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Abstract 

We report the synthesis and characterization of molecular rectifying diodes on silicon 

using sequential grafting of self-assembled monolayers of alkyl chains bearing a π 

group at their outer end (Si/σ-π/metal junctions). We investigate the structure-

performance relationships of these molecular devices and we examine to what extent 

the nature of the π end-group (change in the energy position of their molecular orbitals) 

drives the properties of these molecular diodes. Self-assembled monolayers of alkyl 

chains (different chain lengths from 6 to 15 methylene groups) functionalized by 

phenyl, anthracene, pyrene, ethylene dioxy-thiophene, ethylene dioxy-phenyl, 

thiophene, terthiophene and quaterthiophene are synthesized and characterized by  

contact angle, ellipsometry, Fourier transform infra-red spectroscopy and atomic force 

microscopy. We demonstrate that reasonably well-packed monolayers are obtained in 

all cases. Their electrical properties are assessed by dc current-voltage characteristics 

and high-frequency (1 MHz) capacitance measurements. For all the π-groups 

investigated here, we observe rectification behavior. These results extend our 

preliminary work using phenyl and thiophene groups (S. Lenfant et al., Nano Letters 3, 

741 (2003)).The experimental current-voltage curves are analyzed with a simple 

analytical model, from which we extract the energy position of the molecular orbital of 

the π-group in resonance with the Fermi energy of the electrodes. We report the 

experimental studies of the band lineup in these silicon/alkyl-π conjugated 

molecule/metal junctions. We conclude that Fermi level pinning at the π-group/metal 

interface is mainly responsible for the observed absence of dependence of the 
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rectification effect on the nature of the π-groups, even though they were chosen to have 

significant variations in their electronic molecular orbitals. 
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I. Introduction and motivations 

As microelectronic devices approach their technological and physical limits,1,2 

molecular electronics, i.e. the molecule-based information technology at the molecular-

scale, becomes more and more investigated and envisioned as a promising candidate for 

the nanoelectronics of the future. From this respect, supramolecular assembly of organic 

molecules on solid substrates is a powerful "bottom-up" approach for the fabrication of 

devices for molecular-scale electronics. A useful method is based on the self-assembly 

of monolayers of organic molecules on solid substrates (SAM).3 Many reports in the 

literature concern devices based on SAMs of thiol-terminated molecules chemisorbed 

on gold surfaces.3-5 It is also valuable to develop and investigate molecular-scale 

devices based on SAMs chemisorbed on semiconductors, especially silicon. Silicon is 

the most widely used semiconductor in microelectronics and a broad family of organic 

molecules can be grafted on its surface, which opens the possibility of tailoring the 

surface (e.g. modifying the surface potential, for instance)6-8 for new and improved 

hybrid molecular/silicon devices. Between the end of the silicon road-map and the 

envisioned advent of fully molecular-scale electronics, there is, for sure, a role to be 

played by such hybrid-electronic devices.2,9 Since the first adsorption from solution of 

alkyltrichlorosilane molecules on a solid substrate (mainly oxidized silicon) introduced 

by Bigelow, Pickett and Zisman10 and later developed by Maoz and Sagiv,11 further 

detailed studies12-15 have lead to a better understanding of the basic chemical and 

thermodynamical mechanisms of this self-assembly process. Since the first study of the 

electronic properties of alkylsilane monolayers by Mann and Kuhn16 and 

Polymeropoulos and Sagiv,17 SAMs on silicon have been demonstrated as high quality 

ultra-thin tunnel barriers18,19 and have been used as gate dielectrics in nanometer-scale 
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transistors.20-22 SAMs of redox molecules (metallophorphyrines, ferrocene) have also 

been used as molecular memories23,24 in hybrid CMOS/molecular DRAM circuits.25 

Molecular resonant tunneling diodes on silicon have been also demonstrated.26 

Recently,27 we demonstrated a molecular rectifying junction (MRJ) by attaching a 

donor group (phenyl or thiophene) to the alkyl spacer chain by a sequential grafting on 

silicon. We obtained rectification ratios up to 35. We showed that the rectification 

mechanism is a resonance through the π molecular orbital (ascribed to the highest 

occupied molecular orbital – HOMO) in good agreement with calculations and internal 

photoemission spectroscopy. This approach allowed us to fabricate molecular rectifying 

diodes compatible with silicon nanotechnologies for future hybrid circuitries. In this 

paper, we present a systematic study of the synthesis, the structural and electrical 

properties of these rectifying molecular diodes, and we extend this work to a large 

number of chemically different π end-groups. The main objectives were to investigate 

the structure-performance relationships of these molecular devices and to examine the 

extent to which the nature of the π end-group drives their electrical properties. In this 

respect, SAMs of alkyl chains (chain lengths from 6 to 15 methylene groups) 

functionalized with a large variety of π electron rich chemical groups (phenyl, 

anthracene, pyrene, ethylene dioxy-thiophene, ethylene dioxy-phenyl, thiophene, 

terthiophene and quaterthiophene) have been synthesized and characterized by  contact 

angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-

red spectroscopy (FTIR) and atomic force microscopy (AFM). Their electrical 

properties have been tested by dc current-voltage characteristics and high-frequency (1 

MHz) capacitance measurements. 

We chose a large number of π-groups having different energy levels of their 

molecular orbitals in gas-pahse. We started with simple benzyl alcohol and 3-

thiophenemethanol. Then, we moved from monomers to oligomers: terthiophene and 

quaterthiophene and to fused oligoacenes: anthracene and pyrene. Our motivations were 
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to establish a relationship between the electrical properties (electronic structure) of the 

starting π molecules first in vacuum, then when chemisorbed on the silicon substrate 

and finally the current-voltage rectification behavior of the Si/molecule/metal junctions. 

From an engineering point of view, the knowledge of this relationship is mandatory to 

design MRJ with an electrical behavior suitable for device and circuit applications. For 

instance, in classical semiconductor p-n junctions the threshold voltage for rectification 

is adjusted by doping, whereas here it is envisioned to do this using chemistry, by 

changing the nature of the π-group. 

It is known that charge transfer and band lineup (i.e. the energy position of the 

molecular orbitals (MOs) with respect to the Fermi energy of the electrodes)  are the 

key parameters controlling the electronic properties in molecular devices.28-31 This 

question has been theoretically addressed28-31 in ideal metal-molecule-metal junctions 

with simple molecules (phenyldithiol, alkyl, alkane and phenyl ethynylene). It is also 

known that the energy positions of the MOs of the gas-phase molecules and of the 

molecules in interaction with a surface are quite different. The energy levels of the MOs 

are broadened due to the hybridization with the delocalized wave functions of the metal 

electrodes, the energy levels are also shifted under the effects of fractional charge 

transfer at the interface and the HOMO-LUMO gap can be substantially changed. As a 

typical example, two-photon photoemission experiments on SAMs of 

pentafluorothiophenolate chemisorbed on a Cu surface showed that the LUMO is down-

shifted by 3.1 eV, the HOMO is up-shifted by 2.6 eV, leading to a HOMO-LUMO gap 

reduction of 5.6eV, compared to gas-phase molecules.32 At the metal/organic 

semiconductor contact (as in organic light emitting diodes), the breakdown of the 

vacuum alignment rule (Schottky-Mott model) has been a major discovery to explain 

the electronic properties of these devices,33,34 and a large number of organic molecules 

deposited in ultra-high vacuum (UHV) on metal surfaces have been analyzed.33,34 It was 

also established that monolayers of molecules bearing a dipole moment can modify the 
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electron affinity of semiconductor surfaces and consequently the metal/semiconductor 

Schottky barrier height.35-37 On the contrary, reports on molecular-scale junctions are 

scarce, probably because of a smaller number of investigated molecules and metal 

surfaces (much of the works focused on gold surface with linear alkanes and linear π-

conjugated oligomers). Moreover, in molecular junctions, the molecules are generally 

chemisorbed from solution or from gas-phase instead of being UHV deposited. 

In this work, we report on a strong metal-induced Fermi level pinning which 

completely controls the electrical behavior of the molecular rectifying diodes. To our 

knowledge, this feature has not been yet reported for silicon/SAM/metal junctions. On 

line with reports quoted above, we report this study to help in the understanding of the 

current-voltage rectification behavior of these Si/alkyl chain - π group molecule/metal 

junctions. 

II. Experimental Section 

On naturally oxidized silicon wafers, bearing hydroxyl groups, the SAMs are usually 

prepared from the reaction of molecules bearing a halogen- or alkoxy-silane head-group 

(Si-X3 with X=Cl or O(CH3)3 or O(C2H5)3…).3,4  In general, it is desirable to introduce 

particular functionalities on the surface. Unfortunately, many of them are not 

compatible with the silane (especially the trichlorosilane) head groups. Therefore, we 

used a sequential strategy. First, we began with the deposition of SAMs with relatively 

unreactive end-groups (i.e. relative to the trichlorosilane head group). Second, the end-

groups are subsequently modified (sequential grafting). We followed Wasserman et al. 

who reported on the chemical transformation of vinyl-terminated SAMs into carboxylic 

acid, alcohol, and bromide end-group SAMs.38 These groups are prone for further 

surface modifications by other molecules. 
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II.1. Step 1: Alkyl chain self-assembled monolayer synthesis 

In this work, we used n-alkenyl-trichlorosilane (SiCl3−(CH2)n−CH=CH2) with n=6, 9, 

12 and 15. The shorter molecules (n=6 and 9), 7-octadecenyl-trichlorosilane (OETS) 

and 10-undecenyl trichlorosilane (UETS), respectively, are commercially available 

(purchased from ABCR and used as received). The longer molecules (n=12 and 15), 13-

tetradecenyl-trichlorosilane (TETS) and 16-heptadecenyl-trichlorosilane (HETS), 

respectively, were synthesized according to the protocol developed by Bonnier39 using 

enamine synthesis, or by cross- linking the Grignard reagent of ω-undecenyl bromide 

with the appropriate dibromoalkane to obtain the bromovinylic chain with the desired 

length. Installation of the SiCl3 group was achieved by Grignard reaction of the alkenyl 

bromide with SiCl4 (Figure1). We also prepared SAMs with a methyl-terminated 

molecule, n-octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3), as a standard reference.  

These alkyl chain molecules were chemisorbed on naturally oxidized silicon 

substrates (1 to 1.5 nm thick SiO2 as measured by ellipsometry, vide infra) from a dilute 

solution (10-2-10-3 M) in an organic solvent (70/30% v/v of hexane or hexadecane and 

carbon tetrachloride) using the method introduced by Bigelow, Pickett and Zisman10 

and later developed by Maoz and Sagiv.11 The silicon substrates (purchased from 

Siltronix) were degenerate n-type (resistivity of ~ 10-3 Ω.cm) to avoid any voltage drop 

in the substrate during electrical measurements. Prior to deposition, the substrate were 

carefully cleaned by extensive wet cleanings (mainly with a piranha solution: 

H2SO4:H202 2/1 v/v, caution: piranha solution is exothermic and strongly reacts 

with organics) and dry cleanings by combining ultraviolet irradiation and ozone 

atmosphere. The cleaned substrates were dipped into the freshly prepared solution and 

the chemical reaction was allowed to proceed to completion. Typical reaction times 

were 90-120 minutes. We deposited HETS at 20 °C, TETS at 8 °C, UETS at 2 °C and 
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OETS at -20 °C while the corresponding critical temperatures (TC) for optimum 

deposition (i.e. to form a densely-packed and well-ordered monolayer) are ~26, ~16, ~6, 

and ~-10 °C, respectively. These critical temperatures were extrapolated from Brzoska 

et al.12,13 It was assumed that the critical temperatures for the vinyl-terminated alkyl 

chains were the same as for the methyl-terminated molecules used in Brzoska's work. 

To control the solution temperature during the silanization reaction, the glass beaker 

was placed onto a cold plate (temperature controlled at ± 1 °C). To avoid any 

condensation of water when working at low temperature near the dewpoint of the 

atmosphere surrounding the reaction bath, we worked in a glove box, purged and 

maintained under a dry nitrogen flow (relative humidity around 15%). The next step 

consisted in modifying the vinyl end-groups by oxidation in 

KMnO4/NaIO4/K2CO3/deionized H2O (10/10/10/70 % v/v) to obtain the COOH 

terminated monolayers.38 The oxidation time was 24h at room temperature. For all of 

these chemical steps, we worked in a dry nitrogen-purged glove box installed in a class 

10000 clean room (temperature and relative humidity well controlled at 20 °C and 40%, 

respectively).40 

II.2. Step 2: Synthesis and grafting of the π end-groups 

Finally, we grafted conjugated moieties onto the previously formed SAMs using 

esterification reactions between the -COOH end-groups and several π-conjugated 

molecules bearing an alcohol group (R-OH). We started with simple benzyl alcohol and 

3-thiophenemethanol (Figures 2.a and 2.b, respectively).41 Then, we moved from 

monomers to oligomers: terthiophene and quaterthiophene (Figures 2.g and 2.h) and to 

fused oligoacenes: anthracene and pyrene (Figures 2.c and 2d).42 Finally, we also used 

phenyl and thiophene derivatives substituted with ethylene-dioxy (EDBM and EDTM, 

Figures 2.e and 2.f). 
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Bis (5,5’’-(2-hydroxy 2-methylethyl))-2,2’:5’,2’’-terthiophene. (3T for short, (g) in 

Fig. 2). 2,2’:5’,2’’-terthiophene was first synthesized in diethyl ether using the well 

known Grignard reaction from 2,5 dibromothiophene and 2 bromothiophene in the 

presence of Nickel (II) catalyst (Nidpppcl2).43 mp(°C) 89. 1H NMR (CDCl3, ppm) 7.2 ( 

H5,5”); 7.18 ( H3,3’’); 7.06 ( H3’,4’); 7.0 ( H4,4” ). 5g (20.1 mmoles) of 2,2’ :5’,2’’- 

terthiophene were solubilized in dry diethylether and 25.2 mL of butyllithium (2.5M in 

hexane) were added. Stirring was maintained for further 30 mn at room temperature and 

then 10 mL (143 mmoles) of propyleneoxide were added drop wise. The resulting 

mixture was maintained under stirring for 3 h, and then hydrolysed with 30 mL of 

water. After filtration and extraction of the organic phase, the crude product was 

recristallized in toluene. 2.2 g of brown crystals were obtained (yield 30%). mp(°C) 

96.5. 1H NMR (CDCl3, ppm) 6.98 (H3’,H4’, H3, H3’’); 6.75 (d, H4,4’’); 4.02 (m, 2H, 

CH2CHOHCH3); 2.92 (m, 2H, CH2CHOHCH3 ); 1.72 (d, 2H, CH2CHOHCH3); 1.28 (d, 

6H, CH2CHOHCH3). 

2,3-dihydrothieno[3,4-b]-1,4-dioxin-2-yl-methanol  (or ethylene-dioxy-thiophene 

methanol - EDTM for short, (f) in figure 2) was synthesized in 6 steps using a 

previously described procedure.44-46 

2-hydroxymethyl-1,4-benzodioxan. (or ethylene-dioxy-benzyl methanol - EDBM for 

short, (e) in figure 2). 2.2g (20 mmoles) of catechol  was dissolved in 250 mL of boiling 

ethanol. Epibromhydrin (2.5 ml, 30 mmoles) and potassium carbonate (0.55 g,  4 

mmoles) dissolved in 150 mL of water  were then added. The mixture was heated at 

reflux for 1 h. Additional amounts of K2CO3 (0.3 g) and epibromhydrin (1 ml) were 

added. After refluxing for 72 h, the solution was cooled and poured into 100 mL of 

acidified water (5% HCl) . After extraction with chloroform and drying over 
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magnesium sulfate the solvent was removed by evaporation under vacuum.  

Recristallization in ether gives 2.1 g of white crystals. (yield 63%). mp(°C) 88. 1H NMR 

(CDCl3, ppm) 6.87 (m, 4H); 4.26 (m, 2H); 4.1(m, 1H); 3.84(m, 2H); 1.91 (t, 1H). 

The esterification was carried out for 120 h at room temperature (always in the class 

10000 clean-room and in the glove-box or in a dry nitrogen purged and sealed vessel) in 

the presence of DCCI (dicyclohexylcarbodiimide) to enhance the reaction yield (benzyl 

alcohol was used pure, the other compounds were dissolved in xylene at 10-2 M). The 

solution was renewed after 60 h to minimize its contamination and aging. An 

esterification at shorter time led to worse quality SAMs as inferred from structural 

characterization (contact angle, ellipsometry, FTIR and AFM).  Figure 3 shows a 

schematic representation of these σ-π SAMs for each of the π-groups. 

II.3. Wettability measurements 

The contact angles of sessile drops of test liquids were measured using a remote 

computer-controlled goniometer system (DIGIDROP by GBX, France). A drop of 

deionized water (18 MΩ.cm) or hexadecane (in the range 1-10 µL) was deposited on 

the surface and the projected image was acquired and stored by the remote computer. 

Contact angles were then extracted by contrast contour image analysis software. These 

static angles were determined 5 s after application of the drop. These measurements 

were carried out in a clean room (class 1000), in which the relative humidity (40%) and 

the temperature (20 °C) are well controlled. The accuracy of those measurements  was ± 

2°. 

II.4. Thickness and dielectric constant measurements 

The SAM thicknesses were measured by ellipsometry with a PLASMOS SD2300 

instrument at 6328 Ǻ. We used a value of n=1.50 for the SAM refractive index at 6328 
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Ǻ to calculate the thickness. Usual values in the literature are in the range 1.45-1.50.3  

We also used a spectroscopic ellipsometer UVISEL (by Jobin Yvon) equipped with a 

DeltaPsi 2 data analysis software. The system acquired a spectrum ranging from 2 to 4.5 

eV (corresponding to 300 to 750 nm) with 0.05 eV (or 7.5 nm) intervals. Data were 

taken using an angle of incidence of 70° and the compensator was set at 45°. Data were 

fitted by regression analysis to a film-on-substrate model described by their thickness 

and their complex refractive indices. The optical parameters of the naturally oxidized 

substrate were independently determined by measuring a bare wafer rigorously cleaned 

by the same surface cleaning process (vide supra). This oxide layer thickness was found 

to be in the range 10-15 Ǻ for all the wafers used in this work.  We compared the 

measured data with the simulated data to determine this thickness. The simulated data 

were obtained with a 2 layers model: silicon substrate/silicon oxide. We used for Si and 

silicon oxide, the optical properties (complex refractive index for each wavelength) 

from the software library. After the monolayer deposition, we used a 3 layers model: 

silicon substrate/silicon oxide/organic monolayer. To determine the monolayer 

thickness we fixed the oxide thickness at the previously measured value, for silicon and 

oxide we again used the optical properties from the software library, and for the 

monolayer we fixed the refractive index at 1.50.  The accuracy of the SAM ellipsometry 

thickness measurement is estimated to be ± 2 Ǻ. 

We also combined high-frequency (1 MHz) capacitance (vide infra) and ellipsometry 

to determine both the dielectric constant and the thickness of the SAM's. The SAM 

capacitance is given by 0 /SAM SAM SAMC dε ε=  and the ellipsometry optical thickness 

 where ε. SAMK n d= 0 is the vacuum permittivity, εSAM the relative SAM permittivity, 

dSAM the SAM thickness and n the SAM refractive index.  Assuming that εSAM = n2, we 
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calculated εSAM, n and dSAM using 
1/32

0
SAM

SAM

Kd C
ε⎛ ⎞= ⎜ ⎟

⎝ ⎠
and 

1/ 3

0

SAMKCn ε
⎛= ⎜
⎝ ⎠

⎞⎟ . This 

neglects possible dipolar contribution to the dielectric function. This assumption has 

been validated a posteriori by the fact that the measured thicknesses are in close 

agreement with theoretical ones (see section III.2).  

II.5. Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) measurements of the monolayers 

were done with a Perkin Elmer Spectrum 2000 system, equipped with a liquid nitrogen 

cooled MCT detector. We used internal reflection infrared spectroscopy (known as 

attenuated total reflection -ATR).  We used a silicon ATR crystal (10 mm x 5 mm x 1.5 

mm, faces cut at 45°). All measurements were made after purging the sample chamber 

for 30 min with dry N2. Spectra were recorded at 4 cm-1 resolution, using a strong 

apodization, and 200 scans were averaged to increase the signal-to-noise ratio. 

Background spectra were recorded on a freshly cleaned ATR crystal before each 

monolayer deposition. 

II.6. Atomic force microscopy 

We used Atomic Force Microscopy (AFM) to image the surface morphology of the 

SAMs. We used a Nanoscope III (Digital Instruments) system in the tapping mode in air 

and at room temperature with a silicon tip. All images (512 x 512 pixels) were taken at 

the scanning rate of 2 - 2.44 Hz. Surface regions from 50 x 50 nm to 5 x 5 µm were 

imaged. 

II.7. Electrical measurements 

For the capacitance and conductivity measurements, we formed the 

silicon/SAM/metal (SSM) heterostructures by evaporating metal (aluminum) through a 
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shadow mask (electrode area: 10-2 mm2). To avoid contaminating the surface during the 

metallization, an ultra-high vacuum (UHV) e-beam evaporation system was used. It was 

checked that a 10-8 Torr vacuum is innocuous for the SAMs. We have shown previously 

that such SAMs are thermally stable up to ∼ 350 °C in vacuum,47 nevertheless during 

the evaporation, the sample temperature was maintained below 50 °C. To avoid damage 

of the monolayer during the deposition of the first monolayers of the evaporated metal 

atoms, we used a low evaporation rate (1-5 Å/s) and a large distance between the 

sample and the crucible of metal (∼ 70 cm). The electrode thicknesses were in the range 

200-500 nm. More than 20 SSM devices were measured for each combination of alkyl 

chain lengths and π end-groups. The success rate for forming working junction was 

about 50-70% (ratio of non short-circuited devices over total measured ones). 

Aluminum (instead of Au) was chosen to avoid any rectification effect coming from the 

difference in the work functions of the two electrodes (WM ≈ 4.2 eV for Al and WSi ≈  

χSi = 4.1 eV for n+-type Si, χSi is the electron affinity) since it is well known that a 

larger current is obtained when a positive bias is applied to the electrode with the 

smallest work function.48 This effect was observed through metal/SAM/metal junction 

with Au and Ti electrodes.49 

The SSM structures were mounted onto a wafer chuck with silver paste to insure good 

electrical contact with the silicon back-side. The electrode was contacted by precision 

micromanipulators. Electrical transport through the SAMs was determined by 

measuring the current density versus the applied dc voltage with an Agilent 4140B 

pico-ammeter. We used a low speed step-like voltage ramp (step voltage 10 mV, 

duration 1.5 s) to avoid transient effects due to displacement current since the SSM 

junctions mainly act as capacitors. Capacitances were measured at 1 MHz (ac signal 
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amplitude 20 mVeff) by an Agilent 4274A LCR-meter. In both cases, voltages were 

applied to the metal counter-electrode, the silicon substrate being grounded. The 

measurements were done at room temperature and in the ambient atmosphere. The 

SAM capacitance CSAM is deduced from the measured capacitance Cmeas taking into 

account the capacitance of oxides (Cox) and the capacitance for the silicon substrate 

(Csc): 1 1 1 1
meas sc ox SAMC C C C= + + . We modeled the degenerate semiconductor by 

its Debye capacitance, 0 /sc Debye sc DebyeC C ε ε λ= =  with εsc the dielectric constant of the 

semiconductor (11.9 for silicon) and λDebye the extrinsic Debye length. This latter is 

given by ( )1/ 22
0 /sc DkT q Nε ε  with k the Boltzmann constant, q the elementary electron 

charge, T the temperature and ND the doping concentration in the semiconductor (here ≈ 

1019 cm-3). We get Cdebye ≈ 8 µF/cm2. The oxide capacitance 0 ox
ox

ox
C d

ε ε=  was 

calculated knowing the measured native oxide thickness (ellipsometry) and taking 

εox=3.9. 

III. Results and discussion 

III.1. Contact angles 

Figure 4 summarizes the measured evolution of the water contact angles for the 

different chemical functionalities of the SAMs. Table 1 gives the water and hexadecane 

contact angles measured on the alkyl chain SAMs after and before the oxidation 

reaction. For the OTS monolayer used as standard reference, the contact angles are 

108°±2° for water and 43°±2° for hexadecane as expected for a densely-packed methyl 

terminated SAM.3,12,13 The vinyl-terminated SAMs are clearly hydrophobic with 

97°<θΗ2Ο<105°.  The oxidation reaction makes them more hydrophilic with 
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20°<θΗ2Ο<56°, depending on the length of the alkyl chains. After the esterification with 

any of the π groups, the water contact angles are always in the range 70 – 80°. Our 

contact angles for the vinyl-terminated monolayers value are in good agreement with 

earlier reports on similar systems.3,50 For instance, Steel et al.50 have reported 

θH20=108°±3° and θHD=39°±3° for a vinyl-terminated alkylthiol SAM on gold (chain 

length of 9 methylene groups). Both the water and hexadecane contact angle values 

compare well with those obtained in this work for the longest chain length (HETS). Our 

hexadecane contact angles decrease with decreasing chain lengths from 15 to 6 

methylene groups, becoming too low and not measurable (<10°) for the two shortest 

chain lengths. This reflects a more disordered SAM for the short chain length molecules 

(see section 3.3 on FTIR results) and the fact that the underneath hydrophilic SiO2 

surface can contribute to the wetting properties for such a short chain.51  After 

oxidation, the water contact angle should have been equal to 0° for a nearly ideal, 100% 

covered, COOH-terminated monolayer.52 We measured higher values indicating a 

partial COOH surface coverage. Assuming that the monolayer surface is made of a 

mixture of vinyl and acid carboxylic moieties, and using the Cassie law53, we estimate 

the oxidation reaction yield. 

 vin/carb vin vin carb carbcos θ r cos θ r cos θ= +  (1) 

where θvin/carb is the measured contact angle after oxidation, rvin is the relative surface 

coverage by vinyl groups and, rcarb with the relative surface coverage by COOH groups 

(rvin + rcarb =1), θvin and θcarb are the water contact angles for an ideal, fully covered 

surface, by vinyl and COOH groups, respectively. We used 105° and 0°, respectively. 

We obtain the oxidation yields ηox = rcarb (if we assume that rvin=1 for the monolayer 

before the oxidation) of 68±5%, 63±5%, 74±5%, 95±5% for the OETS, UETS, TETS 
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and HETS monolayers, respectively (Table 1). These yields are in agreement with data 

reported by Wasserman et al.,38 these authors have estimated the yield of this chemical 

surface modification in the range 70% to 90%. However, we notice that the shorter the 

chain length, the lower the water contact angle and the deduced oxidation yield. This 

may be explained by an increase of the disorder when decreasing the chain length (see 

section 3.3 for FTIR confirmation), and thus we overestimate the oxidation yield 

because rvin is < 1 for the SAM before oxidation. After esterification, the contact angles 

are in agreement with other reports on similar systems (monolayer functionalized by 

thiophene54, phenyl50). These values are also in agreement with the one expected if the 

aromatic groups are densely-packed and if they preferentially expose their edges to the 

probe liquid.55 

III.2. Ellipsometry 

Table 2 summarizes the thicknesses of the SAMs and gives a comparison with the 

expected value for a "near-perfect" densely-packed SAM. The expected thickness 

corresponds to the length of the molecule, as given by PM3 geometry optimization with 

the CS-MOPAC software56, and assuming that the main axis of the molecule is 

perpendicular to the surface substrate. We observe a relatively good agreement between 

the measured and the expected values. The differences are always lower than 5 Å and 

may be ascribed to irreproducibility and sample-to-sample variations of the native oxide 

(1 to 1.5 nm). This indicates a reasonably good packing of these SAMs, especially after 

the grafting of the π end-groups. 

In the case of the vinyl-terminated monolayers, we measured 12±2 Ǻ, 17±2 Ǻ, 18±2 

Ǻ and 26±2 Ǻ for the OETS, UETS, TETS and HETS monolayer, respectively. These 

values are in agreement with the general expression of the molecule length obtained by 

Wasserman et al.38 for a methyl-terminated monolayer containing n methylene units 
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(SiCl3-(CH2)n-CH3) : dSAM = 1.26 n + 4.78 (in Å). This relation has been determined 

for methyl-terminated monolayers, while our monolayers are vinyl-terminated. But the 

length difference between these two end-groups is very low (inferior to 0.2 Ǻ).57 The 

OTS monolayer thickness is equal to 26±2 Ǻ in perfect agreement with the above 

relation and previous results.3,38 

II.3 FTIR 

For alkylsilane monolayers, the frequency and width of the C-H stretching bands are 

indicative of the degree of order of the alkyl chains within the monolayers.3  The CH2 

vibration peaks for the reference OTS and the precursor HETS monolayers are νa = 

2918±1 cm-1 (antisymmetric) and νs = 2850±1 cm-1 (symmetric) (Figure 5 and Table 3). 

These values are the fingerprint of a dense and well-ordered monolayer,3,12,14,15 The 

positions of these peaks are strictly similar to those of CH3 terminated chains (OTS) 

used as reference. We inferred from these values that the alkyl chains in these SAMs are 

in their all-trans conformation, nearly perpendicular to the substrate (tilt angle < 10°) as 

expected for a densely-packed molecular architecture in the SAM. Amplitudes (areas) 

of these peaks scale linearly with chain length. 

For the monolayers with shorter alkyl chains, the peaks shift to higher wave numbers 

(Fig. 5 and Table 3). For example, in the case of the OETS monolayer, the peak 

positions are at 2927 and 2858 cm-1 for the antisymmetric and the symmetric mode, 

respectively. This behavior has been observed in the case of alkylthiol grafted on gold3 

or platinum58 substrates. This peak shifts are due to a decrease in the Van der Waals 

interactions between neighbor molecules (they increase with the length of the alkyl 

chain), leading to an increase in the disorder into the monolayer when the chains are 

shorter. 
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The C-H peak positions (symmetric and antisymmetric) after oxidation (i.e. for the 

COOH terminated SAM) and after esterification (with the π-group) are the same as for 

the starting vinyl-terminated SAMs (Table 3). The peak amplitude and width are also 

not changed by these successive chemical processes. We conclude that the chemical 

functionalization of the starting vinyl-terminated SAMs by oxidation and esterification 

with the aromatic moieties does not degrade the molecular organization of the alkyl 

chains in the monolayers.  

In the region of π bonds, we observed the C=O stretching vibration at 1717 cm-1 

(Figure 6) corresponding to the C=O bond  in a COOH group.59 After the esterification 

with aromatic moieties, the stretching C=O modes shifts to 1735 cm-1. This higher value 

is in agreement with literature values for the C=O vibration mode in an ester bond.59 In 

addition, the C=C stretching band at ~1651 cm-1 is clearly observed after esterification, 

which evidences that the aromatic moieties are effectively attached to the previously 

formed SAMs. 

III.4. AFM 

Figure 7 shows typical AFM images for the bare substrate, the HETS SAM and the 

same HETS SAM functionalized by the pyrene group. Both SAMs are homogeneous; 

we did not observe holes (at the resolution of the AFM, ~few tens of nanometers). 

However, the rms roughness increases, especially after the grafting of the pyrene group. 

We found a rms roughness ~0.11 nm for the bare substrate, ~0.16 nm for the HETS 

SAM and ~0.22 nm for the HETS pyrene. This increase may be due to the larger size of 

the pyrene compared to the alkyl chain and/or to a more disordered organization of the 

pyrene groups than for the alkyl ones. Note that both SAMs (HETS and HETS-pyrene) 

display some hollow (darker area) with a depth of about 0.5-0.7 nm. These "defects" 
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may explain the dispersion observed in the amplitude of current-voltage curves and the 

fact that a fraction of the alkyl SAM were short-circuited (~30%) and that a fraction of 

the alkyl-π group SAM showed a weak rectification ratio (< 2) or no rectification at all 

(see below for details and ref. 27). 

 

IV. Electrical properties 

IV.1. Capacitance measurements 

To determine the impact of the π group on the dielectric permittivity, we measured 

the capacitance of the monolayers. Capacitance may change for two reasons: i) an 

increase in thickness and ii) a change of the dielectric permittivity when anchoring π 

moieties with higher dipole moment than the pure alkyl chain (almost non polar). 

Combining capacitance and ellipsometry measurements (see section 2.4) allows us to 

determine both the dielectric constant and the thickness of the end-group functionalized 

SAM’s. From the capacitance measurements, we can extract the ratio εSAM/dSAM where 

εSAM is the SAM dielectric constant and dSAM the SAM thickness, and from the 

ellipsometry we can extract the product n.dSAM, where n is the optical refraction index 

and dSAM the thickness. Assuming that εSAM=n2, we combined both results to calculate 

εSAM, n and dSAM (Table 4). The refractive index (n) values for all the monolayers are 

around 1.5. Similar value of n for both alkyl and alkyl-π SAMs is expected because the 

π-groups are not highly polar. This result confirms the choice of 1.5 for the refractive 

index made in the section 2.4 for the ellipsometry measurements, and the similar values 

of ε for the alkyl chain and the π-group in eq. (3) – see below. The thicknesses deduced 
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by combining ellipsometry and capacitance measurements are in agreement with the 

expected ones and with the thicknesses measured by ellipsometry alone. 

IV.1. Conductivity measurements 

Figure 8 shows typical current-density vs. voltage curves (J-V) for several π-

terminated SAMs made with HETS (Figs 8-a and 8-b) and OETS (Fig. 8-c) as the alkyl 

spacer. The J-V curves for alkylsilane SAM (without π group) are taken as the reference 

(figure 8-d). The J-V curves for the CH3-terminated (OTS) and vinyl-terminated 

(OETS, TETS and HETS) SAMs are symmetric (see figure 8-d, the case of OTS). We 

have also checked that the introduction of the polar ester group is not responsible for the 

rectification behavior in the π-terminated SAMs. The figure 8-d shows the J-V for the 

COOH-terminated SAM (as obtained after step 1 described above and based on a 

pristine HETS SAM). In the COOH-terminated case, the shape of the J-V is less linear 

and a small asymmetry is observed with a slightly higher current at positive bias (a ratio 

~1.35 at │1V│), i.e. in the opposite way compare to the π-terminated SAMs.  In all the 

other cases, with the π moieties at the end, we observed a rectification behavior i.e. a 

higher current density at -1V than at 1V. To further analyze this rectification effect, we 

compared the dispersion for the current densities at -1 V and 1 V (see the example for 

HETS/phenyl in figure 9). The observed distributions are fitted by two Gaussian curves 

that are not at the same position; the current density at -1V is shifted to higher values 

(by almost a factor 10 in that case). This statistical analysis clearly reveals the 

rectification behavior in spite of the inherent current dispersion already observed with 

these SAMs. The electrical properties for all the monolayers studied in this work are 

presented in table 5. For every π-functionalized monolayer, we define a rectification 

ratio (RR for short) equal to the average current density at -1 V (in absolute value) 
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divided by the average current density at 1V (RR = │J-1V │/ J1V). The average values of 

RR are in the range 3 to 13 (table 5) for the functionalized monolayers, with the highest 

RR value of 37 for the OETS/thiophene monolayer. We did not observe a significant 

variation of RR with the chemical nature of the end-groups nor any correlation with the 

alkyl spacer length (the sample to sample variations of the RR values are too large with 

relative scattering of about 50% for a given end-group and alkyl chain length). 

Figure 10 is a schematic representation of the energy diagram of the silicon (covered 

by native SiO2) /alkyl-π group/metal junction: (a) at 0 V; (b) at a negative bias on the 

metal electrode for which a resonant electron transfer can occur through the π-level 

from the metal to the empty states of the Si CB. We have WM ≈ 4.2 eV for Al and WSi ≈  

χSi = 4.1 eV for n+-type Si, χSi is the electron affinity. σ, π and σ*, π* are the HOMO 

and LUMO of the alkyl chain and π-group, respectively. σ* is at about 4.2 eV above the 

Si CB and σ is about 4.2 eV below the Si-VB.19,27 The positions of the CB and VB of 

the ultra-thin (~1 nm) native SiO2 are not exactly given, but they are likely below the 

LUMO and HOMO of the alkyl chain, respectively.  For instance, values as low as ~ 1 

eV have been reported for the CB of such an ultra-thin native oxide (see compiled data 

in Fig. 3 of reference 60). The positions of the π and π* levels and E0 should depends on 

the nature of the π-groups. We also notice that the role played by the native oxide as a 

tunnel barrier is negligible (at first order) compared to that of the alkyl chain 

monolayer. Comparing the current densities in Al/Si, Al/native SiO2/Si, Al/C18/Si and 

Al/C18/native SiO2/Si (where C18 stands for a monolayer of a 18 carbon atoms alkyl 

chain), we have measured18,60,61 (at 0.5 V) ~ 102 A/cm2, ~ 50 A/cm2 and ~ 10-7 – 10-8 

A/cm2 for the two latter junctions, respectively. This justifies that we neglect the native 

oxide in analyzing the J-V curves of the present devices.  The rectification behavior of 
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these σ-π SAMs is due to the resonant tunneling through one of the MO's of the π group 

(Fig. 10) due to the geometrical asymmetry (the π group is closer to the metal electrode 

than the silicon) and to the energy asymmetry in the positions of the MO's with respect 

to the Fermi level of the electrodes.62,63 The rectification effect arises for a negative bias 

applied on the Al electrode because the energy difference between the silicon Fermi 

energy (pinned at the conduction band - CB - for the degenerate Si) and the HOMO (π 

orbital) is lower than that with the LUMO (π* orbital). If we assume that the π-end 

group is almost at the Al electrode potential (since this group is in close contact with the 

electrode) and that a large part of the potential drop takes place in the alkyl chains, the 

threshold (in absolute value) required to have a resonance is lower for a negative bias 

than for a positive bias. As a consequence, the J-V curves can be fitted by a one-level 

model in which the conduction is dominated by the charge transport through a single 

energy level located at E0 below (E0<0) the electrode Fermi energy. This allows an 

experimental determination of its energy position. The current density is given by,64,65  

 ( ) ( )({ ) }1 10
0 0

2 tan tan 1JJ θ E ηeV θ E η eV
π

− −⎡ ⎤ ⎡ ⎤= + − − −⎣ ⎦⎣ ⎦  (2) 

where V is the applied potential on the metal electrode (Si is grounded), e is the electron 

charge, η is the fraction of the potential across the π moiety, J0 is the saturation current 

and θ is an electrode/molecule coupling parameter. The η value was estimated using a 

simple dielectric model where the σ and π parts of the SAM have a thicknesses dσ and 

dπ and a dielectric constants εσ and επ, respectively.62,66 

 1 11
2 1 d
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In practice, the dielectric constant of the π-groups used in this work and the alkyl chains 

are almost similar (see next section),67 so eq. (3) reduces to η=(dσ+0.5dπ)/(dσ+dπ), 

which simply represents the relative position of the center of gravity of the π moiety 

measured from the Si substrate. Taking the thicknesses derived from the ellipsometry 

measurements of the SAM before and after esterification of the π end-group (see section 

3.2), the typical values of ~0.83, ~0.87 and ~0.9 are obtained for the SAMs based on 

OETS, TETS and HETS, respectively. As shown in Fig. 8, the measured J-V curves can 

be satisfactorily adjusted with this formula (R2≥0.97). The solid lines in figure 8 are the 

best fits obtained with these equations and the values of the adjustable parameters J0, E0 

and θ are given in table 5. We have then looked after a relationship between the 

intrinsic electronic structure of the π group (their MOs in vacuum), the electronic 

structure of the Si/σ-π/metal junction (MOs of the π group embedded in the junction) 

and the MRJ experimental behavior. For this ,we have  compared the HOMO energy of 

the π group in vacuum (PM3 calculation), the HOMO energy of the π group as deduced 

from gas-phase ionization potential, and the experimental HOMO position in the 

junctions respective to the silicon Fermi energy (i.e. E0 deduced from the fit of the 

analytical current density equation as shown above). These values are compared in table 

5 and figure 11. It is clear that the experimentally determined HOMO level of the π 

groups in the MRJ markedly differs from the single molecule values (both PM3 and IP). 

As explained in the introduction, there are many reasons explaining these differences: 

molecule/surface interactions leading to charge transfer and interface dipole formation, 

polarization energy in the solid-state that move the HOMO (LUMO) upwards 

(downwards, respectively) with respect to the gas-phase values, intrinsic dipole of the 
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molecule itself. For instance, PM3 calculations show that all the molecules used in this 

work have a dipole moment of about 2-4 D along their long axis with the positive 

charge at the Si side and the negative one at the ester side. As a consequence, this dipole 

shifts the MO's of the π-group upwards by a quantity D

molA
µ

εΦ = (assuming the 

molecules with their long axis normal to the surface) where µD is the moment of the 

molecule, ε the dielectric constant and Amol the area per molecule. Assuming a relative 

dielectric constant of 3 and an average Amol of 30 - 50 Ǻ2 (depending on the molecule), 

we get Φ in the range 1 to 2 eV. These values are consistent with several experimental 

determination for SAM on both metal and Si surfaces,68,69 but are not sufficient to 

explain the observed differences. More detailed calculations (both ab-initio and semi-

empirical) to calculate the full electronic structure of the Si/σ-π/metal junctions are in 

progress and will be reported elsewhere.70 A striking experimental feature is that the 

HOMO energy positions in the MRJ are almost the same whatever the π molecules. 

They vary from 0.71 to 0.82 eV below the Si conduction (Fig. 11-a), or in other words, 

the metal Fermi energy level is pinned at about 0.71 - 0.82 eV above the π HOMO. This 

is a very small variation compared to the one expected, ~1.5 eV, from the gas-phase 

ionization and PM3 levels (Fig. 11-a). However, plotting the HOMO levels arbitrarily 

normalized to the level for the phenyl end-group (Fig. 11-b), we show that the relative 

trends for the variations of the HOMO levels versus the nature of the π-groups are 

conserved in the molecular junction, the amplitude of these variations being screened in 

the junction. This behavior is the fingerprint of Fermi level pinning at the 

metal/molecule interface. A usual way to quantify the Fermi level pinning consist in 
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calculating the so-called interface slope parameter, F

M

dES
dW

= , where WM is the metal 

work function and EF the position of the Fermi level with respect to one of the 

molecular orbitals. Here, since we used only one metal and various organic molecules, 

one can equivalently determine, F

P

dES
dI

= , where IP is the ionization potential of the 

molecule. S=1 corresponds to the Schottky-Mott model71,72 and S=0 to the Bardeen73 

model. In the former case, the energetics of the interface is strictly dictated by the 

difference in the work function of the two materials, the latter case assumes that a high 

density of interface states pins the position of the Fermi level whatever the nature of the 

metal electrode. From the plot of EF vs IP (Fig. 12) we deduced an average slope 

S=0.025±0.02. This slope is related to the density of metal/organic interface states at the 

Fermi level, Dit(EF) by74 0 (1 )it iD S e Sε ε= − δ , with ε0 the vacuum dielectric constant, εi 

dielectric constant of the organic/metal interface region, δ its thickness and e the 

electron charge. We do not know the actual interface dipole in our devices75 but we can 

nevertheless try to get an estimate of Dit. Let us consider δ being about 5 Å and 

assuming εi ~ 2.5 – 3 as in the SAM, we get Dit(EF) in the range ~ 1015 cm-2eV-1. 

A possible origin of the observed metal Fermi pinning is the existence of metal-

induced gap states (MIGS)76 or the creation of chemically-induced gap states (CIGS) at 

the metal/organic interface due to the possible reaction of aluminum with the π-

conjugated moieties.33 Recently, MIGS at metal/organic interfaces has been 

theoretically and experimentally studied in PTCDA/Au.76 The creation of MIGS results 

in a pinning of the metal Fermi level very near the charge neutrality level (CNL), i.e. 

the energy position for which the total charge integrated over the band-gap density is 
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null. In our case, another likely origin of the metal Fermi pinning is the creation a CIGS 

at the metal/organic interface due to the possible chemical reaction of aluminum with 

the π-conjugated moieties.33 Typical examples of this behavior are the Alq3/Mg and 

Alq3/Al interfaces.77,78 The chemical reactivity of vapor-deposited Al on SAMs of alkyl 

chains bearing various end-groups has been widely studied.79-83 It was shown that Al 

reacts with oxygen-based terminal groups such as –COOH, -CO2CH3, -OH, -OCH3 

forming organoaluminum complexes. However, reports on vapor deposition of metals 

on SAMs bearing a conjugated end groups are scarce. Ahn and Whitten84 have observed 

a strong chemical interaction between vapor-deposited Al and a thiophene-terminated 

SAM which appears as a metal-induced, low-binding energy components on the X-ray 

photoemission spectroscopy S2p and C1s main peaks. Similarly, de Boer and coworkers 

reported (infra red spectroscopy) that Al atoms reacted with the conjugated backbone of 

thiol-oligophenyl SAMs on gold. Thus, it is likely that Al chemically reacts with any of 

the 8 π-groups used in this work, or even with the ester group if some Al atoms 

penetrate into the SAMs. Detailed theoretical calculations are in progress to determine 

the electronic structure of the whole Si/molecule/metal junction which requires an exact 

treatment of the metal/organic interface dipole.76,85 Finally, figure 13 gives the MRJ 

threshold voltage VT, which is defined as the intercept between a linear fit of the current 

at high negative voltages and the x-axis. All these values are summarized in table 5. As 

a consequence of the pinning of the Fermi level, VT is independent of the nature of the π 

group. A negative bias of 0
T

EV eη≈ −  (i.e. ~ - E0/e since η is ~1, see above) is 

necessary to line up the HOMO on resonance with the CB of the n+-doped silicon. The 

actual values VT~ - 0.65 to - 0.7 V are quite consistent with this explanation. A further 
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improvement would be to chemically tune the rectification behavior of the molecular 

diode. It requires decoupling the π group from the metal electrode. This could be 

achieved by introducing a short alkyl spacer chain between the π group and the top 

electrode. For instance, it has been calculated that rectification will persist if the ratio of 

the number of carbon atoms in the lower and upper alkyl spacer chains is larger than 

2.86 

 

 

V. Conclusion 

We have demonstrated that SAMs containing π-groups (phenyl, anthracene, pyrene, 

ethylene dioxy-thiophene, ethylene dioxy-phenyl, thiophene, terthiophene and 

quaterthiophene) can be obtained by sequential grafting of alkyl chains (different chain 

lengths from 6 to 15 methylene groups) which are functionalized in a second step. Such 

SAMs are reasonably well structured at a macro and microscopic scale, as can be seen 

by contact angle, ellipsometry, IR spectroscopy and AFM measurementrs. For all the π-

groups investigated here, we have observed a rectification behavior in their current-

density vs. voltage characterisitcs, which extends our preliminary work using phenyl 

and thiophene groups.27 A simple analytical model was fitted on the experimental 

current-voltage curves to determine the position of the π-group molecular orbitals with 

respect to the electronic structures of the silicon substrate and the metal top electrode. 

The electronic structure of these molecular rectifying junctions can be calculated using 

a self-consistent tight-binding method. Comparing with the experimental data allows us 

to conclude that Fermi level pinning at the π-group/metal interface is mainly 

responsible for the observed behavior. It also explains why the rectification effect does 
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not depend on the nature of the π-groups, albeit they have been chosen to have 

significant variations in their electronic molecular orbitals in vacuum. 
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Table 1. Contact angles with water (θH2O) and hexadecane (θHD) for each 

monolayer before and after oxidation. The yield of this reaction (ηox) for each molecule 

is calculated by the Cassie Law (see text for details). 

 vinyl-terminated 
monolayer 

 COOH-terminated 
monolayer 

 

 θH2O θHD  θH2O θHD ηox

HETS 105±2° 37±2°  20±2° <10° 95±5% 

TETS 102±2° 18±2°  47±2° <10° 74±5% 

UETS 100±2° <10°  56±2° <10° 63±5% 

OETS 97±2° <10°  50±2° <10° 68±5% 
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Table 2. Thickness measured by ellipsometry for the different alkyl chain lengths 

(HETS, TETS, UETS and OETS) and the different π-end groups. The measured values 

(meas.) are compared with the calculated length (calc.) of the molecule (PM3 

calculations). Error bar is ± 2 Å for all measurements. 

 HETS TETS UETS OETS 

 meas. 
(Å) 

calc. 
(Å) 

meas. 
(Å) 

calc. 
(Å) 

meas. 
(Å) 

calc. 
(Å) 

meas. 
(Å) 

calc. 
(Å) 

Vinyl 25.8 25.0 18.0 21.2 17.4 15.9 12.0 12.2 

COOH 24.6 23.8 18.2 20.0 16.7 15.7 11.0 12.0 

Phenyl 31.8 28.9 21.6 25.2 20.5 20.8 19.0 17.2 

Thiophene 30.0 28.2 23.0 24.5 24.7 20.1 14.5 16.9 

Anthracene 30.2 29.3       

Pyrene 31.2 32.3 26.5 28.6     

EDBM 29.5 31.8       

EDTM 27.8 31.3       

3T     30.1 31.7 28.0 28.0 

4T     29.7 36.2 33.0 32.5 
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Table 3. Peak positions of the symmetric (υs) and the antisymmetric (υas) C-H 

stretching bands for the different monolayers. 

 Vinyl-terminated 
monolayer 

 COOH-terminated 
monolayer 

 π−terminated 
monolayer 

 νas (cm-1) νs (cm-1)  νas (cm-1) νs (cm-1)  νas (cm-1) νs (cm-1) 

OTS 2918±1 2850±1       

HETS 2918±1 2850±1  2918±1 2850±1  2918±1 2850±1 

TETS 2924±1 2853±1  2924±1 2853±1  2924±1 2853±1 

UETS 2926±1 2856±1  2926±1 2856±1  2926±1 2856±1 

OETS 2927±1 2858±1  2927±1 2858±1  2927±1 2858±1 
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Table 4. Summary of the capacitance measured at 1MHz for the different 

monolayers. Taking into account the oxide capacitance, the Debye capacitance of the 

semiconductor, we deduce the capacitance of the monolayer. Coupling these 

measurements with ellipsometry (from Table 2) give us the dielectric constant and the 

thickness of the monolayers (see text or details) 

monolayer CSAM 
(µF/cm²) εSAM n dSAM (Ǻ) dth (Ǻ) 

TETS/phenyl 

TETS/thiophene 

TETS/pyrene 

1.00±0.20 

1.00±0.50 

1.10±0.70 

2.25±0.02 

2.35±0.03 

2.75±0.09 

1.5±0.1 

1.5±0.3 

1.7±0.5 

21±3 

22±3 

23±3 

25 

25 

28 

HETS 

HETS/phenyl 

HETS/thiophene 

HETS/anthracene 

HETS/pyrene 

HETS/EDBM 

HETS/EDTM 

0.80±0.10 

0.66±0.04 

0.66±0.02 

0.94±0.01 

0.59±0.09 

0.61±0.03 

0.77±0.01 

2.33±0.04 

2.30±0.03 

2.21±0.02 

2.80±0.01 

2.10±0.05 

2.06±0.02 

2.32±0.01 

1.5±0.2 

1.5±0.2 

1.5±0.1 

1.7±0.1 

1.5±0.2 

1.4±0.2 

1.5±0.1 

25±2 

31±2 

30±2 

27±3 

32±2 

31±3 

27±3 

25 

29 

28 

29 

32 

32 

31 

OTS 1.06±0.05 2.7±0.03 1.6±0.1 22±2 26 
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Table 5.  Average rectification ratio (RR=│J(-1V)│/J(+1V)), saturation current density (J0), experimental position of HOMO level 

(E0) respective to the Si-CB, coupling parameter (Θ), theoretical HOMO in vacuum (PM3 calculations), gas-phase ionization potential 

(eV) and molecular diode threshold voltage for the various π-end groups. In all cases, the energy reference is taken at the Si-CB, we have 

subtracted the Si work function, WSi = 4.1 eV from the HOMO-PM3 and gas-phase usually referenced to the vacuum level.  (a) alkyl chain 

= HETS, (b) = OETS. 

π-group RR J0 (A.cm-

2) E0 (eV) θ (eV-1) HOMO 
PM3 (eV) 

IP 
(eV) VT (V) 

Benzene      4.8±3.3 (a) 1.3x10-5 -0.82±0.16 5.0±2.9 -5.65 -5.187 -0.64±0.07

Thiophene 
13.3±13 (b) 

2.7±1.4 (a) 

3.3x10-4 

1.8x10-5
-0.80±0.14 7.5±2.8    -5.44 -4.787 -0.65±0.07

EDBM      4.7±2.9 (a) 7.8x10-5 -0.75±0.03 8.5±0.5 -4.92 -3.688 -0.68±0.01

EDTM      6.7±2 (a) 6.6x10-6 -0.73±0.03 7.4±2.7 -4.88 -4.288 -0.68±0.04

pyrene      9.4±3.8 (a) 9.1x10-6 -0.71±0.04 10.1±1.5 -4.15 -3.4587 -0.68±0.02

anthracene      8.1±2.9 (a) 9.4x10-6 -0.75±0.09 10.4±1.2 -4.15 -3.2587 -0.7±0.02

3T      3.6±1.4 (b) 4.7x10-3 -0.81±0.1 8.6±1.6 -4.58 -3.389 -0.68±0.05

4T     4.6±0.2 (b) 9.4x10-3 -0.77±0.07 9.2±0.3 -4.56 -3.1889 -0.7±0.02
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Figure 1. Outline of the synthesis for the longer molecule: 16-heptadecenyl-

trichlorosilane (or HETS) according to Bonnier.39  
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Figure 2. Chemical structures of compounds used to functionalize the SAMs 

benzyl alcohol (a), 3-thiophenemethanol (b), 9-anthracenemethanol (c), 1-

pyrenemethanol (d), 3,4-ethylenedioxybenzene methanol (EDBM) (e), 3,4 -

ethylenedioxythiophene methanol (EDTM) (f), bis (2-hydroxypropyl) terthiophene (g), 

and hydroxymethyl quaterthiophene (h). 

 36/55



J. Phys. Chem. B 

 

 

 

 

 

 

 

 

S

O
O

(CH2)n
Si
O

O O

O
O

(CH2)n
Si
O

O O

O
O

(CH2)n
Si
O

O O

O
O

(CH2)n
Si
O

O O

 

S

S

S

OH

O
(CH2)n

Si
O

O O

O

(d)(c) (g)(a) (b)
substrate substrate substrate substrate substrate

O
O

(CH2)n
Si
O

O O

O
O

(CH2)n
Si
O

O O

(e) (f)
substrate substrate

OO O O

S

O
(CH2)n

Si
O

O O

(h)
substrate

S

S

S

S

O

 

 

Figure 3. Schematic view of the final SAMs with height different aromatic 

molecules studied in this work: benzyl alcohol (a), 3-thiophenemethanol (b), 9-

anthracenemethanol (c), 1-pyrenemethanol (d), 3,4-ethylenedioxybenzene methanol 

(EDBM) (e), 3,4 -ethylenedioxythiophene methanol (EDTM) (f), bis (2-hydroxypropyl) 

terthiophene (g), and hydroxymethyl quaterthiophene (h). 
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Figure 4. Evolution of the water contact angles for the different chemical 

functionalities of the SAMs, for each molecule used for the silanization: HETS (▼), 

TETS (▲), UETS (●), OETS ( ). 
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Figure 5. ATR-FTIR spectra in the C-H region obtained on a monolayers of OTS 

(a), HETS (b), TETS (c), UETS (d) et OETS (e). The intensities are given in 

transmission absorbance units. The vertical lines at 2960, 2918 and 2850 cm-1 are 

provided as a guide to the eye. 
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Figure 6. ATR-FTIR spectra in the C=C and C=O region obtained on a vinyl- (a), 

COOH- (b), and anthracene- (c) terminated monolayers. Here we present a HETS 

monolayer functionalized by anthracene as an example. The vertical lines are provided 

as a guide to the eye. 

 40/55



J. Phys. Chem. B 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Typical AFM images (1µm x 1µm) for the bare substrate (left), HETS 

SAM (middle) and HETS-pyrene SAM (right). Scale bar is 250 nm. 
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Figure 8. Typical current density - voltage characteristics of the Si/σ-π/Al 

junctions : (a) HETS/EDBM (◄), HETS/anthracene (▲), HETS/EDTM (▼) ; (b) 

HETS/phenyl ( ), HETS/pyrene (●), HETS/thiophene (♦); (c) OETS/3T ( ),  

OETS/4T ( ). Some curves are vertically shifted for clarity. Red solid lines are fits by 

equation (2). For the OETS/4T, we show the determination of threshold voltage for 

rectification, VT, which is defined as the intercept between a linear fit (dotted line) of 

the current at high negative voltages and the x-axis. (d) The current-voltage 

characteristic for the OTS and COOH-terminated HETS (i.e. without π end group) are 

presented as reference.  
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Figure 9. Example of the dispersion for the current density for the HETS/phenyl 

SAM (10 measured samples). We compare the dispersion for the current densities at -

1V and 1V. For each monolayer, the center of the Gaussian and the FWHM (Full Width 

Half Maximum) give respectively the average value and the statistical dispersion for the 

current density. 
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Figure 10. Schematic representation of the energy diagram of the silicon (covered 

by native SiO2) /alkyl-π group/metal junction: (a) At 0 V; (b) at a negative bias on the 

metal electrode for which a resonant electron transfer can occur through the π-level 

from the metal to the empty states of the Si CB, for simplicity we assumed a linear 

potential drop through the SAM.  
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Figure 11.  (a) Energy position (with respect to the Si-CB) for 

( ) for the chemisorbed SAM on Si as determined from the pr

PM3 calculations for a single molecule in vacuum; ( ) e

ionization potential (see references in table 5). (b) Same d

corresponding value for the phenyl group.

 45/55
(a
) 
-(b
-

the different π groups : 

esent experiments; ( ) 

xperimental gas-phase 

ata normalized to the 



J. Phys. Chem. B 

 

 

3.0 3.5 4.0 4.5 5.0 5.5
0.6

0.7

0.8

0.9

1.0

 Molecule IP (eV)

Fe
rm

i e
ne

rg
y 

(e
V

)
 

 

 

 

 

 

 

Figure 12.  Metal Fermi energy position (with respect to HOMO of the π-group) versus 

the gas-phase IP of the π groups (data from table 5 and figure 11-a). The plotted value 

correspond to –E0 where E0 is determined from the fit of eq (1) on the J-V curves. The 

gas-phase IP is the absolute value with respect to Si-CB level. The line is a linear fit 

with a slope of ~0.025 ± 0.02. 
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Figure 13. Threshold voltage for rectification, VT, as a function of the nature of the 

π end group. VT is defined as the intercept between a linear fit (dotted line in figure 8) 

of the current at high negative voltages and the x-axis (see figure 8). The error bars are 

the FWHM (Full Width Half Maximum) of the data statistical distribution obtained on a 

large number (>20) of devices for each π group. 
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