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We theoretically investigate the vortex state of the cuprate high-temperature superconductors in the presence
of magnetic fields. Assuming the recently derived nonlinear σ -model for fluctuations in the pseudogap phase, we
find that the vortex cores consist of two crossed regions of elliptic shape, in which a static charge order emerges.
Charge density wave order manifests itself as satellites to the ordinary Bragg peaks directed along the axes of
the reciprocal copper lattice. Quadrupole density wave (bond order) satellites, if seen, are predicted to be along
the diagonals. The intensity of the satellites should grow linearly with the magnetic field, in agreement with the
result of recent experiments.
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I. INTRODUCTION

Since their discovery [1] in 1986, high-temperature (high-
Tc) superconductors remain one of the most interesting fields
of research in modern condensed-matter physics. In particular,
the origin of the pseudogap (PG) phase, appearing below a
temperature T ∗ of the order of a few 100 K, remains one
of their most enduring mysteries. The field has revived re-
cently through a number of spectacular experimental findings
[2–10], which all give evidence to the presence of charge
patterns inside the PG phase. Understanding the properties
of these charge-ordered phases, competing or coexisting with
superconductivity (SC), may significantly help to clarify the
physical origin of the PG phase.

While a stripe order combining both charge and spin mod-
ulations first predicted theoretically in Refs. [11–13] has been
known for a long time to exist in La compounds [14–17], the
first observation of a modulated structure in Bi2Sr2CaCu2O8

(BSCCO) was reported only in 2002 by Hoffman et al. [18],
who subtracted the scanning tunneling microscope (STM)
response with and without an applied magnetic field and thus
unearthed a checkerboard charge order inside the vortex cores.
At the time, it was still interpreted in terms of the stripes similar
to those La compounds. It was found that the radius of the
region where this order appears is larger than the radius of the
vortex cores. The close connection between the development
of an ordered state and the formation of vortices due to an
applied magnetic field has been confirmed by a number of
experiments [19,20]. It has recently become clear that the
high-Tc compounds of BSCCO and YBa2Cu3O7−x (YBCO)
feature a checkerboard-type charge modulation with wave
vectors along the bonds of the CuO lattice [4,6–10,21].

Further, it is well known that under application of a strong
magnetic field exceeding 17 T, a striking reconfiguration of the
Fermi surface is observed [22,23]. After an intense debate, a
consensus emerged in which the reconfiguration of the Fermi
surface is attributed to ordering in the charge sector with
precisely the same wave vector as the one observed in STM
and x rays [24,25]. (There is no ordering in the spin sector.)
Signatures of charge order have also been seen in magnetic
fields above 17 T in sound propagation experiments [9].

Recent nuclear magnetic resonance (NMR) experiments on
the cuprate YBCO inside the (hole) doping region 0.11 < p <

0.12 for the vortex state showed a charge modulation in the core
of the vortices [26]. On the other hand, the authors of Ref. [7]
studied YBCO in a magnetic field at hole doping p = 0.12
using the high-energy x-ray-scattering technique. They found
the charge order not only in the pseudogap phase below an or-
dering temperature TCDW < T ∗, but also in the superconduct-
ing state with the maximum magnitude of the charge density
wave (CDW) at the superconducting transition temperature Tc.
Remarkably, below Tc the lattice modulation peak intensity
grows linearly as a function of the magnetic field.

We can conclude from all these experiments that a charge-
order state competes with the superconducting state in high-Tc

cuprates and appears or is enhanced by a moderate magnetic
field destroying or suppressing the superconductivity.

Recently, several of us have suggested to describe this
competition between d-wave superconductivity and charge
order in terms of a two-dimensional O(4) × O(4) symmetric
nonlinear σ -model [27]. The components of the unit vectors
represent fluctuating order parameters for superconductivity
and a charge-modulated state. In this theory, the PG state is
a fluctuating composite state made of superconducting and
charge suborders corresponding to the disordered phase of
the σ -model. The magnetic field can naturally be taken into
account within this σ -model, and the competition between
superconductivity and charge order can be explained and
described using a renormalization-group scheme [28]. The
results obtained in such a study are in good agreement with
the results of the experiment on sound propagation [9].

The σ -model approach of Refs. [27,28] was further de-
veloped by Hayward et al. [29,30], who studied an O(6)
symmetric σ -model that is identical to the O(4) × O(4)
model if the superconducting phases of the two O(4) sectors
are interlocked. Comparing the results of a Monte Carlo
simulation based on this σ -model with experimental data on
x-ray scattering, they reproduced the observed temperature
dependency of the charge-order signal.

The nonlinear σ -model of Ref. [27] has been derived
starting from the so-called spin-fermion model [31,32]. The
charge order produced by this approach has been identified as
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a quadrupole density wave (QDW) with modulation vectors
directed along the diagonals of the CuO lattice. The instability
toward the charge modulation with this symmetry had been dis-
cussed earlier [33] under the name “valence bond solid.” How-
ever, the fact that experiments so far see a primary charge order
along the CuO bonds has been troubling theoreticians for years.

The CDW order with the modulation vectors directed along
the bonds has been addressed by us in another publication
[34] followed by several other proposals [35–38]. In Ref. [34],
the CDW order is considered as a corollary attribute of the
QDW/SC order, coexisting with it in the PG phase for T <

TCDW or in a strong magnetic field inside the superconducting
phase. The CDW is only a byproduct of the SC/QDW order,
induced by superconducting fluctuations, so that the shape of
the transition lines in the T -B phase diagram, or the structure
of the vortices, is determined by the competition between the
SC and QDW suborders inside the PG phase.

Due to its unusual structure, it is not easy to observe the
QDW order directly using nonresonant x-ray scattering. At the
same time, the x-ray scattering may get a weaker signal from
the secondary CDW order, and one can speak of studying
the SC/QDW competition using the x-ray technique. For a
σ -model description of the competition between SC and the
experimentally observed CDW, x-ray scattering would probe
this competition directly.

In this work, we use the nonlinear σ -model [27] to
investigate the structure of a quantum vortex in the supercon-
ducting phase of a high-Tc superconductor. Previous works
concentrated on general properties of the phase diagram
without magnetic fields [27,34] or the transition from a uniform
superconducting state into a uniform charge-ordered state
under the influence of a strong magnetic field [28]. The
properties of the vortex phase itself have remained an open
question and are addressed by this work. We do not try to
clarify the nature of the charge order here, assuming that it can
be probed by different methods including x-ray scattering and
STM spectroscopy.

For this purpose, we use the generalization of the nonlinear
σ -model with a magnetic field introduced in Ref. [28]. Based
on this model, we derive equations for the order parameter
describing a quantum vortex carrying one magnetic flux
quantum. We show that the symmetry of this order parameter
leads to charge ordering inside the vortex core.

In a second step, we argue that this order is visible in
x-ray scattering experiments by contributing to satellite peaks
close to the standard Bragg peaks. Finally, the position of
this satellite allows us to distinguish between the different
types of charge-ordered states, QDW or CDW. We show that
the modulation peak intensity should be proportional to the
magnetic field, which is in agreement with the results of the
experiment [7].

II. COMPOSITE ORDER PARAMETER AND
MAIN EQUATIONS

A. Nonlinear σ -model

Below a temperature T ∗, the spin-fermion model features a
PG phase [27] characterized by an order parameter comprising
both d-wave superconductivity and a charge order. Although
the direct derivation leads to superconductivity competing

with the QDW, the final equations can phenomenologically
also be used for other types of charge order. As discussed in
the Introduction, an additional charge order may be bound to
the QDW, which allows one to observe the latter indirectly
by, e.g., an x-ray technique. Thus, we consider explicitly the
model with the SC/QDW composite order parameter as in
Refs. [27,28] but having in mind also some broader applica-
tions, when discussing the symmetry of the charge order.

The order parameter may be represented in the form of
an SU(2) unitary matrix in the particle-hole (Gorkov-Nambu)
space,

uL =
(

�L
QDW �L

SC
−�L∗

SC �L∗
QDW

)
. (1)

By unitarity, the parameters for the superconducting and
charge orders, �L

SC and �L
QDW, are subject to the nonlinear

constraint |�L
QDW|2 + |�L

SC|2 = 1. It is ultimately this con-
straint that leads to rather unusual superconducting properties
of the system. The upper index L = 1,2 in Eq. (1) refers to
the two quartets of hotspots, connected within the Brillouin
zone by either Q = (π,π ) for L = 1 or (−π,π ) for L = 2; see
Fig. 1(a). In the hotspot-only approximation [27,33], these two
quartets and their order parameters are decoupled.

Superconductivity and charge order are degenerate sub-
orders of the pseudogap order described by Eq. (1). Finite
curvature of the Fermi surface or a magnetic field lift the
degeneracy below a temperature Tc, the former to favor
superconductivity and the latter to support the charge order.

(a) (b)

(c)

FIG. 1. (Color online) (a) Brillouin zone and hotspots connected
with the antiferromagnetic wave vector Q. Hotspots can be organized
in terms of two quartets L = 1 and 2. (b) The hotspots forming the
L = 1 quartet are indicated, and the velocities are defined via the
angle η. (c) Wave vectors of the different orderings are presented.
QDW order is modulated with Q1,2 while the CDW is modulated
with Qx,y .
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At higher temperatures, Tc < T < T ∗, thermal fluctuations
eventually restore the degeneracy. As these thermal fluctua-
tions play a central role in our study, let us briefly discuss
the nonlinear σ -model describing them. For an extensive
discussion and derivation, we refer the reader to Ref. [27].

We are interested in the limit of long-wavelength thermal
fluctuations, described by uL

q = uL
0 + δuL

q on small momenta
q. The fluctuation modes arise from coupling to the electrons;
see Fig. 1(b). Let us consider the order parameter uL=1, Eq. (1),
for the first quartet. The order parameter uL=1 coherently
couples both hotspot 1 with 3 and hotspot 2 with 4. These
pairs of hotspots are effectively nested, i.e., v1 = −v3 and
v2 = −v4. As a result, the contribution to fluctuation modes
due to the first pair of hotspots allows a momentum dependence
only in the form of (v1q)2, whereas the second pair leads to
a dependence only on (v2q)2. Being gapless, the fluctuation
modes are thus described in the leading order by the free-
energy functional FL=1 = TFL=1 with

F1[δu1] = 1

2tv2

∫
d2q

(2π )2
{(v1q)2 + (v2q)2}tr[(δu1

q

)†
δu1

q

]
.

(2)

The dimensionless coupling constant t is given by the temper-
ature in units of the pseudogap scale T ∗, t = αT/T ∗, with the
numerical coefficient α ≈ 0.74 [27]. Choosing the coordinate
axes along the diagonals of the Brillouin zone, see Fig. 1(b),
we have v1 = v(sin η, cos η) and v2 = v(sin η, − cos η), with
v the value of the Fermi velocity. Thus, (v1q)2 + (v2q)2 =
2q2

x sin2 η + 2q2
y cos2 η. Transforming to real space, we write

the functional F = F1 + F2 for the free energy of both
quartets in the form of two σ -models on the manifold SU(2),

F[u] = 1

t

2∑
L=1

∫
d2r tr[∇L(uL)†∇LuL]. (3)

For η �= 45◦, the gradients ∇L are anisotropic. For L = 1, we
find according to our above analysis

∇L=1 = (sin η ∂x, cos η ∂y) ≡ 	1∇, (4)

where

	1 =
(

sin η 0
0 cos η

)
. (5)

For the quartet L = 2, obtained by turning the L = 1 quartet
by 90◦, the gradient reads

∇L=2 = (cos η ∂x, sin η ∂y) ≡ 	2∇, (6)

with

	2 =
(

cos η 0
0 sin η

)
. (7)

The different anisotropies in the two L sectors lead to unusual
effects in the geometry of vortices in the presence of a magnetic
field, as we will show below.

The σ -model (3) for the gapless fluctuations of the
pseudogap order parameter has been derived for linear Fermi
surfaces around the hotspots. Taking into account the finite
curvature of the Fermi surface, we have to supplement the

model (3) by the term [27]

Fcurv[u] = μ2

t

2∑
L=1

∫
d2r tr[τ3(uL)†τ3u

L]. (8)

The coupling constant μ has dimension of inverse length and
grows with increasing the curvature. With τ3 denoting the
Pauli matrix in particle-hole space, we see that Fcurv breaks
the symmetry between superconductivity and charge order
favoring the superconducting suborder.

B. Vortex solution

Let us parametrize the unitary matrix uL for the order
parameter in Eq. (1) using polar coordinates. Introducing an
“angle” θL between superconductivity and charge order, we
write

�L
QDW = sin θLeiχL and �L

SC = cos θLeiφL . (9)

The parameters χL and φL are the phases of the charge and
superconducting order, respectively. Fluctuations of the phase
χL of the charge order are relevant close to Tc but negligible in
the regime T � Tc in which we are interested. We therefore
assume that χL = 0 for both L = 1 and 2.

We include the magnetic field in the free-energy functional
(3) by minimal coupling [28],

∇LuL → ∇LuL + ie

c
AL[τ3,u

L],

where AL=1 = (sin η Ax, cos η Ay) and AL=2 =
(cos η Ax, sin η Ay) are the reduced vector potentials
due to the anisotropies in the two L-sectors. Furthermore, we
add the contribution of the magnetic field to the free energy
in units of temperature,

FB[A] = 1

T

∫
d3r

[∇ × A]2

8π
, (10)

where A = (Ax,Ay,0).
The σ -model has been derived for a single plane of

CuO, and the total free energy is obtained by summing the
contributions of all individual layers leading to an anisotropic
three-dimensional (3D) model. Basically, two kinds of models
are commonly used for the description of layered superconduc-
tors. For highly anisotropic systems, discrete two-dimensional
layers are coupled by Josephson terms giving rise to interesting
behavior of the vortex solution [39]. If the anisotropy is not
very large, a continuous anisotropic 3D model is applicable.
Actually, for fields perpendicular to the layers, the difference
between these two model is not very important, and under the
assumption that the magnetic field varies on length scales much
larger than the layer thickness d, integration in the vertical
z-direction simply yields a factor of d for each individual
layer.

In the parametrization (9) of the order parameter, the σ -
model (3) in the presence of the magnetic field reads

F[θ,φ,A] = 2

t

2∑
L=1

∫
d2r

{
(∇LθL)2 +

(
∇LφL + 2e

c
AL

)2

× cos2 θL − μ2 cos 2θL

}
. (11)
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For each sector L, this model is reminiscent of the anisotropic
Ginzburg-Landau functional [39]. However, the nonlinearity
of the model (3) becomes noticeable in the cos-dependencies
of the field θL. Also note that there are two order parameters
θ1 and θ2, which in the presence of the magnetic field are
coupled. The free-energy functional (11) is minimal for θL

and A satisfying the Ginzburg-Landau-type equations

∇L∇LθL + 1

2

(
∇LφL + 2e

c
AL

)2

sin 2θL − μ2 sin 2θL = 0,

(12)

(∇ × ∇ × A) + 32πeT ∗

cαd

2∑
L=1

	L

(
∇LφL + 2e

c
AL

)

× cos2 θL = 0, (13)

with the “anisotropy matrices” 	L defined in Eqs. (5) and (7).
In the following, we are investigating the vortex solution

for θL(r), associated with a magnetic flux equal to the flux
quantum �0 = πc/e [40]. For convenience, we choose the
center of the vortex to be the origin. The anisotropy then
suggests for the phases the spatial dependencies

φL=1 = arctan

(
tan η

y

x

)

and

φL=2 = arctan

(
cot η

y

x

)
.

The different anisotropic behavior for each L sector com-
plicates the search for an exact solution of Eqs. (12) and
(13). However, a simplification is possible because the su-
perconducting order parameter and the magnetic field vary on
different length scales. Indeed, θL becomes constant for r =
|r| > ξcor (with ξcor denoting the correlation length), whereas
the magnetic field varies on the scale of the penetration depth λ,
which for a strongly type-II superconductor is much larger. We
will verify the validity of this assumption a posteriori by giving
an estimate of the Ginzburg-Landau parameter κ ≡ λ/ξcor

based on our analysis. Thus, as the first step, we determine
the magnetic field using the fact that far from the vortex
core, cos θL 
 1; cf. Eq. (9). Taking the curl on both sides
of Eq. (13), we find that on scales � ξ ,

�B − λ−2B = −λ−2�0δ(r)ez. (14)

In terms of the microscopic parameters, the penetration depth
λ is given by λ−2 = 64πe2T ∗/c2dα. Symmetry, in particular
the absence of anisotropy, suggests using polar coordinates
(r,ϕ). For the vector potential, we choose a gauge such that
A = A(r)eϕ and d(rA)/dr = rB for B(r) = B(r)ez. Proper
boundary conditions are A(0) = 0 and A(r) = �0/(2πr) for
r → ∞, guaranteeing a total magnetic flux of one flux
quantum �0.

With the magnetic field B(r) at hand, we are then in the
position to determine the angular fields θL(r) using Eq. (12).
For both quartets of hotspots, L = 1 and 2, we impose the same
boundary conditions θL(0) = π/2 and θL(∞) = 0, in line with
the inherent d-wave symmetry of the order. It is convenient
to perform for each sector L the coordinate transformation

r = 	Lr̃ with 	L defined in Eqs. (5) and (7). As a result, we
have thus mapped the system of two anisotropic systems to
two isotropic ones in L-dependent coordinates r̃.

In spherical coordinates (r̄ ,ϕ), where the dimensionless
coordinate r̄ = |r̃|/ξ is the radius in units of the characteristic
length ξ = 1/(

√
2μ), Eq. (12) is for each L reduced to

�θL + 1

2

(
1

r̄
+ e sin(2η)ξ 2

2c
B(0)r̄

)2

sin 2θL−1

2
sin 2θL = 0.

(15)

Deriving Eq. (15), we approximated the vector potential
as A(r) 
 B(0)r/2, which within the scale of the vortex
constitutes the leading order. The second term in the large
parentheses is parametrically much smaller than the first
one [because (e/c)ξ 2B(0) = κ−2 ln κ � 1 [40]], and it may
therefore be omitted in the numerical solution.

Vortex solutions to Eq. (15) are rotationally symmetric in
the r̃-coordinate system. Transforming back to the physical
coordinates r = (x,y), we find for the hotspot quartet L =
1 that θ1 depends on coordinates only as a function of√

(x/ sin η)2 + (y/ cos η)2, while for the second quartet, θL=2

is an effective function of
√

(x/ cos η)2 + (y/ sin η)2. Vortices
in the superconducting order parameter have thus the shape of
ellipses, with the ellipses in sectors L = 1 and 2 rotated by
90◦ with respect to each other.

III. VORTEX STATE

Generally, solving Eq. (15) requires numerical methods.
Figure 2(a) shows among others a plot of |�SC| = cos θL as
a function of the dimensionless radius r̄ . In certain limits,
however, we may obtain approximate analytical solutions and
use these solutions to estimate characteristic parameters of
the system, such as the Ginzburg-Landau parameter κ . In the
superconducting state, θL = 0, while for θL = π/2 the system
shows pure charge order.

(a) (b)

FIG. 2. (Color online) (a) Result of numerical studies of Eqs. (14)
and (15) for a single vortex: superconducting order parameter �SC

(red, solid), charge order �QDW (blue, dashed), and magnetic field B̄

(green, dotted) in arbitrary units as a function of the dimensionless
radius r̄ . The nonlinear constraint on the total order parameter (1)
leads to the rise of charge order triggered by simultaneous decay of
the superconducting order. The magnetic field penetrates deep into
the plane. (b) Checkerboard density wave order inside the vortex core
of radius ∼ ξ .

054511-4



VORTICES AND CHARGE ORDER IN HIGH-Tc . . . PHYSICAL REVIEW B 90, 054511 (2014)

We assume that the system temperature is below Tc so that
the system is a superconductor, which for a sufficiently strong
magnetic field is penetrated by vortices. In the middle of the
core of a single vortex, the superconducting order vanishes.
Setting θL(r) = π/2 + δθL(r), we may then expand the left-
hand side of Eq. (15) in δθL. As a result, the problem is
reduced to the single vortex in the conventional Ginzburg-
Landau theory [40]. In particular, we find that the characteristic
length parameter ξ determines the size of the vortex core and
corresponds to the correlation length ξcor. Thus, expressing the
Ginzburg-Landau parameter κ in terms of the parameters of
the model (11), we find the intermediate result

κ ∼ κ∗ 

√

αc2dμ2

32e2πT ∗ . (16)

The parameter μ2 characterizing the curvature has been
extracted [28] from the data for the zero-temperature critical
magnetic field Bc2 measured in a sound experiment on YBCO
[9]. According to a fit in Ref. [28], μ−1 ≈ 9 nm. For the
pseudogap temperature, we use T ∗ ≈ 250 K and for the width
d of a CuO layer the estimate d ∼ 10 Å . Then, Eq. (16)
yields the rough estimate of κ∗ ∼ 10 and already confirms the
assumption of a rather strongly type-II superconductor used
when making approximations.

However, a more accurate estimate shows that the corre-
lation length ξcor is smaller than the characteristic length ξ

in Eq. (15) so that κ becomes even larger. Indeed, based on
the numerical solution for the nonlinear equation for �SC, cf.
Fig. 2(a), we extract an estimate for the correlation length
as the length at which �SC = 1/2. This procedure yields
ξcor ≈ 0.1ξ . As a result of this refined analysis, we thus obtain
a Ginzburg-Landau parameter

κ ≈ 10κ∗ ∼ 100.

This still rough order-of-magnitude estimate is in line with
the literature [39], although perhaps somewhat larger than ex-
pected. In particular, it a posteriori justifies the approximations
done in Sec. II.

Let us now dwell on more nontrivial effects resulting from
the nonlinear σ -model for matrices uL, Eq. (1). We have al-
ready seen that the nonlinear constraint |�L

QDW|2 + |�L
SC|2 = 1

between the superconducting and charge suborders effectively
enhances the inverse correlation length ξ−1

cor . More strikingly,
this constraint makes charge order emerge automatically as
soon as superconductivity is (locally) suppressed by the
magnetic field [28]. As a result, the vortex cores carry charge
order. Moreover, as shown in Fig. 2, there is a region around
a vortex between the radius scales of ξcor and ξ where
superconductivity coexists with still appreciable charge order.

In real space, as discussed in Sec. II, the vortices in each
of the two sectors L for the two quartets of hotspots have in
general elliptic shapes. Only for the special angle of η = 45◦,
cf. Fig. 1, do these ellipses turn into circles that for both sectors
are the same. In the general situation, η �= 45◦ and the two
sectors L feature anisotropic vortices that are rotated by 90◦
with respect to each other. As a result, while breaking rotational
symmetry, the geometry of a single vortex reflects the d-wave
spatial symmetry. Figure 2(b) visualizes the checkerboard
charge order inside the two crossed vortices. At the boundaries,

where due to the anisotropy only one of the L sectors still
shows vortex features, the density shows a (very) local stripe
structure.

IV. DISCUSSION OF X-RAY EXPERIMENTS

Let us now address the question of how the predicted state
can be observed in x-ray experiments. By conventional hard-x-
ray scattering techniques, one basically measures the Fourier
transform of the charge density. A charge order is thus in
principle detectable using such experiments. Below Tc, our
theoretical analysis based on the σ -model for the pseudogap
state shows the emergence of a charge order inside vortex
cores, provided a sufficiently strong magnetic field creates
vortices. This competing charge order has been identified in
Ref. [27] as a quadrupole density wave, or equivalently bond
order [33]. This order is characterized by two charge density
wave orders on the Cu bonds, where the oxygen atoms are
situated. A phase difference of π between O atoms on bonds
in the x direction and those in the y direction established the
quadrupolar charge order around each Cu atom.

Explicitly, the QDW leads to a charge modulation of oxygen
atoms [27] of the form

ρQDW,x/y(r) = ±|�QDW|[sin(Q1r) + sin(Q2r)]. (17)

The overall sign is different for bonds in the x and y directions.
The wave vectors Q1 and Q2 connect opposing hotspots; see
Fig. 1(c).

Since at each site in the Cu lattice the average charge
density associated with the QDW modulation of formula
(17) is zero, the QDW itself seems difficult to impossible
to detect in x-ray experiments. Also, the wave vectors Q1

and Q2 are not the ones observed in either STM [26,41] or
x -ray [21] experiments, which instead indicate wave vectors
Qx and Qy along the bonds, cf. Fig. 1(c). At the same time,
theoretical approaches that take a microscopic point of view,
assuming for example a model of a single antiferromagnetic
quantum critical point [27,33,42], typically identify the QDW
with wave vectors Q1 and Q2 to be the order associated
with the leading instability in the particle-hole channel. Very
recently, theoretical ideas and mechanisms [34,36,37] have
been developed that may supplement the QDW picture [33,34]
by a true charge density wave order on the Cu atoms with the
experimentally observed wave vectors. These ideas include
extensions of the quantum critical hotspot model [34], taking
into account strong on-site Coulomb interactions [36] and
nontrivial interplay between charge order and superconducting
fluctuations [34,36–38]. It is not yet clear, though, whether
the CDW will eventually have to be regarded as coexisting
or competing with the QDW. Taking a phenomenological
approach [29,30], we choose in the following to discuss the
simplest picture of a nonlinear σ -model with the CDW being
the competitor of superconductivity instead of the QDW. In
this case, we assume the following form of the charge density
on the Cu atoms:

ρCDW(r) = |�CDW|[sin(Qxr) + sin(Qyr)] (18)

with the observed wave vectors Qx and Qy . As before, the
CDW is assumed to appear as soon as the superconducting
order decays due to vortex generation in sufficiently strong
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(a)

(b) (c)

FIG. 3. (Color online) (a) Vortex contribution to the intensity
of one (200) satellite peak. The linear behavior is clearly visible.
(b),(c) Peak structure of the QDW and CDW order, respectively. The
satellites to the (000) and (100) Bragg peaks are shown.

magnetic fields. The CDW at the vortex cores should be easily
detectable in x-ray experiments.

To be specific, the x-ray-scattering intensity is determined
by the density-density structure factor, which reads here

Iq = ρqρ−q (19)

with ρq = ∑
r exp(−iq · r)ρ(r) the Fourier transform of the

charge density. Herein, the sum is over all lattice sites r in
the CuO lattice, and ρ(r) is equal to ρCDW(r), Eq. (18), if r is
a Cu site, and given by ρCDW(r) + ρQDW,x/y(r), cf. Eq. (17),
if r is an oxygen site on a Cu bond in the x or y direction,
respectively.

The structure factor (19) in the presence of the CDW
and QDW charge orders specified by Eqs. (17) and (18)
leads to satellites around the standard Bragg peaks as shown
in Figs. 3(b) and 3(c). Within the σ -model theory for the
pseudogap state, we expect these charge-order-related peak
to appear both at very high magnetic fields B > Hc2 so that
the system is in a pure charge order state, and with a lower
intensity at intermediate fields Hc1 < B < Hc2 where charge
order exists inside the vortex cores. We note that the QDW
only contributes to “odd” Bragg peaks, i.e., where the sum
of the two integers n and m in the reciprocal-lattice vector
K = (2π/a)(n,m) is odd. Since QDW order thus grants a
signal only at the edge of the first Brillouin zone, its observation
will probably be a challenge.

Finally, let us examine the regime above Hc1 where many
vortices appear and the vortices form a lattice. The calculation
is straightforward; every vortex has a similar structure to the

single vortex. The number of vortices must be proportional
to the applied magnetic field B, and we are interested in the
evolution of the scattering intensity of a charge-order peak.

The numerical solution is obtained by calculation of the
integrated intensity for a given number of vortices, which
are well separated by using Eq. (19), and integration of this
result over the wave vectors close to the peak. This procedure
results in Fig. 3(a), revealing that the integrated intensity is
proportional to the number of vortices, where the number of
vortices is in turn proportional to the applied magnetic field.
Thus, I

peak
q0 ∝ |B|. This result is in agreement with a recent

experimental work [7].
The authors of this study performed a hard-x-ray experi-

ment and found satellites to the (2 0 0.5) and (0 2 0.5) Bragg
peaks that were interpreted as a result of the formation of
CDW order in the CuO planes. At zero field, the charge order
emerges by cooling the system below a critical temperature
TCDW ≈ 150 K.

The situation at zero field suggests that this charge signal is
a consequence of the coexistence between superconductivity
and charge density wave order. This is in line with our
theoretical finding in Ref. [34] . On the other hand, the increase
of the signal strength by applying the magnetic field can
be attributed to the formation of vortices in the CuO plane.
Outside the vortices, superconductivity suppresses the charge
order and a field-independent signal is obtained. Inside the
vortices, there are regions that are purely charge-ordered,
further enhancing the signal. Increasing the magnetic field
allows more vortices to penetrate the sample and thus leads
to a stronger signal. This can be seen in Fig. 2(b) of Ref. [7].
Remarkably, the increase is a linear function of the applied
magnetic field, as suggested.

Further evidence for charge order inside vortex cores was
found in Refs. [18,26]. The authors of Ref. [26] found a
charge-order signal by means of NMR measurement inside
the superconducting phase when a magnetic field is applied.
For fixed temperature, the order starts to give a signal
above some threshold field Hcharge. Whether the order is
uni- or bidirectional was not specified and therefore it is not
completely clear which kind of charge order emerges there, but
the appearance of charge order in the vortex phase confirms
our theoretical finding.

A similar scenario applies to Ref. [18], where charge order
in the vortices was found in an STM experiment. It was verified
that the order has checkerboard symmetry and therefore fits
nicely into our theoretical findings.

V. CONCLUSION

The σ -model description [27] for the pseudogap in the
high-Tc cuprates leads to vortices whose geometry may differ
from the conventional Ginzburg-Landau picture. The main
difference, however, is the onset of charge order in the vortex
core, where the superconducting order parameter turns to
zero. This gives rise to peaks in the density-density structure
factor and explains the CDW signals seen in x-ray experiments
[7,18,26]. We hope that future experimental works will soon
clarify the theoretically troubling issue of charge-order x-ray
peaks along the diagonal of the Brillouin zone.
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