ∝
1√
Nα
s

=

√
sin(α)√
N
π
2
s

. In our

example α = 0.033, and
u(mi)

N
π
2
s

u(mi)Nαs
' 5.5 so that mi parameters (λl1,...,λr2) are
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at least 5 times more precise than they would have been if deduced from the
perpendicular profile.
This contributes to the uncertainty upon D̃:

u
(
D̃
)

=
∂D̃

∂α
u (α) = 2 · cotg (α) D̃ · u (α) (47)

u (α) is assessed on the basis of the uncertainty upon the least-square profile
line and the uncertainty upon A and B location with respect to the interface

of the materials. This contribution to u
(
D̃
)

is minimum as D̃ reaches its

minimum. This third effect is also represented in Figure 6 but remains smaller
than 1/10 of the measured coefficient all along the profile.

3.2.4. Uncertainty upon mi

D̃ depends also directly on the parameters λl1,...,x0,...,λr2. Its partial

derivatives ∂D̃
∂mi

are calculated analytically once and are part of the software
which has been developped.
Overall, D̃ uncertainty reads:

u
(
D̃
)2

= δD̃2
y + ∂D̃

∂xM

2
u(xM)2 + ∂D̃

∂α

2
u(α)2 + ∂D̃

∂λl 1

2
u(λl 1)2 + ∂D̃

∂λl 2

2
u(λl 2)2+

∂D̃
∂x0

2
u(x0)2 + ∂D̃

∂c(x0)

2
u(c (x0))2 + ∂D̃

∂c′(x0)

2
u(c′ (x0))2+

∂D̃
λr 1

2
u(λr 1)2 + ∂D̃

∂λr 2

2
u(λr 2)2

(48)

Figure 7 gives the various relative contributions to u
(
D̃
)

. For this par-

ticular case of study all parameter uncertainties have a nearly equal effect
on D̃ in the uranium composition range [0.023; 0.0402]mol .cm−3. The most
sensitive ones are the position of the inflexion point (x0, c (x0)) as well as the

slope at this point c′ (x0). However the contribution to D̃ uncertainty u
(
D̃
)

turns out to be higher at each end of the diffusion profile. Contributions
appear not to be symmetric with respect to the limits of the concentration
interval simply reflecting the fact that the interdiffusion profile is not sym-
metric:
- c (x0) = 0.0336mol .cm−3 6= c−+c+

2
= 0.03145mol .cm−3,

- λl i and λr i are not identical.
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Figure 6: Contribution of the averaging effect of the Electron Probe MicroAnalyser (δc),
of the uncertainty of the profile angle with the interface (u (α)) and of Matano abscissa
uncertainty (u (xM )) to Boltzmann-Matano volume interdiffusion diffusion coefficient un-
certainty for λl 1 = 0.033mol .cm−3, λl 2 = 0.0063mol .cm−3, x0 = 572.5µm, c (x0) =
0.0336mol .cm−3, c′ (x0) = −0.0003375mol .cm−3.µm−1, λr 1 = 0.0317mol .cm−3 and
λr 2 = 0.0093mol .cm−3

.
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Figure 7: Contribution of uncertainties upon λ1l, λ2l, x0, c (x0), c′ (x0), λ1r and λ2r to
Boltzmann-Matano interdiffusion coefficient
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4. Den Broeder volume interdiffusion coefficient D̃

Den Broeder method as been extensively used in the case of metals [22],
[23] as well as ceramics [24]. The advantage of this method compared to
Boltzmann-Matano method is mainly that it does not depend on the Matano
abscissa and (to a lesser extent in our case) it can take into account atomic
(or molecular) volume variations with concentration ([22],[23]).

4.1. Den Broeder method

In this method the interdiffusion coefficient is computed as a function of
the atomic (or molecular in our case) ratio of one of the diffusing species N2

and of its relative value Y . Let us say species #2 for instance. Then D̃ reads:

D̃ (N∗2 ) =

(
N+

2 −N−2
)
Vm (N∗2 )

2 ∆t
(
∂N2

∂x

)
x=x∗

[
(1− Y ∗)

∫ x∗

−∞

Y dx

Vm
+ Y ∗

∫ +∞

x∗

(1− Y ) dx

Vm

]
(49)

This equation can be expressed in terms of c(x) for which the analytical form
defined by equation (18) is used here too. In this section c(x) is denoted by
c1(x) where 1 labels the species 1:

D̃ (c∗1) = −1
c−1 −c

+
1

1

c1 ( dVmdx )
x=x∗

+Vm ( dc1dx )
x=x∗[(

c−1 − c∗1
) ∫ x∗
−∞

(
c1 − c+

1

)
dx+

(
c∗1 − c+

1

) ∫ +∞
x∗

(
c−1 − c1

)
dx
]
(50)

where c−1 and c+
1 are defined according to equations (16) and (17).

It is to be noticed that the discrete points used for the evaluation of all the
terms are computed using the analytical expression of c1 (x), which means
that they can be chosen as close one to each other as needed.
The integrals in Den Broeder coefficient evaluation can be computed analyt-
ically. Since in the case of our material dVm

dx
cannot be expressed analytically

due to Vm expression (2), it has been computed by means of a Lagrange
polynomial based derivation matrix with three point stencils, and the whole
expression of D̃ has been computated on a numerical basis. A simple trapez-
ium rule was used for the determination of the integrals. Figure 8 gives den
Broeder interdiffusion coefficient compared to that of Boltzmann-Matano.
They are very close one to another.
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Figure 8: Den Broeder interdiffusion coefficient (D̃dB blue) and Boltzmann-Matano inter-

diffusion coefficient (D̃B−M red) as a function of uranium concentration (cU )

.
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4.2. Uncertainty upon Den Broeder interdiffusion coefficient

Since in our material applications the atomic ratio y is a meaningful
parameter, D̃ uncertainty has been estimated on the basis of the variables y

and Vm (rather than c and Vm) and their contribution to u
(
D̃
)

: δD̃y which

is the variation in D̃ due to the uncertainty upon y (i.e. u(y)) and δD̃Vm

which is the uncertainty in D̃ due to the uncertainty upon Vm.

u
(
D̃
)2

= δD̃2
y + δD̃2

Vm +

(
∂D̃

∂α

)2

u (α)2 (51)

δD̃y (resp. δD̃Vm) is simply obtained by computing D̃ using y and y ± u(y)
(resp. Vm± u (Vm)). u(y) is computed as described in section 2.4.3, i.e. as a
function of u(z) and u(c), so that the influence of each parameter λ1, λ2,x0,
c (x0) and c′ (x0) can be studied. The partial derivatives of the expression of
the molar volume given in section 2.4.3 lead to the uncertainties upon Vm:

u (Vm)2 =

[(
∂Vm
∂z

)2

u(z)2 +

(
∂Vm
∂y

)2

u(y)2

]
(52)

Thus, D̃ uncertainty in den Broeder method is built up of the same terms as

for Boltzmann-Matano method, without ∂D̃
∂xM

u (xM) term but with an extra
∂D̃
∂Vm

u (Vm) which remains smaller.
Despite the higher uncertainty of Boltzmann-Matano method due to xM , on
our example both methods give identical results. This is mainly due to the
choice of the fitting function which has lead to analytical expressions for the
Boltzmann-Matano method. As concentration comes closer to its plateau
values (c− and c+) on each side of the interfaces, den Broeder or Boltzmann-
Matano methods are not precise enough to be used, instead Hall method
is preferred. The different sources of uncertainties are given in Figure 9.
This method is commonly used in conjonction with both of these methods
in order to estimate D̃ vs. c on the whole concentration range (Boltzmann-
Matano method in conjonction with Hall method: in the case of uranium and
plutonium interdiffusion [25], or in the case of Ti and a Mo-alloy interdiffusion
[26], den Broeder method in conjonction with Hall method: in the case of Ge
in nickel alloys [27], Ti-Mo interdiffusion [28], or carbon diffusion in ferritic
steels [29]).
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Figure 9: Contribution of y, V m and α uncertainties upon Den Broeder interdiffusion
coefficient as a function of uranium concentration (cU )

.

4.3. Hall method

In this section too, the discrete points used are generated as close as
needed one to each other by means of the analytical form of c(x) given by
equation (18).

The relative atomic ratio Y is defined by: Y = c−cmin
cmax−cmin and U by

U = erf−1 (2Y − 1). As c → cmin (resp. cmax), U versus x−xM√
∆t

becomes a

straight line: U → (x−xM )h−√
(∆t)

+ k− (resp. U → (x−xM )h+√
(∆t)

+ k+).

For the side of the curve left to the inflexion point (decreasing concentration
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profile) D̃ reads:

D̃− =
1

4h2
−

[
1− k−

√
π expU

2

(1− erf(U))
]

(53)

with limx→−∞ D̃− = 1
4h2
−

and on the right hand side:

D̃+ =
1

4h2
+

[
1 + k+

√
π expU

2

(1 + erf(U))
]

(54)

with limx→+∞ D̃+ = 1
4h2

+
.

k−, h−, k+ and h+ are obtained by fitting the asymptots of the interdiffusion
profile U vs. x−xM√

∆t
(i.e. on each side, q% of the concentration interval[

cmin; cmin + q+

100
(cmax − cmin)

]
and

[
cmax − q−

100
(cmax − cmin) ; cmax

]
), with

a weighted linear least-square method with error in both coordinates [30].
h− (resp. h+) is the root of a ’pseudo second degree polynomial’ ([30]), the
coefficients of which depend themselves slightly on h− ([30]):

Ah2
− +B h− + C = 0 (55)

The solution h− = −21.6916s
1
2 .µm−1 is obtained, in our example, after 3

iterations from the non-weighted least-square slope h0
− = −16.8775s

1
2 .µm−1

as initial value.

A =
N−∑
i=1

wi

(
xi−xM√

∆t
− 〈x−xM 〉√

∆t

)
(Ui − 〈U〉)

w
(
xi−xM√

∆t

) (56)

B =
N−∑
i=1

w2
i


(
xi−xM√

∆t
− 〈x−xM 〉√

∆t

)2

w (Ui)
− (Ui − 〈U〉)2

w
(
xi−xM√

∆t

)
 (57)

C = −
N−∑
i=1

wi

(
xi−xM√

∆t
− 〈x−xM 〉√

∆t

)
(Ui − 〈U〉)

w (Ui)
(58)

(59)

where:
- N− is the number of points used to fit h−,
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Figure 10: Least square fitting of the example of the left hand side plateau (blue line)
with non-weitghted (LS-red) and weighted (WLS-black) with error in both coordinates
least-square methods

.

- global weight: wi =
w
(
xi−xM√

∆ t

)
w(Ui)

h2
−w(Ui)+w

(
xi−xM√

∆ t

) ,

- weight for x: w
(
xi−xM√

∆ t

)
' 1

u(xi)
2+u(xM )2 ,

- weight for U : w (Ui) = 1
dU
d c

2
u(ci)

2

The uncertainty upon (xi−xM )√
∆ t

is due to xM , u (xM), and to the uncertainty

upon xi. This latter is obtained from that of c (xi): u (xi) = c−1 (ci + u (ci))−
(ci − u (ci)), whereas u (Ui) = dU

dc
u(ci) with dU

dc
=

√
π

cmax−cmin e
(2Y−1)2

.
Figure 10 shows as an example the weighted and non-weighted least-square
fits of the left hand side plateau on our material. Weights are simply the
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inverses of the uncertainties on both coordinates. The weighted method is
believed to be closer to real values, which is hardly the case in our example
but above all enables computating uncertainties upon h+ and k+ (resp. on

h− and k−) which both depend on the abscissa uncertainty u
(
x−xM√

∆t

)
and

on the ordinate uncertainty u (U) deduced from u(c). Once h− is found k−
is obtained from:

k− = 〈U〉 − h−
〈
xi − xM√

∆t

〉
(60)

Figure 11 gives Hall interdiffusion coefficient D̃ as well as Boltzmann-Matano
value. They are very close one to each other, probably partly because of the
choice of the fitting function.

4.4. Uncertainty upon Hall interdiffusion coefficient

The uncertainty upon D̃ is obtained by first expressing (53) and (54) as
a function of concentration c instead of U .

D̃− =
10−8

4h2
−

[
1− 2 k−

√
π exp

[
erf−1

(
2 c−(cmin+cmax)

cmax−cmin

)]2 (
cmax − c

cmax − cmin

)]
sin2 α cm2s−1

(61)

D̃+ =
10−8

4h2
+

[
1 + 2 k+

√
π exp

[
erf−1

(
2 c−(cmin+cmax)

cmax−cmin

)]2 (
c− cmin

cmax − cmin

)]
sin2 α cm2s−1

(62)

Hence, in the interval
[
cmax − q−

100
(cmax − cmin) ; cmax

]
, u
(
D̃
)

reads:

u
(
D̃
)2

=

(
∂D̃

∂c

)2

u (c)2+

(
∂D̃

∂α

)2

u (α)2+

(
∂D̃

∂h−

)2

u (h−)2+

(
∂D̃

∂k−

)2

u (k−)2

(63)
with:

u(c)2 =
(
∂c
∂λ1

)2

u (λ1)2 +
(
∂c
∂λ2

)2

u (λ2)2 +
(
∂c
∂x0

)2

u (x0)2

+
(

∂c
∂c(x0)

)2

u (c (x0))2 +
(

∂c
∂c′(x0)

)2

u (c′ (x0))2 + (δc)2
(64)

u(k−), u (h−), u(k+) and u (h+) are obtained by means of Reed least-square
fitting method for pairs of coordinates ([30]). Since their expressions are
rather cumbersome [30], they are not given here but they depend on the
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same variables as h− and k−, i.e. A, B and C.
Tables 3 and 4 show that an approximate amount of 2000 points in the fitted
area (q− = q+ = 20 for the width of the fitting intervals) is sufficient to
determine h−, k−, h+, k+ and their uncertainties.

N h−

(
s

1
2 .µm−1

)
u (h−)

(
s

1
2 .µm−1

)
k− u (k−)

300 −16.5665 0.0737749 0.361792 0.00569403
2000 −16.9767 0.0189383 0.332352 0.00146226
4000 −17.0093 0.0126968 0.330016 0.000980421

10000 −17.0272 0.00777959 0.328728 0.000600755

Table 3: Sensitivity of h−, k− and their uncertainties to the number of points N−

N h+

(
s

1
2 .µm−1

)
u (h+)

(
s

1
2 .µm−1

)
k+ u (k+)

300 −12.1487 0.0456292 −0.481375 0.0040949
2000 −12.3394 0.012405 −0.465739 0.00111574
4000 −12.3543 0.0084178 −0.464517 0.000757272

10000 −12.3625 0.0051977 −0.463844 0.00046764

Table 4: Sensitivity of h+, k+ and their uncertainties to the number of points N+

The sensitivity of D̃ uncertainty to its different causes are given by the
partial derivatives:

- ∂D̃
∂c

∂c
∂λ1

for changes in λ1,
...
- ∂D̃
∂c

∂c
∂c′(x0)

for changes in c′ (x0),

- ∂D̃
∂c

for changes in c due to EPMA averaging effect,

- ∂D̃
∂α

for changes in α, due to α assessment uncertainty

- ∂D̃
∂h−

for changes in h−, the uncertainty of which is given by the weighted
least-square method with error in both coordinates,

- ∂D̃
∂k−

for changes in k−.

From (53) it is noticeable that ∂D̃
∂c

can be obtained in the following way:

∂D̃−
∂c

=

(
D̃− +

k− − 1

2h2
−

)
dU

dc
=

(
D̃− +

k− − 1

2h2
−

) √
π

cmax − cmin
e(2Y−1)2

(65)
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Figure 11: Comparison of Hall and Boltzmann-Matano interdiffusion coefficient (D̃) as a
function of uranium concentration (cU )
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Figure 12: Contribution of c, α, h− and k− to Hall D̃− coefficient

The analog result also stands for ∂D̃+

∂c
.

∂c
∂λ1

,..., ∂c

∂’̧(x0)
are obtained like in the case of Boltzmann-Matano method. For

the last three partial derivatives analytical expressions can be used:

∂D̃

∂α
= 2 cotg (α) D̃ (66)

∂D̃

∂h
= −2 D̃

h
(67)

∂D̃

∂k
=
D̃

k
− 1

4k h2
(68)

A noticeable property of these first two partial derivatives is that they vary
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in the same way as D̃ does, so that their corresponding contribution to u
(
D̃
)

is minimum as D̃ reaches its minimum. It does not apply for the last one
since ∀c, D̃−(c) 6 1

4h2
−

and limx→−∞ D̃− = 1
4h2
−

(resp. D̃+(c) 6 1
4h2

+
and

limx→+∞ D̃+ = 1
4h2

+
). Figure 12 gives the relative contribution of each cause

to Hall estimation of the Hall interdiffusion coefficient versus concentration
for the left hand side of the profile.
The main causes of error are the uncertainty upon k− (resp. k+) and upon
c (due to those of the fitting parameters, this latter is overestimated, since
uncertainties on the concentration function 18 parameters cannot all take a
bad value at the same time otherwise the curve fitting would not be accept-
able).

Although D̃(c) obtained by Hall method has got rather high incertitude val-
ues (close do 10−14cm2s−1 in our example) as c varies, its limits which do

not depend on c are more precise. The assessed limits of D̃ obtained on our
profile are the following:

lim
x→−∞

D̃− = 8.75± 0.806 · 10−15 cm2s−1 (69)

lim
x→+∞

D̃+ = 1.66± 0.052 · 10−14 cm2s−1 (70)

5. Discussion

The three coefficients are very close and in good agreement in the range
of [0.0226; 0.0403]mol .cm−3. Below and over these values Hall diffusion co-
efficient has to be preferred.
The function 18 used in this work in order to fit interdiffusion profiles is very
sensitive to the values chosen at the inflexion point (x0, c (x0) and c′ (x0)).
Its asymptots depend both on well known compositions at each end and on
the values of the parameters sensitive to function variations at the inflexion
points. Thus the parameters adjusted for the fitting function were precise
enough to fit the asymptots so that den Broeder (or even Boltzmann-Matano)
method could be very close to Hall method. The use of an analytical func-
tion for the three cases permitted the use of as many points as needed in
function of the part of the curve (equally spaced as a function of x position
or of concentration c value).
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6. Conclusion

A way of computing uncertainty associated to Boltzmann-Matano, den
Broeder and Hall methods has been proposed for assessing volume inter-
diffusion coefficients changes with composition from Electron Probe Micro-
analyser measurements on polycrystalline materials. This method has been
used by S. Noyau [20] in order to study UO2/U1−yPuyO2−z interdiffusion in
the temperature range 1500◦C-1700◦C. In the particular case of our material
U1−yPuyO2−z and experimental conditions (1700◦C), the three methods have
given agreeing results and the uncertainty study has given a concentration
range for which the EPMA profile results could be reliably used.
In the central part of the concentration range, both den Broeder and Boltzmann-
Matano methods give the same results with an uncertainty close to 8 ·
10−15cm2 · s−1 while they both fail at the ends of this concentration range
where Hall method give better results with an uncertainty close to 8·10−16cm2·
s−1. For these very small volume interdiffusion coefficients the choice of an
aquisition line making a very small angle with the interdiffusion interface has
lead to an enhanced precision on the fitted parameters of the concentration
smoothing function. An optimized angle has to be chosen since interdiffusion
profiles with a small angle with the interface otherwise decrease the precision
upon interdiffusion coefficients.
In the central part of the interdiffusion profiles in our case of study values
smaller than 10−14cm2 · s−1 can hardly be measured. This value is also close
to the lower limit of what can be obtained in terms of Hall interdiffusion
coefficient on the plateaus of the interdiffusion profiles.
Single crystals could be used as benchmark materials in order to check the
validity of the results as well as their precision.
A way of enhancing precision in the interdiffusion coefficient values versus
concentration would be to use several interdiffusion couples with intermedi-
ate compositions.
The C/C++-language software developed in this work is available on request
for whom is interested in.
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