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We study the inner product of two Bethe states, one of whitakisn on-shell, in an inhomogeneous
XXX chain in the Sutherland limit, where the number of magah@comparable with the length

of the chain and the magnon rapidities arrange in a small earabmacroscopically large Bethe
strings. The leading order in the largeimit is known to be expressed through a contour integral of
a dilogarithm. Here we derive the sub-leading term. Ouryaisiis based on a new contour-integral
representation of the inner product in terms of a Fredholterdénant. We give two derivations of
the sub-leading term. Besides a direct derivation by sgharRiemann-Hilbert problem, we give a
less rigorous, but more intuitive derivation by field-thetizal methods. For that we represent the
Fredholm determinant as an expectation value in a Fock sifact@ral fermions and then bosonize.
We construct a collective field for the bosonized theory,ghert wave-length part of which may be
evaluated exactly, while the long wave-length part is arbento al/L expansion. Our treatment
thus results in a systemati¢g L expansion of structure factors within the Sutherland limit
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1 Introduction and summary

The computation of structure factors, matrix elements @ragrs between eigenstates, analytically
in exactly integrable systems remains a challenging taskety small systems one may obtain results
by employing determinant formulas derived from the algebBethe ansatz. The determinants are
of matrices whose size increase with the number of partislash that fully analytical computations
go quickly out of hand. In the thermodynamical limit of largamber of particles, the computa-
tion of such determinants becomes intractable, excepteégiabplimits, usually accompanied by a
phenomenon which in physical terms may be viewed as a coatien®f excitations.

The most familiar cases are the condensation of magnonbauiod complexes with large spin in
the Heisenberg ferromagnet as discovered by Suthergritignce the limit is sometimes called the
‘Sutherland limit’), the condensation of solitons in theagtum Sine-Gordon model to quasi-periodic
solutions of the KdV 2] equation, or the condensation of Cooper pairs in a supdrator ], to
form either single or multiple condensates, the latter gpelascribed by the Richardson model (a
particular example of Gaudin magnets).

More recently, bound complexes of magnons has been studith icontext of the integrability
in gauge and string theoried][ 5] (see also the reviews]). Some correlation functions in supersym-
metric Yang-Mills theories can be expressed in terms ofrimeducts of Bethe states in a chain of
spins [7/] and can be cast in the form of a determinadjt [The thermodynamical limit here is the limit
of ‘heavy’ fields in the Yang-Mills theory, which correspagnioly the AdS/CFT duality, to classical
solutions of the string-theory sigma model. The three-pfinction of heavy fields is exponentially
small and can be thought of as a process of semi-classicallihg[9].

The leading order computations performed9a]1] gave an explicit expression of the exponent
as a contour integral of a dilogarithm. In the present papegive a method to compute the higher
orders of the semi-classical expansion and give an exfdicitula for the pre-exponential factor.

We focus on the XXX spin chain (the isotropic Heiseberg mégmehere the thermodynamical
limit corresponding to long-wavelength excitations abthe ferromagnetic vacuum. In view of the
applications, we consider the more general case of an ingensmus spin chain with twisted periodic
boundary condition. We will conside¥/-magnon Bethe states in a chain of lendtin the thermo-
dynamical limit whereM, L — oo and M /L ~ 1. Our goal is to propose a systematic method for
computing thel /L expansion for the (logarithm of the) inner product of a Betigenstate and an
off-shell Bethe state.

In particular we obtained an explicit expression for thelsathing term, given below. Lét:) and
|v) be two AM-magnon Bethe states in a XXX spin chain of lengthcharacterized by the rapidities
u = {ug,...,upr} andv = {vy,...,vp}. One of the two states is required to be on-shell in the
sense that its rapidities satisfy the Bethe equations. WheBethe states are characterised by their
pseudo-momenta

M
=3 Aok =Y @
j=1 j=1 J

In the semi-classical (thermodynamical) limit the rootidliwitions are described by continuous densi-
ties along one or several line segments in the rapidity pleWescall these line segments arcs because
of the typical form they take. Each arc represents a branchedf the pseudo-momentum,p]. The
inner product can be considered as the amplitude for seassicial tunelling withh = 1/L and as
such is expected to haveldL expansion of the form

(u|v) = efotFt Fp ~ L7 (1.2)



We obtained for the first two terms the following expressionterms of contour integrals:

Fo = 55 de Lig[ePu(@)Fipe(@)] (1.3)
27
c
log [1 — etPu(@)+ipv(2)] 1o [1 — eiPul)+ipy(y)
o _%ygdxdy og[l—e J log[l—e Iy (1.4)
(2m)? (z —y)?
cxC

where the contour of integratiaghencircles the roota andv. This expression is valid, after redefini-
tion of the quasimomenta, for an inhomogeneous twisted XpiK shain. The first term, containing
a contour integral of the dilogarithmic function, is of orde because the typical size of the cuts is of
order L. It was first derived in9] for the special case when the rapiditiesare sent to infinity, and
for generalu andv in [10, 11]. The expression of the subleading term, which is of orbigris the
main result of this paper.

Our method is an improvement of the semi-classical comjouisin [10, 11], which used a rep-
resentation of the Slavnov’s determinab®][in terms of a simpler quantity, the/-functionat. The
most symmetric form of such a representation was found & [The present computation is based
on a new representation of th#-functional as a Fredholm determinant, where the integmaternel
is defined for a specific contour in the complex plane.

We compute the semi-classical limit of this Fredholm deteamt in two different ways. The
first, rigorous, method consists in solving the Riemanrbétil problem for the Fredholm kernel. The
second, less rigorous but more intuitive, method uses fiedretical formulation of the Fredholm
determinant in terms of free chiral fermions. After bosatizn, we solve exactly the resulting field
theory at small distances to obtain an effective infrareld tieeory. The semiclassical expansion of
the effective infrared theory can be also thought of as Ma&y@ansion for a gas of dipole charges
living on certain contour in the rapidity plane. The leadargl the sub-leading order are encoded in a
saddle-point equation, which resembles the ‘TBA-like’ a&tipns considered irlH].

The paper is structured as follows. In Sectiwe recall the basics of the Algebraic Bethe Ansatz
for the XXX spin chain and the expression of the inner prodiu¢erms of thee7-functional. In this
section we also derive the determinantal representatitmes# -functional, which is the starting point
for our semi-classical analysis. In Secti8nwe develop the Riemann-Hilbert approach and find an
explicit expression for the subleading term. In Sectlame derive the same result by field-theoretical
methods.

2 Inner product in the inhomogeneous XXX /2 spin chain

2.1 Algebraic Bethe Ansatz

We first recollect some well known facts about the (twistegfjqulic XXX spin chain. The inhomo-
geneous XXX spin chain of length is defined by the monodromy matrix

L
Ma(u) = H Rak(u - Zk) (21)
k=1
where the auxiliary space is denoted by the indeX he rational R-matrix can be taken in the form
u £
Ros(u) = I, Pos, 2.2
B(u) u+ € 5+u+5 g (2:2)

1The o7 -functional generalises a quantity defined 7h fvhose thermodynamical limit was computed @j.



with the operatorP, 4 acting as a permutation of the spins in the spacesd 5. The monodromy
matrix depends of a set df variablesz = {z1, ...,z } called inhomogeneities, associated with the
sites of the chain. Sometimes one uses the notation

21291+€/2, l=1,...,L. (2.3)

The isotropic Heisenberg Hamiltonian describes the homegas poin¥;, = 0 or z;, = ¢/2. The
standard normalization of the rapidity variahlés such that = i, but we prefer to keep as a free
parameter. The monodromy matrix obeys the Yang-Baxtertaua

Roo (v — v )My (u) My (u') = My (') Mg (1) Roor (v — u'). (2.4)

Its diagonal matrix elements are traditionally denoted by

_ ( Alw) B(u)
My (u) = ( Cluw) D) ) - (2.5)
The operatorsi(u) and D(u) act on the pseudo-vacuujft) = | 11 ... 1) as
AW)|) = a()|),  D(w)|) = d(u)|€), (2.6)
where the eigenvaluegu) andd(u) are given, in the normalizatior22) of the R-matrix, by
_ _ Qz(u)
a(u) =1, d(u) = Oulut o) (2.7)
Here and below we will systematically denote @y, the monic polynomial with rootsv:
M
Qww) =[Jw-w),  w={w,...,wn}. (2.8)

i=1

Besides the inhomogeneitiesis convenient to introduce another deformation parametby
choosing twisted-periodic boundary condition at lenfthrhe transfer matrix for the twisted chain,

T(u) = trq [( ) Ma(u)] = A(u) + & D(u), (2.9)

commutes with itself for any value of the spectral parameted the algebra of the matrix elements
is the same as for the homogeneous XXX model.

The Hilbert space is a Fock space spanned by states obtaoredte pseudo vacuum by acting
with the ‘raising operatorsB (u):

lu) = B(uy) ... Blua)|Q) . (2.10)

If the rapiditiesu = {uy,...,uys} are generic, the state is called ‘off-shell’, and the stateailed
‘on-shell’ if the rapidities obey the Bethe Ansatz equasiomhe Bethe equations for the twisted chain
read

a(uj) | Qu(y; +¢)
d(uy) " Qu(uj —¢)

The ‘on-shell’ states are eigenstates of the transfer mafi) with the eigenvalue

o) = Qu(z —¢) Kd(x) Qu(z +¢)
=700 T Qe (242

—1. (2.11)




2.2 The inner product in terms of the .7-functional

We consider the bilinear form,

M

M
(vou) = (@ [T (v T] Bwy)l) (2.13)
j=1

j=1
which we will refer to as inner product and which is relatedhe scalar product By
(u,v) = (=1)M (u*|v). (2.14)

The inner product of two Bethe vectors can be computed ueimgammutation relation2(4) and the
action of the diagonal elements of the monodromy matricethempseudo-vacuun® ). The result
is written down by Korepin15] as a double sum over partitions. It was shown by N. Slavii&@y [
that if one of the two states is on-shell, the Korepin sum @awitten as a determinant.

The Slavnov determinant for a twisted periodic XXX chain barexpressed in terms of a simpler
quantity.e/ | f], which we calle -functional, and which depends on the set of rapidities: {w }j-Vzl
and the functionf (u). The inner product is equal, up to a simple factor, to #idunctional @.16)
withw =uUvandf(u) = kd(u)/a(u)

(u,v) = ] d(uj)a(vs) Say(rd/a]. (2.15)

J=1

The formula .15 was derived by Y. Matsuo and one of the authdr§] for purely periodic chain
(no twist), but the proof given there works without changeoah the case of a twist.This form of
the inner product is particularly useful due to its symmatrthe rapiditiesu andv.

The «7-functional is defined as the ratio 8f x N determinantsi1]

_ k—1 k—1 k—1
Al f] = det (wj — f(wy) (w; +e) )/det <wj ) . (2.16)
Expanding the determinant, one obtains an alternativeessfmn as a sum over the partitions of
w = {wy,...,wy} into two disjoint subsetsv, = {w;}jcq andws = {w; }jea :
o wW; — W + €
uf) =D (D] fwy) [ +——— (2.17)
. . _ U)] Wi,
[ JEQ jeakea

In this form theo7-functional appeared (witli = x d/a) as one of the building blocks in the expres-
sion for the three-point function in a supersymmetric Ya#igs theory [9].
In this paper we will be interested in functional argumenthaf the form

dlw) Qa(u)

K =K ,
a(u)  Qa(ute)
which is relevant for the inhomogeneous twisted XXX chaine Will use a special notation for the
o/ -functional as a function of the magnon rapidities= {wj}jyzl, the inhomogeneities = {z}~ |,

the twistx and the shift parameter

flu) = (2.18)

AEN = i d/al. (2.19)

2This follows from the complex Hermitian conjugation contien B(u)" = —C'(u*).
3A twisted version of the determinant formula was also disedsby Kazama, Komatsu and Nishimuta]



In these notations the inner product reads

M
(u,v) = H d(u;)a(vj) 427‘,[,57’:} (W=uUv). (2.20)
j=1

2.3 Thew/-functional as an N x IN determinent
In this paper we will use another determinant represemtatio

A = det (1 — Kk K) (2.21)
wherel is the theN x NN identity matrix and the matri¥’ has matrix elements

€Ej

Ky = ————— ik=1,...,N 2.22
ik w; — ug +e (]7 3 ) ) ) ( )
E; = % w (2.23)
2 (W - ui—u
YITE) gy T

To prove @.21), we write the sum over the partitions iB.17) as a double sum in one of the subsets:

AT =S o [TE 1 % (2.24)

u
a j€a  jke€a;j#k Y

and apply the Cauchy identity, k& € «)

M-% "% g (2.25)
jﬂcuj—uk—i—s Uj — Uk + €

The new determinant representati@2l) has the advantage that it exponentiates in a simple way:

00 n N
el el e L
gyl =-S " Y —Sohfoe . Shi o (226)
—n i Ujy — Ujp T € Ujy — Ujg + € Uj, — Uj; +€

2.4 Semiclassical limit: from discrete data to meromorphidunctions

We are going to study the semi-classical limit— oo, N — oo with & = N/L finite, when the
roots u arrange in one or several arcs of macroscopic size. We canchtsose an.-dependent
normalisation of the rapidity variable so that~ 1/L. Then the typical size of the arcs will be of
order LY.

For our task it is advantageous to replace the discretewdatalz by the external potential

O(x) = log Qu(x) — log Qz(x). (2.27)

In the semi-classical limit the arcs condense in one or mateaf the meromorphic functiop(u) =
0®(u). The discontinuities across the cuts are approximated btiremus densities which change
slowly at distances of order.



The crucial observation which will allow to reformulate tpeoblem in terms of the external
potential® is that factorst); defined in .23 are the residues of the same meromorphic function at
Tr = U,j:

1

Ej =< mFi%?Qe(w) (j=1,....N). (2.28)
The functionQ, is defined as
Q.(x) = LlrFE)_Qel) __ aeha-atey), (2.29)

Qu(x) Qz(z + 5)

With the help of 2.28) one can write the sum in theth term of the serie2(26) by a multiple contour
integral along a contou?,, which encircles all the roota.

The weight functiorQ. (x) strongly fluctuates when approaches or z, but if x is far from both
z andu, it changes slowly at distancese. Our goal is to reformulate the inner product in terms of
contour integrals where the contour of integratibis placed far from the singularities of the function
Q., unlike the original contou€,,. Then the weightd. can be replaced by

Q(z) = lim Q. (z) = =), (2.30)
e—0

We will achieve this goal by two different, and in a sense clemgntary approaches. The first
one relies on the solution of a Rieman-Hilbert problem, wliile second one uses field-theoretical
concepts. In both approaches the general idea is the saméhaoriginal computation irf], namely

to introduce a cutoff\ such thate| < A < L|e| and split the problem into a fast (short-distance) and
slow (large-distance) parts. The final result does not déperthe precise value of the cutoft

3 Riemann-Hilbert Approach

We will represent the linear operator with matrix22) as an integral operator acting in a space of
functions with given analytic properties. Then the deteiant @.21) takes the form of a Fredholm
determinant. In the semi-classical limit it is possible pbtghe resolvent for the Fredholm kernel into
slow and fast pieces. The fast piece can be evaluated exabilg the computation of the slow piece
is done by solving a standard scalar Riemann-Hilbert proble

3.1 The/-functional as a Fredholm determinant

We represent avV-dimensional vectof = { f1, ..., fx } as a meromorphic functiofi(v), which has
poles atu = u; with residuesf; and no other singularities:
fl@)y=>" i (3.1)
— r — Uj
J
The functions
1
; = j=1,...,N). 3.2
6@ =0 =1 (32)

form a canonical basis in th& -dimensional space of meromorphic functions analytic yvbere
except onu. The matrix .22 defines a linear operator in this basis.

7



In order to be able to compute traces, we should also givedifunal representation of the dual
space. The elemenfsf the dual space with respect to the scalar profludt= f; f; + - -- + fxfn
can be mapped to the space of functicfrﬁs) which are analytic in the vicinity ofi. With such a
function we associate a dual vectbwith coordinatesf; = f(u;). This function is of course not
unigue. The scalar product may then be represented by aurdntegral

(715 = § 3 F@)f @), (33)

Cu
whereC, is a contour surrounding th&s and is contained in the domain of analyticity ff
We will use Dirac notationg'(z) = (z|f), f(x) = (f|z), f; = (j|f) and f; = (f]J), so that

N

N
Z YA, (1= (flil- (3.4)

j=1
The functional representations of the basis vectors initeethnd the dual spaces are

D)= i) = ——: Ul = Gl Glu) =8k (k=1,....N). (35)

I—Uj

The functions corresponding to the elements of the duaslzasidefined up to an arbitrary meromor-
phic function that vanish on.

The functional representation of the matfixis given by an integral operatdt, which acts on
the functionf(z) = (z|f) as

(lKIf) = fgg ) Iw+e)- 2 (3.6)
where the functiorQ. is defined by 2.29. The contour of integratiod in this formula is chosen to
encircles alk; but leaves the pointg — € as well as the point outside. Note that there are no other
poles of the integrand, as the polesfdf; + ) are compensated by the zeros@f. Applying (2.28),
we obtain the action in the canonical basis

)y =S e (3.7)

— Uj —up + €

which agrees with4.22. Now the N x N determinant 2.21) takes the form of a Fredholm
determinant
A = det (1 - KK). (3.8)

One may recast the definition of the Fredholm Kernel, Bog)( in the following operator form,
which will be very useful in extracting the semiclassicatiti,

K="Pae ?D,e?, (3.9)

whereD, = ¢*7 is the shift operator, acting a. f(z) = f(z + ), andP, = P2 is the operator
projecting onto the space of functiorx 1):

[Puf](z) = 515 du f(w) (u is outsideC). (3.10)

c2mxr —u



Let us stress on the important fact that the cont@uwhich encircles the sai, can be placed at
macroscopic distance from the rootsun Indeed, the resolvent has no other poles thaa u; and

x = z; — . Along the deformed contouf the factorQ, in the Fredholm kernel changes slowly at
distances of order. We will denote functions in the image &%, with a ‘+’ subscript and functions
in the kernel ofP, with a ‘—’ subscript. Thus it will be implied that

Pug+ = g+s Pug- =0. (3.11)
We will also use the+’ subscript to denote functions which are in the imag®gfup to a polynomial,
namelyP,g+ = g+ + P, whereP is a polynomial.
3.2 Resolvent of the Fredholm kernel

We proceed by writing the logarithm of th&-functional as follows:

log Ay :/ da, []1 —(1-aK)™!, (3.12)
0

(0%

which leaves us with the task of computing the trace of thelvest (1 — aK)~'. HereK is the
N x N matrix defined in2.22. We wish to find a functional representation of the resdlvesnich
we denote byF and define as

1 —aK) 'f]

T — Uy

wlFif =3 L

i

(3.13)

One can computer(1 — aK)~! in terms of F as follows:

N
tr(l — oK)~ =" (il Fli). (3.14)
=1

The function
F(x,u;) = (x|F|i) (3.15)

will appear repeatedly in the following. We shall analytigzontinue F'(x, u;) in the variableu;, so
thatu; can be thought of as a general complex variable rather tharobthe roots from the sat.
This analytical continuation is not unique, but the ambigis arguably exponentially small and will
be neglected in the following. To compulgx, u) explicitly, we note the following identity:

e—@(zl—a)f(zl)
r—2z+¢E

L
(2l(L — k)| f) = *@ (1 = D) " f(a) + Y ?;EZ? . (318)
=1 “%

which is obtained making use d8.9) and taking the projection by removing the poles explicithe
latter being located at the points— . The functionF'(x, u) satisfies by definition

1

x—uj

(1—alk)F(z,uj) = (j=1,...,N). (3.17)



Analytically continuing both sides away from the aetwe obtain for the meromorphic function
F(x,u) the equation

1
T —u

Substituting the functiod’(x, v) for f(z) in Eqg. (3.16) leads to

(1—-aK)F(z,u) =

(3.18)

L
Fla,u) = 2@ (1 — ab,) ! ¥ ( o 0o et Qu(z) F(z,u) ) . (319

T —u — QL(z)x—z+¢

Then the equation may be solved self-consistently by trgafi(z;,«) on the right hand side as
external parameters, solving fét(x, ) and then requiring that by evaluatidyx, u) atx = z; we
recover these same parameters. Indeed, setting; in Eq. (3.19 and representingl — oz]DE)’1 as
>, a"D?, one realizes that only the= 0 term in this sum contributes, which makes the application
of the self-consistency straightforward, leading to:

F(zlvu) zll—u
F(22,u) ) oy
=(1-K)*! . , (3.20)
’ 1
F(zp,u) =

with the L x L matrix K given by

Qz(zn - 5)Qu(2n) 1

Kin = —Q/z(zn)Qu(zn —€) 21—z t+e

(3.21)

3.3 Separation into fast and slow pieces

We computetr(1 — aK)~! by splitting the rhs of Eq.3.19 into two parts,F’ = F st pslow g
follows:

F%8(0,u) = ) (1 — D)~ ) ! -, (3.22)
¢ Qu(z) F(a1,u)
Frslow — e 2@ (1 Zap.) L @) —®(z—€ ! 3.23
(z,u) ae (1—abD.) e lz;e Q) r—mte ( )
We start by computing the contribution 812z, ) to tr (1 — oK) ™"
ReSFfaSt z,u — 1 + _eé(uj‘i’ne)# —

Zx%uj ( ]) ]Z; ( nz:l ne Q(l(u])

=N-— §1§ e ) log (1 — aD,)e®®), (3.24)

In order to find the contribution afs'°" to tr (1 — oK), we define an integral operat@'®"
with the following action:
du

21

(] F 9O ) :yﬁ FIO( ) f (). (3.25)

c

10



We are interested in computing the tragé\':1 (j|F'°¥ ), the contribution ofF ¥ to (3.14). For
that we introduce another complete set of stétes represented by functions:|m) = f,,(z) an-
alytic on and inside the contodt, and a dual se{m|, obeying (m/'|m) = 4, ,,, represented by
functions (m|j) = f,.(j), the domain of analyticity of which contaird The quantum number.
is discrete if the contout is compact and continuous otherwise. For example, if theistsea circle
centered at the pointy such that the sai is inside the circle and the setis outside the circle, then
we letC be this circle and choosg, () = (z — x0) ™™, fm(z) = (x — x0)™ ! form > 1.
The definition ofjm) and(m| imply

dz , p 1
pr— / == .2
B s ety = s S ) = (3.26)
which allows to write the trace as

N
> GIF ) ZZ (GIFm) (mlg) = > (mlg) (G175 m)
j=1 j=1 m Jm

= (m|F¥m). (3.27)

The first equality follows from the relatiox|j) = ), (x|m)(m/|j) for anyz, which is true by the
definition of|m) as a complete set. To prove the last equality, we will show(thigs'®"|m) has only

simple poles at the,;’s and has additional singularities only around ths. For such functions, the
sum of|j)(j| acts as the identity operator, and one can write

N

>l m) = b 3% () ol 7). (3:28)
j=1 o
Indeed, the left hand side d3.28) is the sum of théV residues of the integrand inside the cont6ur
The last identity 8.28 of is then a consequence &.27) and (3.26).

We are left with the task of showing the above-mentionedydical properties of(x|FSo%|m).
Namely we must show thdt:| F°%|m) has only simple poles at the’s. Indeed, combining3.23)
and @.20), we obtain

(2| FSm) = ae™®@ (1 — ab,) ! e®@ x

Qz(21—9)Qu(z1) 1 t
Qu(zl1—6)Q’z(21) T—21+€ Jm(21)

X ' (1 —aKhH™? ' , (3.29)

Qule—9)0u(zr) 1 :
Quler QL (o) T2 T2 Jm(21)

whereupon the required analytic properties become apparkis concludes the proof 08(27).
Writing (3.27) in terms of FSI yields

S0 =3 o b gtk PN, ) ulm) =

d Fslow
515 Y M) (3.30)
211

oM u—x

11



where the contour for the the integral inencircles the contour for the integral in Taking into
account thatp Mdu = 0, we can also write

N

d F
> GIF) y§ yg u Fla,u), (3.31)
21 2T u—x

j=1

Combining @.24), (3.12 and @.31), we obtain:

gt = [ 42 [ 02t og (1 a9+ L f A Pl
0
C

« 21 211 2m r—u
C

(3.32)

The representatiorB(32 of log 44, , is only useful if thel /N expansion off" is computable. This
turns out to be the case, and we undertake the task of perforthis expansion in the following.

3.4 Semi-classical expansion of the slow piece

The resolvent’(x, u) satisfies the defining equatiod.18), which can be written, making use &.9),
in the form
1
PulF(z,u) — aQ:(u)F(x +e,u)] = . (3.33)

r—Uu

We can treat in the argument of" as a small parameter. Indeed, since the cordasiat macroscopic
distance from the arcs formed by the roatghe functionF'(x, ) changes slowly at distances of order
e. We thus obtain the expansion

Pu [F(z,u) — aQe(z) (F(z,u) + eF'(z,u) +...)] = ! : (3.34)

r—Uu

This equation is solved order by order in powersof = F(O + F() 1 | with the leading order
satisfying
(0) _ !
P [(1 = 0Qu(@) FO (,u)] = —— (3.35)

r—Uu

while the next to leading order can be easily seen to be giyen b

FO(z,u) = —agyg Qd—:z FO (2,0)00)8, FO (v,u), (3.36)
c

where Q(x) is the limit ase — 0 of Q.(x), Eq. @.30. Computing yet higher orders is likewise
mechanical.

The function F(¥) satisfies a standard problem in the theory of integral eonstiEq. 8.35).
There is a standard method of solution of such equatidbdls Namely, we decompose — o Q. ()
into two parts,

1 —aQ(z) =U_(2)Uy(2), (3.37)

12



whereU  (x) is analytic away from the arcs formed by the roatsnd behaves at — oo asU. (z) —
2™ for somen of order1, while U_(z) is analytic around the arcs, having no zeros around the arcs.
We give an explicit expression f@r. in the following. We can write Eq.3(35 as

1— FO 1g_ 3.38
(1 - Q@) F" + g = — (3:38)
for some functiory_ regular around the arcs. Using the decomposit&B84), we write
1
FO - .
U, + U_ CEnA (3.39)

We now apply the projectoP, to both sides of this equation. The second term on the leftl han
side drops out while the first term yields a polynomial of @&egr — 1 in x for n positive, and zero
otherwise. We denote this polynomial Bs_1(x; ) as it is also a function of. We thus have

PulUs (2)FO (2, u)] = Uy () FO (2,u) = Py (w;0), (3.40)
from which one obtains:

1 1

FO (g4 {Pu {—] + Py_i(z;u } 3.41
= e P e —wr@ | e G40

Finally, using the analytical properties Gf. and the definition o, it is easy to see that

1 1
P o) ~ e (842
and Eq. 8.41) simplifies to

FO (z,u) = Por (i) ! (3.43)

U@ Ur@U-(u)@—u)
The coefficients of the polynomiaP,_;(z, ) can be found by solving3(35 for F(°) around
infinity to orderz " and usingP,, 1 (z; u) = [U (z)F©) (z,u)]_ , where the subscript’ denotes
the positive (polynomial in) part of the Laurent expansion around infinity. Note thas of orderl
andU}. is known (to be computed below) such that the task of finding; (x; u) is relatively simple.
Eq. (3.43 represents a solution fét(?) given the decompositior8(37). Fortunately, the functions
U+ may be computed explicitly. Assume that the phase of the tafpnction1 — aQ(z) winds
n, times ast moves around the-th arc once (where we use the conventions of positive winbin
counterclockwise rotation). Namely, we assume that theral functionl — a«Q(z) hasn, more
zeros than poles a microscopic distance aroundittitearc. Below we shall calk, below simply
'the winding number’. Let» = ) n,. For eacha we find a rational function?,(z) such that
[1 — aQ.(z)|R(x) has winding numbef around all arcs, wher&(z) = [[, R.(z). We choose

the functionsR,(z) as follows. Ifn, < 0, we takeR,(x) = Hl “1‘(95 —u (a)) whereu jn 7 =

,|na|, are arbitrary roots belonging to theth arc. The final result at given order does not
depend on this choice to the corresponding orden,If> 0, we chooseR,(z) = ] L

=1 z—« (a)

whereagf) are a set ofy, roots of1 — aQ(x) around the:-th arc. The functiond/, (z) andU_(z)
are then given by

_ exp{Pullog (1 — aQ(x)) R(x)]}
R(x) '

(3.44)

_1- aQ(m)‘

S (3.45)
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3.5 Semi-classical expansion of the fast piece

To obtain the semiclasical expansion of the first term3r8%, we need to be able to expand the
expressionp e~ log (1 — aD,) e®. This is possible only if the contour of integratichis far from
bothu andz. At leading order

§£_ e ®log (1 — ab,) yﬁ— log (1 — aQ(x)) + O(1/L). (3.46)

The O(LP) correction is an integral of pure derivative and vanishesteNhat the integrand on the
right hand side has logarithmic branch cuts emanating fravatcs formed by the points from the set
u whenever the winding number, of the functionl — aQ around thez-th arc is non-zero.

By construction, the functio®(z) has no winding numbers, but only cuts along the arcs. The
cuts appear as the result of merging of the poles and the p€@s(x) in the limite ~ 1/L — 0.
Whenq is small, the function — « Q. has no zeros near the cuts and the contour of integration may
be drawn to simply encircle the cuts.

As «increases, a number of zeroslof o Q. on the second sheet can move through the cuts to the
first sheet. The contour of integration B.46) should be drawn to surround those zeros. This presents
no problem as moving the contour away from the arc is comdistéh the expansion in3(46). If, on
the other hand, an extra zero (one that was not there at i@l — o Q. approaches the-th arc, as
« increases, the contour of integration must be drawn betwestrzero and the arc. Eventually, that
zero may approach the arc up to a microscopic distance, arapibroximation leading t3(46) will
be invalidated. To deal with this scenario one must separatbe roots around the zero and compute
their contribution to the fast piece by performing the suni3ir24) for those roots more directly. We
do not show how this is done explicitly in this paper, rathavill be the subject of future work.

3.6 The leading order result

Only the fast piece contributes to the leading orderl() of the semiclassical expansionlo szfg’“},
since the slow piece can be easily seen to be of ater

log Al = / do‘g§ L og 1 - aQ(x)], (3.47)

where the branch cut of the logarithmic function is to be ta&ecording to the prescription in the
previous subsection. Sometimes the contour should berdetbso that part of it passes in the second
sheet, as explained i1]]. In any case, the integral overcan be taken and the final result is

log 45 = gﬁ— Lis (kQ(x)) (3.48)

3.7 Subleading order for zero winding numbers

In this section we will assume that, = 0 to avoid the complications that arise in the case of non-
vanishing winding numbers. With this assumption we willte/ra compact expression for the leading
and the subleading orders. Combinirggd® and @.31), with P,,_;(u) = 0 (which is appropriate for
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n, = 0), we obtain at leading order

) = ?é omi §'§ omi Uy (2 u)(w —u)?

J

__fau M __ w
L 2w DR ()0 (w) gng (1—aQ(w) (3.49)

Using the explicit definition ot/ , Eq. 3.44), where we take?(u) = 1, this can be further written
as

SSGIF) = b 5 e T o8 (1 — () =

J

o dzdu 1
= —Eaa # ori)? log (1 — aQ(x)) e log (1 — aQ(u)) . (3.50)

Adding the contributions from the fast and the slow pieces awive at the following approximation
for log mfz’“], correct to orde(1) :

log 4242”»] — _1 d_x.ef@(m) Lis (KID)S) e@(x)+
21
C
1 dxdu 1
- ——log |1 — log [1 — ) 51
"3 # iz 108 [l —rQ@)] g log [1 = #Q(u)] (3.51)
CxC

The first term on the right hand side is easily expandable/inas the contour of integration can be
taken to be well away from the arcs formed by the points of #teis The second term is af?(1)
correction. Higher order correction are straightforwaraddmpute by incorporating the contribution
of F(") for n > 0. As mentioned above, the case when some winding numberoareeano implies
more complicated expressions, which we do not develop here.

4 Effective field theory for the semiclassical limit

In this section we reformulate th&'-functional in terms of a chiral fermion or, after bosoniaat in
terms of a chiral boson with exponential interaction. Theriaction is weak at large distances but
becomes singular at distances of ordewhere the two-point function develops poles. Our goal is to
formulate an effective field theory for the limit— 0. For that we split the theory into a fast and a
slow component and integrate with respect to the fast coenton

4.1 Free fermions

This determinantZ.21) is a particular case of the-functions considered in section 9 df( and
can be expressed as a Fock-space expectation value for a-Setagvarz chiral fermion living in the
rapidity complex plane and having mode expansion

Z Uy e, P (u) = Z (1 ue. (4.1)

TEZ"‘% TEZ-F%

15



The fermion modes are assumed to satisfy the anticommutaglations

[¢T7 7/’:]+ = 67“3 9 (42)

and the left/right vacuum states are defined by
(0]p—, = (Of¢; =0 and ¢, |0) =*,.|0) =0, forr > 0. (4.3)

The operator); creates a particle (or annihilates a hole) with mode numbamd the operatop,
annihilates a particle (or creates a hole) with mode numb@&ihe particles carry charge 1, while the
holes carry charge 1. The charge zero vacuum states are obtained by filling thecBBiee up to level
zero.

Any correlation function of the operatord.{) is a determinant of two-point correlators

1

u—"v

(Ol (w)y™ (0)|0) = 0]y ()1 (v)]0) = (4.4)

The expectation value of several pairs of fermions is givweithe determinant of the two-point func-
tions. Obviously the determinar2.@]) is equal to the expectation value

N
Det(1 — kK) = (0] exp (/@5 ZE]- P (uy)p(uy + E)) |0). (4.5)
j=1

The discrete sum of fermion bilinears in the exponent on ltiseof @.5) can be written, with the help
of (2.28), as an integral along the contody; which encircles the points,, ..., uy, and the Fock
space representatiod.p) takes the form

E,R d *
Az = (0] exp (@5 5 Qe (@) ¥ (@) (e + e)) 0) (4.6)
Cu e
where the weight functio®. () is defined by Eq.Z2.29.
4.2 Bosonic field with exponential interaction

Alternatively, one can express thé-function in term of a chiral bosoa(z) with two-point function

(Ol (z)9(y)]0) = log(z —y). (4.7)

After bosonizationy(z) — e?®) andi* () — e~ ?®), where we assumed that the exponents of the
gaussian field are normally ordered, the fermion biling&tr)y (x + ) becomes, up to a numerical
factor, a chiral exponential fietd

Vo(z) = e?@te)—o@), (4.8)

The numerical factor is determined by the OPE

0@ o) — 1o, — ), (4.9)

r—Uu

*Our convention is that the exponential is normally ordee@) ~#(*) = (=) . go that(0|e?)~*(*)|0) = 1.
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so that the fermion bilinear bosonizes as

@)z 4e) — e ?@etlate) - —é Ve(z). (4.10)
The resulting bosonic field theory is that of a two-dimenalagaussian field (z, z) perturbed by a
chiral interaction termx Q. () V().
Expanding the exponential in series and using thaktpeint correlator of the exponential field
is a product of all two-point correlators
2

OP-V-l0) =

(4.11)

we obtain that the expectation valué.€) is given by the grand-canonical Coulomb-gas partition
function

£,k dx; Qa 5 zj — xp)?
mﬁ,z}: Hgg oy Qelwy) [ =2 (4.12)

2mi . (xj —zp)? —¢

In the contour integral representatiods6] and @.12) the integration contout,, is drawn close
to the poles of©.. We would like to deform the contours away from these poldser&Q. can
be considered as a sufficiently smooth. In thth term of the series we can deform sequentially the
integration contours away from the setso that the: contours form a nested configuration separating
the u-poles and the-poles of the functiorQ,. If the subsequent contours are spaced kyen the
poles atr; — z;, = +¢ of the integrand do not contribute.

4.3 Integrating out the fast modes

The multiple contour integral can be evaluated in the sexsgital limit by splitting the integrand into
slow and fast parts. We thus introduce an intermediate gcalech that

le] « A < Nle| (4.13)

and split the bosonic field into a fast and a slow components,

¢ = Pslow + @ fast (4.14)

Up to exponential terms the two-point function of the bosdigld is approximated at small distances
by that of the fast component and at large distances by thideo§low component. Below we will
perform explicitly the integration with respect tb,s: to obtain an effective interaction fabgiow.
Since the two-point function of the exponential fields witheplaced bypsow does not contain poles,
the nested contours spaceddyan be replaced bysingle contourC placed sufficiently far from the
setsz andu where the integrand has polesThe effective interaction for the slow component is of

5 The splitting into a fast and a slow components can be donkcihpif the contour C can be placed along the real
axis. Introduce a cutoff\ such thate| << A < Nle|. Then the bosonic field has a continuum of Fourier madgsand
the slow and fast parts can be definedasw(z) = f\E\<A dE ap 7% ¢ras(z) = f\E\>A dE ag ¢'P®. The propagators
of the slow and the fast components &9 ¢siow(z), dsiow(y)[0) = (1 — ==Y /(z — 1), (0|0 tasi(x), Prast(y)|0) =
e“‘(z*y)/(ac —y). The propagator for the slow component contains a strongljlasng term whose role is to kill the pole
atz = y and which can be neglected far from the diagonal, while theerator in the propagator of the fast component
can be replaced by 1 at small distances. The effects of tladf @re thus exponentially small and do not influence the
perturbative quasiclassical expansion.
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the form

Seff Qbslow Z¢ omi ef? 55 ) (4.15)

wheren-th term is the contribution of the connecteepoint function of the exponential field. (x)
with respect to the fast component,

(n) (=r/e)" [dry  dw, -

Ver (1) = == P g+ g 00 ) <<1] (o) Velas) ) (4.16)
_ (—1/ie)" [ dx dxy,
Ep(x) = - 2—; g O(x — 1) << H () V(z; >>fast (4.17)

To compute the connected correlation functiph) tast we represent the product afexponential
fields in the form

_ (zj —xp)* . o -
V€<“’”1)“'V€<“’”")—E<xj—xk)2—s2 Vo(1) o Velwn) 5, (4.18)

where: : signifies normal product. By definition the normal producerponential fields has vacuum
expectation value 1. Assuming that all distanzes— x| are small compared to the scalewe can
interpret the operator product expansidiil® as

T — xp)?
(Vel(@1) . Vel(n)) ot © H (x(j—k) VSO ) L V() SO (4.19)

V2 2
ion (@ xp)? —¢

2

V(1) .. V()0 © H k]_(j52 LVSIW( ) V()T (4.20)
i<k J

To extract the connected component of thoint function we apply the Cauchy identit2.25
and represent the Cauchy determinant as a sum over peromstatiThe result is the sum of the
(identical) contributions of thén — 1)! permutations representing maximal cycles of lengfhWe
find (z;, = z; — =)

V(n)( ) (n - 1)! HZ:l Qg(xk) V(:Ck)SIOW Cgliﬂi o dQ?;

n! (e—m12)...(e —xp_1n)(€ —xn1)
Qne
- ety o), (4.21)
with
Que(x) = Qe(@)Qe(x+e)...Qc(w+ne) =e PWFPrtne), (4.22)
Vae(z) = Ve(@)Ve(z +e)... Vo(z +ne) : = e ¢@+e(adne) (4.23)

®This is basically the calculation done in re21]. The difference is in the extra factor and in our conventioichoose
x = x1 as collective coordinate, while i2]] z = (z1 + - - - + z»)/n. Note that the contribution of the permutations with
more than one cycle vanishes automatically.
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(Here and below) denotesggiow.) The resulting expression for the’-functional in terms of the
effective infrared theory is

A/e

d&ezn] (0] exp ( Z 3 yﬁ 57 — Qe () Vie(x )) |0) 4+ non-perturbative (4.24)

By construction the spacinge should be smaller than the scale but if the sum ovenr in the
exponent is extended to infinity, this will introduce expotiglly small terms and will not change the
1/L expansion. Introducing the shift operafor = %+, the series in the exponent can be formally
summed up as

AL = (0exp | == 2dx e @0 iy (kD) e®@H9@) .| |0) + non-perturbative(4.25)
T
e

Another way to write this expression, without using the nakrproduct and redefining + & — ¢, is

A = (0] exp < _ & o log(1 — kD,) @) . )|0> + non-perturbative
’ 2
c (4.26)
(0l (x)]0) = @(z), (0p(x)p(y)|0) = log(z —y).
4.4 One-dimensional effective theory in the semiclassichimit
In the semiclassical limit
h=1/L — 0, (= Le~1, a=N/L~1 (4.27)
the classical field> grows asl /A, but
O (z + ne) — ®(z) = ne 0®(z) + ... (4.28)

remains finite, as well as the range of integration and sizeeo€ontoulC. Furthermore, the distribu-
tion of the roots; is assumed to be of the form of the finite zone solutions of thth&equationss],
which are described by hyperlliptic curves. The roatsondense into one or several arcs, which
become the cuts of the meromorphic function

N L
Zx_uj Zx_q (4.29)

Jj=1 =1

We assume that the inhomogeneitieare centered around the origin of the rapidity plane, but ave d
non make any other assumptions about them.

We will concentrate on the leading term (of ordege) and the subleading term (of order 1), and
will ignore the corrections that vanish in the limit— 0. Then, using the approximatiod.g8, we
expand the exponent id.25 as

427&: ;= (0] exp§£ 2dm (—l :Lig(k Qe %) — :log(l — Qe )0y : +.. ) |0),  (4.30)
c 471 9
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where we introduced the derivative field

p(r) = —00(x) (4.31)

and used the notatior2,30. We can retain only the first term on the rhs 4f30, since the second
term is a full derivative and can be neglected.

Now we can pass from Fock-space to path-integral formaliSonthat we express the expectation
value @.30 as a path integral for th@ + 1)-dimensional fieldp(x) defined on the contow and
having two-point function

Glau) = (e(@)ew)) = = (4.32)

Introducing a second field linearly coupled tap we write the<-functional as a path integral
A = / [Dy Dp| e Vlerl (4.33)

with the action functional given by

Vool = b 5 (Lias Qe ) (o)) + 5 b 555 )Gl i) @34
C

2w \ e
CxC

The double integral in the second term can be understoodrascipal value. Indeed, the contribution
pp’ of the pole atr = u is pure derivative and vanishes after being contour-iateg.
In the approximation we are looking for, th#&-functional is given by the saddle-point action

log i) =Ve+0(),  Ve=Vgespel, (4.35)
where the saddle poigi, is given by a couple of TBA-like equations

dy

%M=f§#MFme ) = —log (1 - rQ(a)e (@) (4.36)
C

After solving for p., one obtains a non-linear integral equafidor the classical field.,.:

d
oo(w) = 526w = y)log (1 - kQ(p)e ). (4.37)
c
Expanding
d 1, .
Y. = 952—:2 [—ELIQ(KQ(QC)G_WC(QC)) — %cpc(x) log (1 — ﬁQ(m)e_wc(x)ﬂ (4.38)
c

"Such type of integral equations first appeared as altemgdivnulation of the Thermodinamic Bethe Ansatz without
strings R2,23], and most recently in supersymmetric gauge theofid<H]. If the space-time variable scales as®, there
is no need to solve the non-linear integral equation, becanly the leading order in matters. We don't exclude that the
above analysis can be carried on for weaker assumptiong #iwdistribution of the rootsi, such that: scales as!, in
which case the non-linear integral equation does not aoetaimall parameter.
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up toO(e), we obtain an explicit expression for the leading and théesuting terms:

1 §£ dzx du log[l — kQ(z)] log[1 — KQ(u)]

log FAiy" =——§1§—LI ()] + 3 .
2 2 _ 2
o i) (@ —u) (4.39)

+ (’)(a),

where the double integral is understood as a principal value

The expression4(39 obtained by the field-theory method is identical to the iteghtained by
solving the Riemann-Hilbert problem, E@.51). Takinge = i andQ = exp(ipy + ipy), we obtain
the expression for the leading and the sub-leading ternmtseafiner product, Eqs1(3)—(1.4). Here
we neglected the trivial factors in the expressiar2() of the inner product through the’-functional.

The choice of the contout is a subtle issue and depends on the analytic properties @ditiction
Q(z), as discussed above in Sect@nn any particular case one can first find explicitly the fuorct
Q(z) in the limit of a small filling fractions¢ = N,/L < 1, whereN, is the number of roots that
form the a-th arc), then place the contodrso that it does not cross any cuts of(@(z)). If the
fillings are not too large, this choice of the contour will @mvalid also forN, /L ~ 1. However, it
is possible that at some critical filling that one of the theogeof1 — O approaches the-th arc. Such
a situation has been analysed 25]| If this is the case, the contour of integration should bieadeed
to avoid the logarithmic cut starting with this zero, possitassing to the second sheet.

4.5 Relation to the Mayer expansion of non-ideal gas

The semi-classical limit of the7-functional resembles the so-called Nekrasov-Shatadimit of
instanton partition functions of deforméd = 2 supersymmetric gauge theorielsl]. The methods
developed to study this limit, outlined i14] and recently worked out in great detail ihg, 19|, are
based on the iterated Mayer expansion for a non-ideal gaartitles confined along a contodr
Below we are going to explain the connection between ourcgmbr and the Mayer expansion.

The exponential field4.8) creates a pair of Coulomb charges with opposite signs spatceis-
tancee. One can think of such a pair as a ‘fundamental’ particle wého electric charge but non-
vanishing dipole and higher charges. The s4#i? is the grand partition function of such ‘fun-
damental’ dipoles confined on the contatyf, or equivalently, on a sequence of nested contours
surrounding the sai.

The fundamental dipoles interact with the external po&it{x) and pairwise among themselves.
The pairwise interaction is determined by the two-pointelator @.11). Subtracting the product of
the one-point functiong|V;|0) = 1, one obtains for the connected correlator of two dipoles

62

(Ve(2)Ve(y)) = [CETEEr (4.40)
The interaction between two dipoles depends both on thardistand on the direction. 4f = |¢]3,
then the force between two dipoles is repulsive if they aseegd horizontally and attractive if they
are spaced vertically. As the interaction rapidly decreadarge distances, one can compute the
thermodynamics of the dipole gas by performing Mayer (camnt)lexpansion. The poles of the pair-
wise interaction potential at — y = +¢ lead to a phenomenon called it¥] clustering of instanton
particles. The fundamental dipole can form ‘bound statés: dlundamental dipoles, whose field-
theoretical counterpart are the exponential fiefd23). A composite particle made af fundamental
dipoles behaves as a pair of positive and negative eledtarges spaced at distance
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By the operator representatios.25), the o7 -functional is the grand partition function of a non-
ideal gas made of the fundamental particles and all kindewiposite particles. The particles of this
gas interact with the external potenti(z) and pairwise as

52 mn

(4.41)

The effective one-dimensional theo.84) describes the limit when only the dipole charge is taken
into account, while the quadruple etc. charges, small byepswfe, are neglected. The first term
in our final formula 4.39 corresponds to the dilute gas approximation, in which trerges interact
only with the external potential, while the sub-leadingms®t term takes into account the pairwise
interactions.
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