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Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the
spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow
data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We
argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be
used to disentangle the initial state from the response. We apply this method to recent measurements
of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the
initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and
is consistent with a low value of the ratio of viscosity over entropy of η/s ' 0.19. Deviations from
linear response are studied. While they significantly change the value of the response coefficient
they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η/s is
robust against non-linear effects.

I. INTRODUCTION

The large magnitude of elliptic flow, v2, in relativis-
tic heavy-ion collisions at RHIC [1] and LHC [2] has long
been recognized as a signature of hydrodynamic behavior
of the strongly-interacting quark-gluon plasma [3]. v2 is
understood as the hydrodynamic response to the initial
anisotropy, ε2, of the initial density profile [4]. However,
the magnitude of this anisotropy is poorly constrained
theoretically [5, 6]. This uncertainty hinders the extrac-
tion of the properties of the quark-gluon plasma from
experimental data [7, 8].

The statistical properties of anisotropic flow are now
precisely known [9]. The ATLAS collaboration has an-
alyzed the full probability distribution of v2, v3 and v4

in Pb+Pb collisions for several centrality windows [10].
In p+Pb collisions, information is less detailed, but the
first moments of the distribution of v2 have been mea-
sured [11]. Our goal is to make use of these measurements
to separate the initial state from the response without as-
suming any particular model of the initial conditions –
by only using a simple functional form which goes to zero
at the geometric limits of εn = 0 and 1.

In theory, one can describe the particles emitted from a
collision with an underlying probability distribution [12].
Anisotropic flow, vn, is defined as the nth Fourier coeffi-
cient of the azimuthal probability distribution P(ϕ):

Vn = vne
inΨn ≡ 1

2π

∫ 2π

0

P(ϕ)einϕdϕ, (1)

where we have used a complex notation [13, 14]. Note
that the underlying probability distribution P(ϕ) and
Vn fluctuate event to event, but they are both theoreti-
cal quantities which cannot be measured on an event-by-
event basis. The particles that are detected in an event
represent a finite sample of P(ϕ), and the measurement
of the probability distribution of vn involves a nontrivial
unfolding of statistical fluctuations [10].

II. DISTRIBUTION OF εn

We assume that the fluctuations of vn for n = 2, 3
are due to fluctuations of the initial anisotropy εn in the
corresponding harmonic, defined by [15]

En = εne
inΦn ≡ −

∫
rneinφρ(r, φ)rdrdφ∫
rnρ(r, φ)rdrdφ

. (2)

where ρ(r, φ) is the energy density near midrapidity
shortly after the collision, and (r, φ) are polar coordinates
in the transverse plane, in a coordinate system where the
energy distribution is centered at the origin.

We assume for the moment that vn in a given event is
determined by linear response to the initial anisotropy,
vn = κnεn, where κn is a response coefficient which does
not fluctuate event to event. Event-by-event hydrody-
namic calculations [16] show that this is a very good ap-
proximation for n = 2, 3. Within this approximation, it
has already been shown that one can rule out particu-
lar models of the initial density using either a combined
analysis [17, 18] of elliptic flow and triangular flow [19]
data, or the relative magnitude of elliptic flow fluctua-
tions [20–22]. Our goal is to show that one can extract
both κn and the distribution of εn from data. We hope
to show that this is true even if we relax the linear as-
sumption. We make use of the recent observation that
the distribution of εn is to a large extent universal [23, 24]
and can be characterized by two parameters.

Both the magnitude and direction of En fluctuate event
to event. The simplest parametrization of these fluctua-
tions is a two-dimensional Gaussian probability distribu-
tion which, upon integration over azimuthal angle, yields
the Bessel-Gaussian distribution [25]:

p(εn) =
εn
σ2
I0

(ε0εn
σ2

)
exp

(
−ε

2
0 + ε2

n

2σ2

)
, (3)

where ε0 is the mean anisotropy in the reaction plane,
which vanishes by symmetry for odd n, and σ is the typ-
ical magnitude of eccentricity fluctuations around this
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FIG. 1. (Color online) Distribution of v2 (top) and v3 (bottom) in various centrality windows. Symbols: ATLAS data [10]
for Pb+Pb collisions at

√
sNN = 2.76 TeV. For v2, fits are rescaled Elliptic Power Eq. (4) (full lines) and Bessel-Gaussian

distributions Eq. (3) (dashed lines). For v3, fits are rescaled Power Eq. (6) (full lines) and Bessel-Gaussian distributions with
ε0 = 0 Eq. (5) (dashed lines).

mean anisotropy. Both ε0 and σ depend on the harmonic
n.

In a previous publication [24], we have introduced an
alternative parametrization, the Elliptic Power distribu-
tion:

p(εn) =
2αεn
π

(1− ε2
0)α+ 1

2

∫ π

0

(1− ε2
n)α−1dφ

(1− ε0εn cosφ)2α+1
, (4)

where α describes the fluctuations and is approximately
proportional to the number of sources in an independent-
source model [4]. The parameter α depends on n. When
ε0 � 1 and α � 1, Eq. (4) reduces to Eq. (3) with

σ ≈ 1/
√

2α. Its support is the unit disk: it naturally
takes into account the condition |εn| ≤ 1 which follows
from the definition, Eq. (2). For this reason, it is a better
parametrization than the Bessel-Gaussian, in particular
for large anisotropies. Eq. (4) has been shown to fit var-
ious initial-state models [24]. Note that ε0 is not strictly
equal to the mean reaction plane eccentricity for the El-
liptic Power distribution, but the difference is small for
Pb+Pb collisions [24].

When the anisotropy is solely due to fluctuations,
ε0 = 0, the Bessel-Gaussian reduces to a Gaussian distri-
bution:

p(εn) =
εn
σ2

exp

(
− ε2

n

2σ2

)
, (5)

and the Elliptic Power distribution reduces to the Power
distribution [23]:

p(εn) = 2αεn(1− ε2
n)α−1. (6)

III. DISTRIBUTION OF vn

The probability distribution of anisotropic flow, P (vn),
is obtained from the distribution of the initial anisotropy
p(εn) by

P (vn) =
dεn
dvn

p(εn) . (7)

Assuming vn = κnεn, this becomes:

P (vn) =
1

κn
p

(
vn
κn

)
. (8)

In this case the distribution is rescaled by the response
coefficient κn. Figure 1 displays the probability distri-
bution of v2 and v3 in various centrality windows [10]
together with fits using rescaled Bessel-Gaussian and El-
liptic Power distributions for v2, and rescaled Gaussian
and Power distributions for v3. Both parametrizations
give very good fits to v2 and v3 data for the most central
bins shown on the figure.1 As the centrality percentile
increases, however, the quality of the Bessel-Gaussian
fit becomes increasingly worse, which is reflected by the
large χ2 of the fit, and also clearly seen in the tail of the
distribution: it systematically overestimates the distribu-
tion for large anisotropies. On the other hand, the Ellip-
tic Power fit is excellent for all centralities. In particular,
it falls off more steeply for large vn, in close agreement
with the data.

1 The fits do not converge below 10% (20%) centrality for v2 (v3),
which reflects the fact that the distributions become very close
to Bessel-Gaussian (Gaussian).
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Note that the Bessel-Gaussian distribution Eq. (3) is
scale invariant: rescaling it by κn amounts to multiplying
both ε0 and σ by κn, so that the fit is degenerate: only
the products κnε0 and κnσ can be determined. Therefore
the Bessel-Gaussian fit to ATLAS data is in practice a 2-
parameter fit for v2, and a 1-parameter fit for v3. On the
other hand, the Elliptic Power fit is not degenerate be-
cause of the non-Gaussian cut-off at εn = 1, and returns
both the response coefficient κn and the parameters per-
taining to the shape, namely α and ε0 (for v2). However,
the fit parameters are still correlated in the sense that
the combinations κn/

√
α and κnε0 (for v2) have much

smaller errors than each individual parameter.

IV. EXPERIMENTAL ERRORS

Our ability to separate the response from the initial
eccentricity thus lies in the difference between the Bessel-
Gaussian and the Elliptic Power fits, that is, in the non-
Gaussianity of flow fluctuations. Since the difference is
small, errors must be carefully evaluated.

The ATLAS collaboration reports the statistical error,
the systematic error on the mean 〈vn〉, and the systematic
error on the relative standard deviation σvn/〈vn〉. The
first systematic error is an error on the scale of the dis-
tribution, while the second is an error on its shape. The
error on the scale directly translates into an error of the
response coefficient κn, of the same relative magnitude.
Since our analysis uses the deviations from a Gaussian
shape, the dominant source of error is —by far— the er-
ror on the shape. In order to estimate the corresponding
error on our fit parameters, we distort the distribution of
vn in such a way that the mean 〈vn〉 is unchanged, and
σvn/〈vn〉 is increased or decreased by the experimental
uncertainty. This is done in practice by shifting the val-
ues of the vn bins according to vn → vn + δ(vn), where
δ(vn) is a small non-linear shift. We choose the ansatz
δ(vn) = εvn(vmax − vn)(vn − λ), where vmax is the tail
of the vn distribution, λ is chosen in such a way that
〈vn〉 is unchanged, and ε is chosen in such a way that
σvn/〈vn〉 is increased or decreased by the systematic er-
ror. This non-linear transformation leaves the minimum
and maximum values of vn invariant.

V. PARAMETERS OF THE DISTRIBUTIONS

Figure 2 displays the value of the response coefficients
κ2 and κ3 as a function of the centrality percentile. They
are smaller than unity, with κ3 < κ2, in line with expecta-
tions from hydrodynamic calculations [16], and decrease
as a function of the centrality percentile, which is the
general behavior expected from viscous corrections to lo-
cal equilibrium [26, 27]. We estimate that the low-pT cut
of ATLAS at 0.5 GeV increases κ2 by a factor 1.4 to 1.5.
The systematic error for κ3 is very large and therefore
not shown: for most bins, the upper error bar goes all
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FIG. 2. (Color online) Response coefficients κ2 and κ3 versus
centrality. Symbols: results from the fits to ATLAS Pb+Pb
data [10] and to CMS p+Pb data [11]. For κ2, systematic
and statistical experimental errors are added in quadrature.
For κ3, only the statistical error is shown. Also shown are
κ2 values from fitting the v2 distributions with a non-linear
term caracterized in Eqs. (10 and 11) by κ′. The smooth solid
lines are the result of a viscous hydrodynamic calculation for
κ with η/s = 0.19. The upper solid line is normalized up
by the factor 1.7, the middle line by the factor 1.4, and the
lower line (κ3) by the factor 3.2. The dashed lines for κ2

with κ′ = 0.1 are shown for comparison: they are for hydro
results with η/s = 0.13 (normalized up by 1.2) and η/s = 0.23
(normalized up by 1.6).

the way to infinity. Now, if one takes the limit κ3 → ∞
while keeping the rms v3 constant, α in Eq. (6) also goes
to infinity and the Power distribution reduces to a Gaus-
sian distribution Eq. (5). Therefore the ATLAS v3 distri-
butions are compatible with Gaussians within systematic
errors.

The other parameters of the fit to vn distributions,
namely, ε0 and α, characterize the shape of the distri-
bution. They are displayed in Fig. 3 as a function of
the collision centrality. ε0 increases smoothly with the
centrality percentile: extrapolation to the most central
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FIG. 3. (Color online) ε0 (a) and α (b) versus centrality. Symbols: results from the fits to ATLAS v2 data. Predictions from
the Monte-Carlo Glauber [28] and IP-Glasma [29, 30] models are shown as shaded bands. Also shown are values from fits with
a non-linear term defined by κ′ in Eq. (10).

collisions (where the fit does not converge) gives ε0 = 0,
as required by azimuthal symmetry.

Figure 3 also displays comparisons with the
Glauber [28, 31, 32] and IP-Glasma [29, 30] mod-
els. These models are shown as shaded bands. The
bands correspond to the fact that the Elliptic Power
distribution does not exactly fit the distribution of
ε2 for that particular model. Specifically, the dashed
line at the edge of the band is the value returned by
a 2-parameter Elliptic Power fit to the distribution of
ε2. The full line at the other edge of the band is the
value that the fit to the v2 distribution would return if
v2 ∝ ε2, with ε2 given by that model. If one assumes
linear response, ATLAS data deviate from both models.

VI. CUMULANTS

For p+Pb collisions, the full distribution of v2 has
not been measured, but only its first cumulants [33, 34]
v2{2} and v2{4} [11, 35, 36]. Assuming linear response
to the initial eccentricity, each measured cumulant is
proportional to the corresponding cumulant of the ini-
tial eccentricity [37], v2{k} = κ2ε2{k}, for k = 2, 4, 6...
The eccentricity in p+Pb collisions is solely due to

fluctuations [38, 39], therefore Eqs. (5) and (6) apply.
While cumulants of order 4 and higher vanish for the
Gaussian distribution Eq. (5), the Power distribution
Eq. (6) always gives εn{4} > 0 [23]. We again use
this non-Gaussianity to disentangle the initial state from
the response: We extract α from the measured ratio
vn{4}/vn{2} ' εn{4}/εn{2} = (1+ α

2 )−1/4 [23]. The rms

anisotropy is then obtained as εn{2} = 1/
√

1 + α [23].
One finally obtains for the Power distribution:

κn =
vn{2}
εn{2}

= vn{2}

√
2

(
vn{2}
vn{4}

)4

− 1. (9)

The values of κ2 extracted from CMS p+Pb data [11] us-
ing this equation are also displayed in Fig. 2. We multiply
them by a factor 1.19 to correct for the different low-pT
cut (0.3 GeV/c) assuming a linear dependence of v2 on
pT . We plot p+Pb data at the equivalent centralities, de-
termined according to the number of charged tracks [11].
General arguments have been put forward which suggest
that the hydrodynamic response should be identical for
p+Pb and Pb+Pb at the same equivalent centrality [40].
Once rescaled, the p+Pb slope is in line with Pb+Pb
results, albeit somewhat steeper.

Note that the fit parameters can also be obtained
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from cumulants for v3 in Pb+Pb collisions using Eq. (9).
For v2, there is a third parameter ε0, therefore one
needs a third cumulant v2{6}. α and ε0, which con-
trol the shape of the distribution and its non-Gaussian
features, can be extracted from the ratios v2{6}/v2{4}
and v2{4}/v2{2} using the Elliptic Power distribution
(Eq. (A5) of Ref. [24]). Note that while the Bessel-
Gaussian Eq. (3) gives εn{4} = εn{6} = ε0 [41], the
Elliptic Power distribution always gives εn{6} < εn{4}.
We have checked that α and ε0 thus extracted from cu-
mulant ratios are essentially identical to those obtained
by fitting the distribution of v2. This approach has the
advantage that cumulants can be analyzed without any
unfolding procedure [34] but v2{2} may suffer from non-
flow effects.

VII. DEVIATIONS FROM LINEAR SCALING

We now discuss the effect of deviations from linear ec-
centricity scaling of anisotropic flow. Because of such
deviations, the shape of the vn distribution is not ex-
actly the same as that of the εn distribution, as already
noted in event-by-event hydrodynamic calculations [42].
There are two distinct types of non-linearities: vn can be
a function of εn which is not exactly linear, or vn can
depend on properties of the initial state other than εn.
We study these effects in turn.

Adding a quadratic term would be equivalent to rotat-
ing the distribution 90 degrees or changing the sign of vn.
Thus the first significant non-linear term is the cubic:

v2 = κ2ε2 + κ′κ2ε
3
2. (10)

Several hydrodynamic calculations show evidence that
κ′ > 0 [17, 43, 44], but no quantitative analysis has been
done yet. One typically expects κ′ to depend mildly on
centrality. When fitting the experimental v2 distributions
with the added parameter of the cubic term, κ′ had large
errors but was in the range from 0 to 0.15. Thus we
fixed κ′ at 0.10 and plotted the κ2 values also in Fig. 2.
The effect of the non-linear response is to reduce the
linear response coefficient κ2, essentially by a constant
factor. In the case where the distribution of ε2 is the
Power distribution (6) and in the limit α� 1, the relative
change of κ2 is

∆κ2

κ2
= −2κ′ (11)

to leading order.2 With the Elliptic-Power distribution,
the relative effect is also ∼ −2κ′ as can be seen in Fig. 2.
Note that this non-linear correction to the response is

2 This result is obtained by inserting Eq. (10) into Eq. (9) and
using the approximate relation ε2{4}4 ' 〈ε62〉 − 2〈ε42〉〈ε22〉 for
α� 1.

much larger than one would naively expect from Eq. (10):
the relative magnitude of the cubic term κ′ε2

2 � κ′, yet
it produces an effect of order κ′. The reason is that the
non-linear response contributes to the non-Gaussianity
of flow fluctuations.

We now discuss deviations from linearity due to the
fact that vn is not entirely determined by εn [15]. One
can generally decompose the flow as Vn = κnEn + Xn,
where Xn is uncorrelated with the initial eccentricity En.
There can be various contributions to Xn from non-linear
coupling between different harmonics [45] or radial mod-
ulations of the initial density [15]. In order to estimate
their effect on the hydrodynamic response, we further as-
sume that Xn is a Gaussian noise. Then, the distribution
of Vn is a rescaled Elliptic-Power distribution, convoluted
with a Gaussian: the deviation from linearity here results
in a Gaussian smearing of the distribution.

A quantitative measure of the magnitude of Xn is the
Pearson correlation coefficient rn between the anisotropic
flow and the initial anisotropy, defined as

rn ≡
〈VnE∗n〉√
〈|Vn|2〉〈|En|2〉

=

(
1 +

〈|Xn|2〉
κ2
n〈|En|2〉

)−1/2

, (12)

where angular brackets denote an average value over
events in a centrality class. Our analysis assumes the
maximum correlation, |rn| = 1. Event-by-event hydrody-
namic calculations show that there are small deviations
around eccentricity scaling [46].

Ideal hydrodynamics [47] gives |r2| ∼ 0.95 for elliptic
flow. However, the correlation between vn and εn has
been shown to be significantly larger in viscous hydro-
dynamics [16], and a value |r2| = 0.99 seems reasonable,
but there is to date no quantitative estimate of |r2| as
defined in Eq. (12).

The effect on the fit parameters can be obtained using
the fact that the rms flow vn{2} =

√
〈|Vn|2〉 is increased

by the noise, while higher-order cumulants vn{4} and
vn{6} (see below Sec. VI) are unchanged. We find that
a decrease of |r2| by 1% results in an decrease of the ex-
tracted κ2 by 6% to 9%, depending on the centrality, the
effect being maximum in the 20-30% centrality range.
The value of |r2| found in ideal hydrodynamic calcula-
tions [47] depends mildly on centrality and is closest to
1 also in the 20-30% centrality range. Therefore one can
conjecture —this should eventually be confirmed by de-
tailed calculations— that the effect of the noise Xn is to
reduce the extracted response essentially by a constant
factor, independent of centrality.

Note that the cubic response in Eq. (10) does not con-
tribute to r2 to first order in κ′, so that the two effects
are in practice well separated.

The conclusion is that deviations from linear eccen-
tricity scaling all make κ2 smaller, by a factor which can
be significant, but depends little on centrality. This is
of crucial importance for the extraction of the viscosity
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over entropy ratio (see below). The decrease in κ2 makes
ε0 larger and α smaller (see Fig. 3), thereby improving
compatibility with existing initial-state models.

VIII. VISCOUS HYDRO

We now compare our result for κ2 with hydrodynamic
calculations. To the extent that anisotropic flow scales
linearly with eccentricity, the value of the response co-
efficient κ2 is independent of initial conditions. In ideal
hydrodynamics, scale invariance implies that κ2 is inde-
pendent of the system size, i.e., independent of centrality.
Deviations from thermal equilibrium generally result in a
reduction of the flow which is stronger for peripheral col-
lisions [26, 27]. In a hydrodynamic calculation [8], such
deviations are due to the shear viscosity [7] and, to a
lesser extent, to the freeze-out procedure at the end of
the hydrodynamic expansion. Therefore the dependence
of κ2 on centrality in Fig. 2 can be used to estimate
the shear viscosity over entropy ratio η/s of the quark-
gluon plasma. We use the same hydrodynamic code as
in Ref. [45] to estimate κ2. The resulting values are sig-
nificantly smaller than the data in Fig. 2. Since we have
shown that deviations from linear eccentricity scaling re-
duce κ2 without altering its centrality dependence, we
compensate for this effect, and the low pT cut of the AT-
LAS data, by multiplying our hydrodynamic result by a
constant, while tuning the viscosity so as to match the
centrality dependence of κ2. Since the systematic errors
on κ3 are so large, we only fit κ2. The smooth solid
lines in Fig. 2 are obtained with η/s = 0.19. The dashed
lines show the sensitivity to η/s. This extracted value of
η/s = 0.19 is consistent with that reported in the liter-
ature [8], using specific models of the initial state. For
sake of illustration, we also show the result for κ3 with
the same η/s and the same overall normalization factor
as for κ2. We recall that systematic errors on κ3 from
experimental data are very large so that no conclusion
on η/s can be drawn from these data alone.

IX. SUMMARY

We have shown that a rescaled Elliptic Power distri-
bution fits the measured distributions of elliptic and tri-

angular flows in Pb+Pb collisions at the LHC. These
distributions become increasingly non-Gaussian as the
anisotropy increases. We have used this non-Gaussianity
to disentangle for the first time the initial anisotropy from
the response without assuming any particular model of
initial conditions – just using a simple functional form
which meets the geometrical constrants of eccentricity.

This is another aspect of the analogy between heavy-
ion physics and cosmology [48, 49], where initial quan-
tum fluctuations give rise to correlations, and the non-
Gaussian statistics of these correlations can be used to
unravel the properties of the initial state [50–52]. The
non-Gaussianity is stronger for smaller systems, which is
an incentive to analyze flow in smaller collision systems.

We have found that the hydrodynamic response to el-
lipticity has the expected overall magnitude and central-
ity dependence: it decreases with centrality percentage.
A somewhat similar slope is found for p+Pb collisions.
This decrease can be attributed to the viscous suppres-
sion of v2. Comparison with hydrodynamic calculations
supports a low value of the viscosity over entropy ratio,
η/s ∼ 0.19.

The present study can be improved by constraining
the cubic response coefficient κ′ in Eq. (10) as well as
the Pearson coefficient due to other non-linear terms in
Eq. (12). This could be done in future hydrodynamic
calculations. Taking into account these nonlinear terms
will decrease the magnitude of the response and therefore
improve the agreement with hydrodynamic calculations.
However, we have argued that this decrease is essentially
a constant factor, independent of centrality, so that our
estimate of η/s is likely to be robust. Our study is a first
step toward the extraction of the viscosity over entropy
ratio of the quark-gluon plasma from experimental data,
without any prior knowledge of the initial state.

ACKNOWLEDGMENTS

We thank M. Luzum and S. Voloshin for extensive
discussions and suggestions. In particular, we thank S.
Voloshin for useful comments on the manuscript. JYO
thanks the MIT LNS for hospitality. LY is funded by
the European Research Council under the Advanced In-
vestigator Grant ERC-AD-267258. AMP was supported
by the Director, Office of Nuclear Science of the U.S.
Department of Energy.

[1] K. H. Ackermann et al. [STAR Collaboration], Phys.
Rev. Lett. 86, 402 (2001) [nucl-ex/0009011].

[2] K. Aamodt et al. [ALICE Collaboration], Phys. Rev.
Lett. 105, 252302 (2010) [arXiv:1011.3914 [nucl-ex]].

[3] P. F. Kolb and U. W. Heinz, In *Hwa, R.C. (ed.) et al.:
Quark gluon plasma* 634-714 [nucl-th/0305084].

[4] J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[5] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey

and Y. Nara, Phys. Lett. B 636, 299 (2006) [nucl-
th/0511046].

[6] T. Lappi and R. Venugopalan, Phys. Rev. C 74, 054905
(2006) [nucl-th/0609021].

[7] M. Luzum and P. Romatschke, Phys. Rev. C 78,
034915 (2008) [Erratum-ibid. C 79, 039903 (2009)]
[arXiv:0804.4015 [nucl-th]].

[8] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63,

http://arxiv.org/abs/nucl-ex/0009011
http://arxiv.org/abs/1011.3914
http://arxiv.org/abs/nucl-th/0305084
http://arxiv.org/abs/nucl-th/0511046
http://arxiv.org/abs/nucl-th/0511046
http://arxiv.org/abs/nucl-th/0609021
http://arxiv.org/abs/0804.4015


7

123 (2013) [arXiv:1301.2826 [nucl-th]].
[9] J. Jia, arXiv:1407.6057 [nucl-ex].

[10] G. Aad et al. [ATLAS Collaboration], JHEP 1311, 183
(2013) [arXiv:1305.2942 [hep-ex]].

[11] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B
724, 213 (2013) [arXiv:1305.0609 [nucl-ex]].

[12] M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014)
[arXiv:1312.5503 [nucl-th]].

[13] J. Y. Ollitrault and F. G. Gardim, Nucl. Phys. A 904-
905, 75c (2013) [arXiv:1210.8345 [nucl-th]].

[14] D. Teaney and L. Yan, Phys. Rev. C 90, 024902 (2014)
[arXiv:1312.3689 [nucl-th]].

[15] D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011)
[arXiv:1010.1876 [nucl-th]].

[16] H. Niemi, G. S. Denicol, H. Holopainen and P. Huovinen,
Phys. Rev. C 87, 054901 (2013) [arXiv:1212.1008 [nucl-
th]].

[17] B. H. Alver, C. Gombeaud, M. Luzum and J. Y. Olli-
trault, Phys. Rev. C 82, 034913 (2010) [arXiv:1007.5469
[nucl-th]].

[18] E. Retinskaya, M. Luzum and J. Y. Ollitrault, Phys. Rev.
C 89, 014902 (2014) [arXiv:1311.5339 [nucl-th]].

[19] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010)
[Erratum-ibid. C 82, 039903 (2010)] [arXiv:1003.0194
[nucl-th]].

[20] B. Alver et al. [PHOBOS Collaboration], Phys. Rev.
Lett. 98, 242302 (2007) [nucl-ex/0610037].

[21] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. C
81, 034915 (2010) [arXiv:1002.0534 [nucl-ex]].

[22] T. Renk and H. Niemi, Phys. Rev. C 89, 064907 (2014)
[arXiv:1401.2069 [nucl-th]].

[23] L. Yan and J. Y. Ollitrault, Phys. Rev. Lett. 112, 082301
(2014) [arXiv:1312.6555 [nucl-th]].

[24] L. Yan, J. Y. Ollitrault and A. M. Poskanzer, Phys. Rev.
C 90, 024903 (2014) [arXiv:1405.6595 [nucl-th]].

[25] S. A. Voloshin, A. M. Poskanzer, A. Tang and G. Wang,
Phys. Lett. B 659, 537 (2008) [arXiv:0708.0800 [nucl-th]].

[26] S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B 474,
27 (2000) [nucl-th/9906075].

[27] H. J. Drescher, A. Dumitru, C. Gombeaud and J. Y. Olli-
trault, Phys. Rev. C 76, 024905 (2007) [arXiv:0704.3553
[nucl-th]].

[28] B. Alver, M. Baker, C. Loizides and P. Steinberg,
arXiv:0805.4411 [nucl-ex].

[29] B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev.
C 86, 034908 (2012) [arXiv:1206.6805 [hep-ph]].

[30] B. Schenke, P. Tribedy and R. Venugopalan, Nucl. Phys.

A 926, 102 (2014) [arXiv:1312.5588 [hep-ph]].
[31] M. L. Miller, K. Reygers, S. J. Sanders and P. Stein-

berg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007) [nucl-
ex/0701025].

[32] W. Broniowski, P. Bozek and M. Rybczynski, Phys. Rev.
C 76, 054905 (2007) [arXiv:0706.4266 [nucl-th]].

[33] N. Borghini, P. M. Dinh and J. Y. Ollitrault, Phys. Rev.
C 64, 054901 (2001) [nucl-th/0105040].

[34] A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C
83, 044913 (2011) [arXiv:1010.0233 [nucl-ex]].

[35] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 725,
60 (2013) [arXiv:1303.2084 [hep-ex]].

[36] B. B. Abelev et al. [ALICE Collaboration],
arXiv:1406.2474 [nucl-ex].

[37] M. Miller and R. Snellings, nucl-ex/0312008.
[38] P. Bozek, Phys. Rev. C 85, 014911 (2012)

[arXiv:1112.0915 [hep-ph]].
[39] P. Bozek and W. Broniowski, Phys. Lett. B 718, 1557

(2013) [arXiv:1211.0845 [nucl-th]].
[40] G. Basar and D. Teaney, arXiv:1312.6770 [nucl-th].
[41] A. Bzdak, P. Bozek and L. McLerran, Nucl. Phys. A 927,

15 (2014) [arXiv:1311.7325 [hep-ph]].
[42] B. Schenke and R. Venugopalan, Phys. Rev. Lett. 113,

102301 (2014) [arXiv:1405.3605 [nucl-th]].
[43] R. S. Bhalerao, J. P. Blaizot, N. Borghini and J. Y. Ol-

litrault, Phys. Lett. B 627, 49 (2005) [nucl-th/0508009].
[44] Risto Paatelainen, poster at Quark Matter 2014; Harri

Niemi, plenary talk at Quark Matter 2014.
[45] D. Teaney and L. Yan, Phys. Rev. C 86, 044908 (2012)

[arXiv:1206.1905 [nucl-th]].
[46] H. Holopainen, H. Niemi and K. J. Eskola, Phys. Rev. C

83, 034901 (2011) [arXiv:1007.0368 [hep-ph]].
[47] F. G. Gardim, F. Grassi, M. Luzum and J. Y. Ollitrault,

Phys. Rev. C 85, 024908 (2012) [arXiv:1111.6538 [nucl-
th]].

[48] A. P. Mishra, R. K. Mohapatra, P. S. Saumia and
A. M. Srivastava, Phys. Rev. C 77, 064902 (2008)
[arXiv:0711.1323 [hep-ph]].

[49] K. Dusling, F. Gelis and R. Venugopalan, Nucl. Phys. A
872, 161 (2011) [arXiv:1106.3927 [nucl-th]].

[50] J. M. Maldacena, JHEP 0305, 013 (2003) [astro-
ph/0210603].

[51] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto,
Phys. Rept. 402, 103 (2004) [astro-ph/0406398].

[52] P. A. R. Ade et al. [Planck Collaboration],
arXiv:1303.5084 [astro-ph.CO].

http://arxiv.org/abs/1301.2826
http://arxiv.org/abs/1407.6057
http://arxiv.org/abs/1305.2942
http://arxiv.org/abs/1305.0609
http://arxiv.org/abs/1312.5503
http://arxiv.org/abs/1210.8345
http://arxiv.org/abs/1312.3689
http://arxiv.org/abs/1010.1876
http://arxiv.org/abs/1212.1008
http://arxiv.org/abs/1007.5469
http://arxiv.org/abs/1311.5339
http://arxiv.org/abs/1003.0194
http://arxiv.org/abs/nucl-ex/0610037
http://arxiv.org/abs/1002.0534
http://arxiv.org/abs/1401.2069
http://arxiv.org/abs/1312.6555
http://arxiv.org/abs/1405.6595
http://arxiv.org/abs/0708.0800
http://arxiv.org/abs/nucl-th/9906075
http://arxiv.org/abs/0704.3553
http://arxiv.org/abs/0805.4411
http://arxiv.org/abs/1206.6805
http://arxiv.org/abs/1312.5588
http://arxiv.org/abs/nucl-ex/0701025
http://arxiv.org/abs/nucl-ex/0701025
http://arxiv.org/abs/0706.4266
http://arxiv.org/abs/nucl-th/0105040
http://arxiv.org/abs/1010.0233
http://arxiv.org/abs/1303.2084
http://arxiv.org/abs/1406.2474
http://arxiv.org/abs/nucl-ex/0312008
http://arxiv.org/abs/1112.0915
http://arxiv.org/abs/1211.0845
http://arxiv.org/abs/1312.6770
http://arxiv.org/abs/1311.7325
http://arxiv.org/abs/1405.3605
http://arxiv.org/abs/nucl-th/0508009
http://arxiv.org/abs/1206.1905
http://arxiv.org/abs/1007.0368
http://arxiv.org/abs/1111.6538
http://arxiv.org/abs/0711.1323
http://arxiv.org/abs/1106.3927
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0406398
http://arxiv.org/abs/1303.5084

	Azimuthal Anisotropy Distributions in High-Energy Collisions
	Abstract
	I Introduction
	II Distribution of n
	III Distribution of vn
	IV Experimental Errors
	V Parameters of the Distributions
	VI Cumulants
	VII Deviations from linear scaling
	VIII Viscous Hydro
	IX Summary
	 Acknowledgments
	 References


