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In this paper, we show how classical statistical field theory techniques can be used to efficiently perform

the numerical evaluation of the nonperturbative Schwinger mechanism of particle production by quantum

tunneling. In some approximation, we also consider the backreaction of the produced particles on the

external field, as well as the self-interactions of the produced particles.
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I. INTRODUCTION

The Schwinger mechanism [1] (see Ref. [2] for a
comprehensive review) is a phenomenon by which charged
particles, e.g. electron-positron pairs, are produced sponta-
neously from an external electrical field. This phenomenon
is nonperturbative since pairs can be produced even from a
static electrical field, something which is forbidden at any
finite order of perturbation theory by simple kinematical
arguments. It is also a purely quantum phenomenon, whose
probability goes to zero in the classical limit ℏ ! 0.
Loosely speaking, eþe� vacuum fluctuations are promoted
to on-shell real particles by picking energy from the elec-
trical field, which can be viewed as a kind of quantum
tunneling process.

In quantum electrodynamics, the probability for particle
production by the Schwinger mechanism is of the order of
exp ð��m2=eEÞ, for particles of mass m and electrical
charge e, in a field E. For fields one may realistically create
in experiments, and taking even the lightest charged
particle, the electron, this probability is so small (mostly
due to the fact that the coupling constant e is small) that
this phenomenon has remained elusive in all laboratory
experiments so far (the typical electrical field necessary to
make the production of an electron-positron pair likely is
of the order of E�m2=e� 1018 V=m).

The subject of pair production by the Schwinger
mechanism is also relevant in the context of quantum
chromodynamics and strong interactions, since the strong
coupling constant g is much larger. It is for instance an
important ingredient in hadronization models such as the
Lund string model [3], where the breaking of a ‘‘string’’
made of a color electrical field into quark-antiquark pairs
leads to meson production. It is also an ingredient in
several phenomenological models of heavy-ion collisions,
e.g. Refs. [4–9].

It may also be a relevant mechanism of particle produc-
tion in the color glass condensate (CGC) framework (see
Refs. [10–14]), which is commonly used in the description
of the first stages of hadronic or nuclear collisions at high
energy. In this effective theory, the fast partons—mostly
gluons at high energy—of the two colliding projectiles act

as a static classical color source. The gluon occupation
number, and therefore also this color source, increases with
energy. Eventually, when the gluon occupation becomes of
order of the inverse strong coupling 1=g2, nonlinear effects
that tame this growth become important—an effect known
as gluon saturation [15–17]. In this regime, the color
source corresponding to the fast partons is of order 1=g,
and therefore it creates fields that are themselves of order
1=g. The probability of pair creation by such a strong field
is not suppressed since gE can be large, unlike in QED. In
Ref. [18], it has been argued that the CGC framework at
next-to-leading order (one-loop) includes the contribution
of the Schwinger mechanism to particle production.
The color glass condensate provides a semiclassical

description of the underlying dynamics: at leading order
(tree level), observables are computed by solving classical
field equations of motion. This power counting is justified
by the large occupation numbers and large fields that
characterize the saturation regime, which allow one to
neglect the noncommuting nature of the quantum fields
and treat them as classical. The color fields obtained at
leading order—the glasma [14,19]—are nonperturbatively
large, of order 1=g, and can thus lead to a large pair
production. At next-to-leading order (one-loop), one can
formulate observables in terms of small perturbations of
this classical field [20,21], which obey linearized (and still
classical) equations of motion. Equivalently, these one-
loop corrections can be calculated, and resummed, by
computing a classical path integral where one sums
over a Gaussian ensemble of initial conditions for the
classical field encountered at leading order. This approach,
sometimes called classical statistical field theory, has been
employed in a number of problems in cosmology [22–24],
cold atom physics [25,26], and more recently in computa-
tions related to the thermalization of the quark-gluon
plasma in heavy-ion collisions [27–32].
The traditional method of computing the Schwinger

mechanism has been to obtain it from the imaginary part
of the Heisenberg-Euler Lagrangian [33], which in more
modern quantum field theory language corresponds to
calculating the imaginary part of the one-loop effective
action. It has also been derived in the framework of kinetic

PHYSICAL REVIEW D 87, 125035 (2013)

1550-7998=2013=87(12)=125035(16) 125035-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.125035


theory [34–36]. In Refs. [37–39], the Schwinger mecha-
nism was computed from the Bogoliubov transformation
that maps the creation-annihilation operators at t ¼ þ1
onto those at t ¼ �1. This requires that one solves the
linearized equations of motion in order to obtain the time
evolution of the mode functions (i.e. modes that start as
plane waves in the remote past, and are distorted by their
propagation over the external field).

Motivated by the applications of the classical statistical
method to the CGC framework, we show in the present
paper how the Schwinger mechanism can be calculated in
classical statistical field theory, despite being an intrinsically
quantum phenomenon. In order to keep the formalism as
light as possible, we consider scalar electrodynamics instead
of QCD. Note that a similar approach has been used in the
case of fermion production in Refs. [40–42], following an
idea of Ref. [43] to simulate fermions efficiently on a lattice.

In Sec. II, we describe the model and discuss two
methods of calculating the spectrum of produced particles
at leading order; first in a rather standard quantum field
theory formulation, and secondly as a classical path inte-
gral. In Sec. II, we describe the lattice formulation of this
calculation in order to evaluate the particle spectrum nu-
merically, and then we compare the results of the
classical statistical approach to the results obtained by
the direct calculation of the one-loop diagram, in order to
show that they are indeed equivalent. We improve this
calculation in Sec. IV in order to include the backreaction
of the produced particle pairs on the electrical field.
Indeed, this screening effect is crucial for proper energy
conservation. The self-interactions among the produced
particles, which are crucial for the eventual thermalization
of the system, are considered in Sec. V. Since the issue of
thermalization in classical statistical field theory has been
addressed elsewhere, we focus here on the issue of mass
renormalization, which plays a crucial role in the
Schwinger mechanism due to its extreme sensitivity on
the mass of the particles being produced. Finally, Sec. VI
contains some concluding remarks, while details about the
mass renormalization are relegated to the Appendix.

II. SINGLE INCLUSIVE SPECTRUM
AT LEADING ORDER

A. Scalar QED model

Let us consider the case of a complex scalar field� with
U(1) symmetry, minimally coupled to an Abelian vector
field A�. The vector field may be coupled to an external
source J� that drives it to a nonperturbatively large value.
The classical Lagrangian of this model is

L � � 1

4
F��F

�� þ ðD��ÞðD��Þ�

�m2���� Vð���Þ þ J
�
extA�

F�� ¼ @�A� � @�A�; D� � @� � ieA�; (1)

where e is the electrical charge of the scalar particles
described by the field �. We have not specified for now the
self-interaction potential V of the scalar field, except for the
fact that it depends only on the U(1)-invariant���. A typical
example of such a potential would be a quartic interaction,

Vð���Þ ¼ �

4
ð���Þ2; (2)

where � sets the strength of the self-interactions.
The external source J�ext can produce a nontrivial gauge

potential, which in turn may produce scalar particles.
Assuming that the initial state of the system is the vacuum,
the inclusive spectrum1 of scalar particles is given by the
following formula in terms of the two-point correlation
function of the field �:

dN1

d3p
¼ 1

ð2�Þ32Ep

Z
d4xd4ye�ip�ðx�yÞðhx þm2Þ

� ðhy þm2Þh0inj�yðxÞ�ðyÞj0ini; (3)

where E2
p � p2 þm2. This expression is simply the

Lehmann-Symanzik-Zimmermann reduction formula for
the expectation value of the number operator ayðpÞaðpÞ.
Although this form of the reduction formula involves four-
dimensional integrals over the entire space-time, it can also
be written in terms of purely spatial integrals thanks to the
identity

Z
d4xeip�xðhx þm2Þ�ðxÞ

¼
Z

d3xeip�x½ _�ðx0; xÞ � iEp�ðx0; xÞ�x0¼þ1
x0¼�1; (4)

where ½Aðx0Þ�ba � AðbÞ � AðaÞ and the dot denotes a time
derivative. Moreover, the lower boundary x0 ! �1 does
not contribute since we assume that the initial state is
empty.2 Thus, Eq. (3) can also be written as3

dN1

d3p
¼ lim

t!þ1
1

ð2�Þ32Ep

Z
d3xd3yeþip�ðx�yÞh0injð _�yðt; xÞ

þ iEp�
yðt; xÞÞð _�ðt; yÞ � iEp�ðt; yÞÞj0ini: (5)

One may remove the limit t ! 1 in this formula, and
interpret its result as the particle spectrum at the time t.
However, one has to keep in mind that this interpretation

1This observable should not be confused with the probability
P1 of producing exactly one particle-antiparticle pair, which
would be obtained from the matrix element h0outj�ðxÞj0ini.
The average number of produced particles (i.e. the integral
over p of dN1=d

3p) is related to the probabilities Pn by N1 ¼P
nnPn. N1 is usually easier to calculate than the individual Pn,

thanks to simplifications related to the completeness of the set of
possible final states.

2The contribution of the lower boundary is in
fact h0injayinðpÞainðpÞj0ini ¼ 0.

3At this stage, the object � is still an operator, and one should
keep in mind that the commutator ½ _�;�� is not zero.
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cannot be completely rigorous: strictly speaking, the par-
ticles need to be free and on-shell in order for their number
to be a well-defined concept, which takes an infinite time.

In addition, this formula for the spectrum assumes that
the gauge potential vanishes when t ! þ1. However,
even if the electrical and magnetic fields are made to vanish
in this limit, the gauge potential itself could be a nonzero
pure gauge A� � @��. In this case, we need to perform in
Eq. (5) the replacement

e�ip�x ! e�ip�xeie�ðxÞ: (6)

(In words, we must gauge transform the free plane waves
that are used in the Fourier decomposition of the fields.)
Note that this replacement is also required in order to have
a gauge-invariant spectrum. In the particular case where
the gauge potential A is spatially homogeneous, this sub-
stitution can also be written as

e�ip�x ! e�iðpþeAÞ�x; (7)

and we recognize now the well-known difference between
the kinetic and canonical momenta,4

pcano ¼ pkin þ eA: (8)

By extension, we will also perform this substitution
in order to define the particle spectrum in the presence
of a homogeneous electrical field (i.e. when the gauge
potential is not a pure gauge). Again, one must keep in
mind that the concept of particle number in the presence
of a nontrivial background field is not rigorously de-
fined, since the particles we are trying to count are not
free particles.

B. Spectrum at leading order

A typical graph contributing to the spectrum is shown in
Fig. 1. The spectrum can be organized as a triple series
expansion, in powers of the electromagnetic coupling e, of
the self-coupling �, and of the external source J�ext.

When the external source J
�
ext is large, possibly of order

Jext �Oðe�1Þ, one may expect nonperturbative effects
such as the Schwinger mechanism to become important.
In order to compute these contributions which are usually
nonanalytic in e, it is necessary to treat exactly the external
source J�ext. In the rest of the paper, we call Leading Order
(LO) the result of this treatment, in which we include all
powers of e accompanied by a power of J�ext, but no further
corrections in e2 or in �. Therefore, the graphs that con-
tribute to the spectrum at leading order are considerably

simpler (see Fig. 2)5, since they have only one scalar loop
dressed by insertions of a photon directly connected to the
external source J�ext.
At this level of approximation, one can treat the gauge

field attached to the scalar loop as a classical fieldA� that
obeys the classical Maxwell’s equations,

@�F �� ¼ J�ext; (9)

and the equation for � is linear with respect to quantum
fields,

ðD�D� þm2Þ� ¼ 0; (10)

where D� � @� � ieA� is the covariant derivative con-

structed with the classical background field. A solution of
this equation can be expanded by normal modes as

�ðxÞ ¼
Z d3q

ð2�Þ32Eq

½’qðxÞainðqÞ þ ’�
qðxÞbyinðqÞ�; (11)

p

FIG. 1 (color online). Generic contribution to the inclusive
spectrum of produced scalar particles. The wavy lines represent
the photons, while the solid black lines are scalars. The crosses
terminating the photon lines represent the source J

�
ext.

p

FIG. 2 (color online). One of the graphs contributing to the
inclusive spectrum at leading order. The leading order consists of
all such graphs which have an arbitrary number of external lines
connected to the external source.

4One can find a similar argument on the Lehmann-Symanzik-
Zimmermann (LSZ) formula under a background gauge field in
Refs. [44,45].

5If one computes such diagrams individually and then sums
them up, the correct nonperturvative contribution cannot be
obtained. (The integration with respect to the loop momentum
and the summation over the number of the external lines do not
commute.) To get the correct answer, we have to solve the field
equation for � treating the interaction with the background field
exactly. This situation is similar to considering the Taylor
expansion of the function fðzÞ ¼ e�1=z around its nonanalytic
point z ¼ 0.
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where ainðqÞ and ainðqÞ are the annihilation operators
for particle and antiparticle, respectively, and follow the
commutation relations

½ainðqÞ; ayinðq0Þ� ¼ ½binðqÞ; byinðq0Þ� ¼ ð2�Þ32Eq�ðq� q0Þ:
(12)

The positive-frequency mode function ’qðxÞ follows
ðD�D�þm2Þ’qðxÞ¼0; lim

x0!�1
’qðxÞ¼e�iq�x: (13)

The two-point correlation function that enters in the spec-
trum is expressible as follows:

h0inj�yðxÞ�ðyÞj0iniLO ¼
Z d3q

ð2�Þ32Eq

’qðxÞ’�
qðyÞ: (14)

At this point, the calculation of the scalar particle
yield at leading order has been recasted into a purely
classical calculation, where one needs to solve the
classical equation of motion ðD�D� þm2Þ’ ¼ 0 for

each of the scalar mode functions ’q. In the special

case of a static electrical field, Eq. (14) is equivalent
to the classic result of Schwinger. Note that Eq. (14)
does not imply that the particle spectrum at leading
order is a classical quantity. Indeed, it is well known
in the case of a static electrical field that the particles are
produced by a quantum tunneling phenomenon, whose
probability goes to zero if ℏ ! 0. Instead, Eq. (14)
should be viewed as an example of the general property
that one-loop quantities can be written as quadratic
forms in terms of fields that obey linearized classical
equations of motion.

A crucial aspect of this formulation is that these mode
functions are specified by retarded boundary conditions in
the remote past, where they behave as free plane waves.
Using the identity (4) and the fact that in the limit
x0 ! �1 we have ’�

qðxÞ ¼ eiq�x, we simply have

Z
d4xeip�xðhx þm2Þ’�

qðxÞ

¼ lim
x0!þ1

Z
d3xeip�x½ _’�

qðx0; xÞ � iEp’
�
qðx0; xÞ�: (15)

Thus, as illustrated in Fig. 3, the physical interpretation
of Eq. (14) is that in order to obtain the spectrum of
produced particles, one should start in the remote past

with negative-energy plane waves (which are equivalent,
by crossing symmetry, to having a positive-energy anti-
particle in the final state), that subsequently evolve over
the classical gauge field A�, and are projected at the
final time on a positive-energy plane wave. The momen-
tum q of the incoming plane wave can be interpreted as
the momentum of the antiparticle that must be produced
along with the observed particle of momentum p, and
therefore should be integrated out in order to obtain the
particle spectrum.
This formulation provides an explicit numerical

method for computing the yield at leading order for a
general background field (for which it is not possible to
solve analytically the equation of motion for ’q): discre-

tize space and solve numerically the classical equation of
motion for each momentum q of the reciprocal lattice.
This is however a computationally expensive method,
since this computation scales like the square of the num-
ber of lattice points. More precisely, the computation time
scales as

Nt � N2
latt; (16)

where Nlatt is the number of lattice points and Nt the
number of time steps used in solving the equations of
motion.

C. Reformulation as a Gaussian functional integral

It is however possible to formulate the particle spec-
trum in an alternative way, that allows a more efficient
computation based on a Monte Carlo sampling in a
functional space that we shall specify shortly. Since
the evolution of the mode functions is causal, knowing
them, as well as their first-order time derivative,6 on
some Cauchy surface � (for instance, any surface of
constant time x0) is sufficient to fully determine their
subsequent evolution. To illustrate this, let us consider
the following functional:

Gxy½’0; �0� � ’�ðxÞ’ðyÞ; ðD�D� þm2Þ’ ¼ 0;

’ðt0; xÞ ¼ ’0ðxÞ; _’ðt0; xÞ ¼ �0ðxÞ: (17)

Gxy½’0; �0� is the product at the points x and y of the

classical solution ’ whose initial conditions at the time
t0 are given by the functions ’0ðxÞ, �0ðxÞ. Let us in-
troduce a Gaussian average over initial values ’0ðxÞ,
�0ðxÞ as

hO½’0; �0�i �
Z
½D’0D�0�W½’0; �0�O½’0; �0�; (18)

with W½’0; �0� being the Gaussian kernel which is
characterized by the following two-point correlation
functions:

p

q

FIG. 3 (color online). Diagrammatic representation of Eq. (14).

6This is necessary because the equation of motion for ’
contains second-order time derivatives.
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h’�
0ðxÞ’0ðyÞi ¼ 1

2

Z d3q

ð2�Þ32Eq

½’�
qðt0; xÞ’qðt0; yÞ

þ ’qðt0; xÞ’�
qðt0; yÞ�;

h��
0ðxÞ�0ðyÞi ¼ 1

2

Z d3q

ð2�Þ32Eq

½ _’�
qðt0; xÞ _’qðt0; yÞ

þ _’qðt0; xÞ _’�
qðt0; yÞ�;

h’0ðxÞ�0ðyÞi ¼ 0: (19)

From these definitions, the following equation is trivially
obtained:

hGxy½’0;�0�i¼ 1

2

Z d3q

ð2�Þ32Eq

½’qðxÞ’�
qðyÞþ’qðyÞ’�

qðxÞ�:

(20)

Further using Eq. (14), we get

hGxy½’0; �0�i ¼ 1

2
h0inj�yðxÞ�ðyÞ þ�ðyÞ�yðxÞj0iniLO:

(21)

In other words, this procedure gives almost the expecta-
tion value we need in order to compute the particle
spectrum, except for the ordering between the two field
operators. In the form (5) of the reduction formula,
the two field operators are evaluated at equal times.

Therefore, �yðxÞ and �ðyÞ commute, but not _�yðxÞ

and �ðyÞ. In fact, if we used the expectation value (21)
in the LSZ formula, we would get the expectation value
of the operator ðayðpÞaðpÞ þ aðpÞayðpÞÞ=2 instead of
ayðpÞaðpÞ. This discrepancy is easy to fix by using the
commutation relation (12). One can obtain the leading-
order spectrum by calculating the expectation value (21),
and then subtracting V=2 particles where V is the vol-
ume7 of the system. More precisely,

dN1

d3p

��������LO
¼ �V

2
þ

Z
½D’0D�0�W½’0; �0�Fp½’0; �0�;

(22)

where

Fp½’0; �0� � 1

ð2�Þ32Ep

j�p½’0; �0�j2;

�p½’0; �0� ¼ lim
x0!þ1

Z
d3xeip�x½ _’ðx0; xÞ � iEp’ðx0; xÞ�;

ðD�D� þm2Þ’ ¼ 0; ’ðt0; xÞ ¼ ’0ðxÞ;
_’ðt0; xÞ ¼ �0ðxÞ: (23)

It is easy to check that if we carry out this procedure in
the vacuum (i.e. with D� ¼ @� in the equation of mo-

tion of the scalar field), we obtain dN1=d
3p ¼ 0. The

subtraction of the term V=2 is crucial for that.
This reformulation of the spectrum at leading order can

be illustrated diagrammatically as follows8:

The new representation amounts to slicing the scalar
loop at a certain time t0, and to assigning to the func-
tional Fp½’0; �0� the time evolution for x0 > t0, and to
the Gaussian distribution W½’0; �0� the part of the evo-
lution at x0 < t0. The Gaussian average over the fields
’0, �0 is the ‘‘glue’’ that reconstructs the loop, since it
amounts to connecting pairwise the two open endpoints
of Fp½’0; �0�. Note that the choice of the time t0 is not
important, since the left-hand side does not depend on
this choice. In fact, instead of slicing the loop at a fixed
time t0, the separation in the two factors could have been

made on any locally spacelike surface. In practical im-
plementations, it is best to perform the separation at a
time t0 such that the distribution W½’0; �0� is easy to
compute.
Note that random elements of the Gaussian ensemble

defined by Eq. (19) can be generated by writing

’0ðxÞ ¼
Z d3q

ð2�Þ32Eq

½cq’qðt0; xÞ þ dq’
�
qðt0; xÞ�;

�0ðxÞ ¼
Z d3q

ð2�Þ32Eq

½cq _’qðt0; xÞ þ dq _’�
qðt0; xÞ�;

(25)

where cq and dq are random complex Gaussian distributed

numbers, whose two-point correlations are

hcqc�q0 i ¼ hdqd�q0 i ¼ ð2�Þ3Eq�ðq� q0Þ;
hcqcq0 i ¼ hdqdq0 i ¼ hcqdq0 i ¼ hcqd�q0 i ¼ 0:

(26)

8Although in this illustration we have put all the interactions
with the background field in the functional Fp½’0; �0�, this is not
mandatory. If the time t0 is chosen larger than the time at which
the background field is switched on, then the Gaussian distribu-
tion W½’0; �0� also depends on the background field.

7The volume arises from a �ð0Þ in momentum space.
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D. Numerical cost

Equation (22) may at first appear to be a drawback
compared to Eq. (14) since we have replaced an ordinary
integral by a functional integration. However, let us assume
that the mode function ’q is known (or at least easily

computable) at the initial time t0. This is for instance the
case when the background field A� is vanishing for
x0 < t0. Then, one can estimate the functional integral by
doing a Monte Carlo sampling of the Gaussian ensemble
defined by Eqs. (19), i.e. by generating random functions
of the form (25) and by solving the equation of motion for
each of these samples. The computational time of this
method would be of the order of

Nsamples � Nlatt � ðNlatt þ NtÞ; (27)

where Nsamples is the number of samples used in the

Monte Carlo evaluation of the functional integral. Note
that the first term, proportional to N2

latt, is due to the fact

that in Eq. (25) there is a sum over q at each position x.
This has to be repeated for each sample, but needs to be
done only at the initial time t0. This Monte Carlo method of
evaluating the particle spectrum is less costly than the
direct method provided that

Nsamples � Nlatt; Nsamples � Nt: (28)

The first condition is obvious: if one uses a number of
samples which is larger than the number of independent
mode functions, then one would be better off using the
direct method (since it would give the exact leading-order
answer, for a lesser computational effort). The second
condition implies that the computation is dominated by
the resolution of the equations of motion rather than the
evaluation of the initial conditions.

III. LATTICE NUMERICAL EVALUATION

A. Lattice setup

In the two formulations, Eq. (14) or Eq. (22), one needs to
solve the linearized equation of motion ðD�D�þm2Þ’¼0

for the propagation of a scalar field on top of some back-
ground electromagnetic potentialA�. There are only a few

known examples of background fields for which this equation
of motion can be solved analytically. For a generic back-
ground field, one can only solve this equation numerically.

Actual computations are done by discretizing space on a
lattice. We consider a finite box of volume Lx � Ly � Lz

and divide it into a Nlatt � Nx � Ny � Nz lattice. Space

points are labeled as

x � ðnxax; nyay; nzazÞ
ðnx ¼ 1; . . . ; Nx;ny ¼ 1; . . . ; Ny;nz ¼ 1; . . . ; NzÞ; (29)

with lattice spacing ax ¼ Lx=Nx, etc. We impose the peri-
odic boundary conditions, e.g.’ðx; y; zÞ ¼ ’ðxþ Lx; y; zÞ,
and the momenta are given by

pi ¼ 2�ki
Li

ði ¼ x; y; zÞ; (30)

where the ki are integers, taken in the range

ki ¼ �Ni

2
þ 1; . . . ; 0; . . . ;

Ni

2
ði ¼ x; y; zÞ; (31)

where we have assumed that the lattice sizes Ni are even.
On the lattice, differentiation with respect to space is

replaced by finite differences. Let us introduce the forward
difference

rþ
i ’ðxÞ �

1

ai
½’ðxþ ain̂iÞ � ’ðxÞ�; (32)

where the vector n̂i is the displacement by one lattice
spacing in the spatial direction i. Similarly, the backward
difference is

r�
i ’ðxÞ �

1

ai
½’ðxÞ � ’ðx� ain̂iÞ�: (33)

By ‘‘integration by parts,’’ the forward difference is
transformed to the backward difference,X

x

½rþ
i fðxÞ�gðxÞ ¼ �X

x

fðxÞ½r�
i gðxÞ�: (34)

(Notice that there is no boundary term because of the
periodic boundary condition.) In words, this means that
r�

i and rþ
i are mutually adjoint. Since it is desirable to

have a self-adjoint Laplacian operator, it is convenient to
define it by a mix of forward and backward derivatives,

� � X
i¼x;y;z

r�
i rþ

i : (35)

The discrete plane waves exp ðip � xÞ are eigenfunctions of
this operator, with eigenvalues

�E2
kx;ky;kz

� �2
X

i¼x;y;z

sin 2ð�kiNi
Þ

a2i
: (36)

When considering scalar QED, the local U(1) gauge
invariance can be preserved on the lattice by defining the
forward covariant derivative as

Dþ
i ’ðxÞ �

1

ai
½eieaiAiðxÞ’ðxþ ain̂iÞ � ’ðxÞ�: (37)

Under a gauge transformation9

9There is some arbitrariness in how we discretize the gauge
transformation law for Ai, since we could have chosen a back-
ward derivativer�

i instead of the forward derivative. If we adopt
this alternative choice, the forward covariant derivative must be
changed into

Dþ
i ’ðxÞ �

1

ai
½eieaiAiðxþain̂iÞ’ðxþ ain̂iÞ � ’ðxÞ�:
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’ðt; xÞ ! eie�ðt;xÞ’ðt; xÞ; A0ðt; xÞ ! A0ðt; xÞ � _�ðt; xÞ;
Aiðt; xÞ ! Aiðt; xÞ � rþ

i �ðt; xÞ; (38)

Dþ
i ’ðt; xÞ is transformed in the same way as ’ðt; xÞ,

Dþ
i ’ðt; xÞ ! eie�ðt;xÞDþ

i ’ðt; xÞ: (39)

One can write a gauge-invariant discretized Lagrangian
density for the complex scalar fields as follows:

Lmatter ¼ ðD0�Þ�ðD0�Þ
� X

i¼x;y;z

ðDþ
i �Þ�ðDþ

i �Þ �m2���� Vð���Þ:

(40)

In deriving the discretized classical equation of motion,
one should note that the forward covariant derivative is the
adjoint of the backward covariant derivative D�

i ,

D�
i ’ðxÞ ¼

1

ai
½’ðxÞ � e�ieaiAiðx�ain̂iÞ’ðx� ain̂iÞ�: (41)

One obtains�
D2

0 �
X

i¼x;y;z

D�
i D

þ
i þm2

�
’þ V0ð’�’Þ’ ¼ 0: (42)

(Here the equation is written with the self-interaction term,
but in the evaluation of the spectrum at leading order we
need only the linear part of the equation.) It is convenient to
choose the temporal gauge A0 ¼ 0, so that D0 ¼ @0 in the
equation of motion.

B. Numerical results

In order to demonstrate that the classical statistical simu-
lation (CSS) can indeeddescribe theSchwingermechanismat
leading order, we consider a simple situation which can be
handled easily by the direct quantumfield theorymethod. The
self-coupling � is set to zero in this leading-order computa-
tion, and we take a spatially homogeneous background elec-
trical field in the z direction (and no magnetic field), that we
switch on at the time x0 ¼ 0. In this case, thanks to the
translational invariance of the problem, the direct evaluation
of Eq. (14) is not very expensive and will be used as a
benchmark against which we compare the CSS results.

The parameters of the lattice simulation are Nx ¼ Ny ¼
32, Nz ¼ 256 (we need more lattice spacings in the direc-
tion of the electrical field), corresponding to physical sizes
Lx ¼ Ly ¼ 50, and Lz ¼ 30 respectively. The mass is

taken to be m ¼ 0:1, the electrical charge is e ¼ 1, and
the electrical field is switched on10 at x0 ¼ 0 and its value

is E ¼ 1 (alternatively, one may view eE as arbitrary and
all the other dimensionful quantities as being quoted in

units of
ffiffiffiffiffiffi
eE

p
, which has the dimension of mass). 1024 field

configurations were used in order to sample the Gaussian
ensemble defined in Eqs. (25).
In Fig. 4 we show the longitudinal momentum distribu-

tion11 of the produced scalar particles, at several times
shortly after the electrical field has been switched on.
The dots represent the result of the classical statistical
approach and the solid lines are the direct QFT calculation.
The agreement between the two approaches is very good,
and the differences are compatible with the expected sta-
tistical error given the number of samples used in the CSS
approach. In particular, the intricate oscillatory pattern of
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FIG. 4 (color online). Comparison of the pz spectrum between
the classical statistical simulation and the direct one-loop QFT
calculation in the case of a constant electrical field.
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FIG. 5 (color online). Comparison of the p? spectrum be-
tween the classical statistical simulation and the direct one-
loop QFT calculation in the case of a constant electrical field.

10In the temporal gauge A0 ¼ 0, this can be realized by the
following gauge potential:

A 1 ¼ A2 ¼ 0; �@0A3 ¼ E�ðx0Þ;
which can be realized by the external current J

�
ext ¼���3E�ðx0Þ.

11The occupation number fðpÞ differs from the particle spec-
trum defined in Eq. (22) by a factor of the volume, dN1=d

3p �
VfðpÞ=ð2�Þ3.
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this spectrum, which results from quantum interference
phenomena, is well reproduced in the CSS method. This
shows very concretely how one-loop quantum effects can
be reformulated in terms of purely classical objects.

The time evolution of the pz spectrum is rather
transparent: particles are produced with a small pz by
quantum tunneling, and later they are accelerated in the
direction of the electrical field; hence the expansion of
the spectrum towards larger (positive, because we are
considering only particles, not antiparticles) values of
pz. One can indeed see on Fig. 4 that this expansion is
linear in time, in good agreement with a constant
acceleration eE (which is equal to 1 with our choice of
units) of the particles in the þz direction. Similarly, the
comparison of the p? spectra obtained in the two
approaches, in Fig. 5, shows a good agreement within
statistical errors. The shape of the transverse momentum
spectrum is very different from that of the longitudinal
momentum distribution. Roughly speaking, the produced
particles originate from virtual pairs (i.e. vacuum fluc-
tuations) that can have a momentum in any direction.
Then, their longitudinal momentum pz increases linearly
in time due to the electrical field, while their transverse
momentum is not affected.

To close this section, we also show the energy density
and electrical current density carried by the produced
particles, as a function of time, in Fig. 6. The energy
density of the produced particles increases steadily with
time, and at some point it will overcome the energy density
of the background electrical field. When this occurs, the
simple calculation done in this section, where the back-
reaction of the produced particles on the gauge field is
neglected, becomes certainly insufficient. In particular, the
total energy present in the system is not conserved at this
level of approximation, because of the uninterrupted pro-
duction of scalar particles, shown in the left plot of Fig. 6.
One could in fact use this as a criterion for deciding when
the one-loop approximation ceases to be valid; it should be
improved when the energy carried by the produced parti-
cles becomes of the same order of magnitude as the energy
density carried by the electrical field. From the left plot of
Fig. 6, we expect this breakdown to occur as early as
t� 10.12 This is also corroborated by the behavior of the
electrical current carried by the produced particles.
Because this current acts as a source in the Maxwell’s
equations that control the gauge potential, it can alter the
background electrical field when it becomes too large.

IV. BACKREACTION EFFECTS

In the previous section, we have seen that the plain
one-loop calculation of the spectrum of produced particles
is bound to break down after some time, because this
approximation violates energy conservation. What is miss-
ing is the backreaction of the produced scalar particles on
the electrical field, which has the effect of screening this
field, which eventually will put an end to the production of
particles [46,47].
Taking the backreaction into account means that the

source of the electromagnetic field is not just the external
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FIG. 6 (color online). Energy density and electrical current density carried by the produced particles. In the left plot, the light blue
band indicates the energy density of the electrical field.

p

φ0 , π0t0

p

FIG. 7 (color online). Left: Topologies included when solving
the equations of motion of the scalar field � and the Maxwell’s
equations with the induced current simultaneously, from some
given boundary conditions ’0, �0 at the initial time t0. Right:
QFT topologies when we perform a Gaussian average of the left
graph over the Gaussian ensemble (19), with j� replaced by the
ensemble average hj�i in Maxwell’s equations.

12Time is scaled like 1=
ffiffiffiffiffiffi
eE

p
. For the QED critical field strength

E ¼ m2=e, t� 10 amounts to t� 10�20 seconds.
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source J
�
ext, but also includes the contribution of the scalar

field � to the electromagnetic current,

j0ðxÞ ¼ ie½��ðxÞ _�ðxÞ � _��ðxÞ�ðxÞ�;
jiðxÞ ¼ ie½��ðxÞDþ

i �ðxÞ � ðDþ
i �ðxÞÞ��ðxÞ�;

(43)

written here with lattice discrete spatial derivatives. In the
gauge A0 ¼ 0, the Maxwell’s equations for the vector
potential read

ri� _Ai ¼ J0ext þ j0;

€Ai þ ðriþrj� � �ijrþ � r�ÞAj ¼ Jiext þ ji:
(44)

The first of the two equations (44) is Gauss’ law. It is
automatically satisfied if Ai obeys the second equation,
and J� is conserved,13

_J 0 ¼ ri�Ji; (45)

which, in turn, is the case if the scalar field � obeys the
equation of motion. Diagrammatically, solving simulta-
neously the equation of motion of the scalar field � and
Maxwell’s equations, starting from some initial condition
’0ðxÞ, �0ðxÞ at the time t0, amounts to resumming graphs
such as the one represented in the left part of Fig. 7. All the
graphs are made of a principal scalar line, to which the
measured particle of momentum p is attached. To this line
are attached a number of photons. These photons can either
be attached to the external current J�ext, or to the induced
current, i.e. to another scalar line. These secondary scalar
lines can themselves be decorated by photons, etc.

Averaging the functional of ’0, �0 obtained by this
procedure over the Gaussian distribution of initial condi-
tions defined by Eq. (19) amounts to reconnecting pairwise
all the hanging scalar lines in the graph of Fig. 7. Although
all the topologies obtained when doing this were indeed
present in the original quantum field theoretical formulation

of the particle spectrum, some of them are miscalculated by
the classical statistical simulation. This is because in the
CSS all propagators are retarded, while they are Feynman
propagators in the field theoretical calculation.14 However,
when we reconnect together the two scalars that enter in the
same instance of the induced current, the classical statistical
approach reproduces exactly the QFT value of that loop.
This amounts to replacing the induced current j� in
Maxwell’s equation by its ensemble average,

j� ! hj�i: (46)

By doing this, one obtains all the graphs such as the one
represented in the right part of Fig. 7, where the scalar loops
represented in orange originate from the use of hj�i on the
right-hand side of Maxwell’s equations. Although this is not
manifest in this example, these scalar loops can themselves
be dressed by an arbitrary number of photon insertions,
whose other endpoint can either be the external current J�ext
or another instance of the ensemble-averaged induced source.
Let us now show some numerical results that illustrate

the effect of the backreaction. First, in Fig. 8, we display
the electrical current density (left) and the resulting elec-
trical field (right). There in an inflection in the growth of
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FIG. 8 (color online). Time evolution of the electrical current density and of the resulting electrical field when the backreaction is
taken into account.

Eext

Eind

FIG. 9 (color online). Illustration of the polarization phenome-
non that leads to the reduction of the electrical field when the
backreaction is taken into account.

13This follows from the identity ri�ðrþ � r�Þ ¼ðr� � rþÞri�.
14In other words, the CSS and the original quantum field theory
differ by some commutators, as one may expect.
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the current at a time t 	 10, which roughly corresponds to
the moment when the energy carried by the produced
particles becomes comparable to the energy stored in the
electrical field. Simultaneously, the electrical field
decreases and even changes sign periodically, while
the amplitude of its oscillations decrease to zero.
Consequently, the production of particles slows down and
effectively stops after some time [when the probability of
particle creation, of the order of exp ð��m2=eEÞ, becomes
too small]. It is rather easy to understand why the induced
electrical field is opposite in direction to the externally
field, as illustrated in Fig. 9. Indeed, after having been
produced, the positive charges are accelerated in the direc-
tion of the external field and the negative charges in the
opposite direction. This charge separation acts like capaci-
tor plates, which create an induced field oriented from the
positive to the negative charges.15 The induced electrical
field thus counteracts the effect of the external field.

In the left plot of Fig. 10, we see that the expansion of
the pz spectrum towards the right is no longer linear in
time, a direct consequence of the decreasing electrical field
which is no longer providing a constant acceleration to the
produced particles. In fact the plot on the right of Fig. 10
shows that for slightly larger times, the shift towards the
right of the pz spectrum comes to a halt, and is replaced by
a shift to the left. Obviously, this happens when the elec-
trical field has changed sign, around t 	 30. After the pz

spectrum moves into the negative-momentum region, its
value undergoes a rapid increase. This is because particles
which have been created earlier pass through the zero-
momentum region and stimulate the subsequent particle
production (Bose enhancement). At the same time, the pz

spectrum starts to show an oscillatory pattern. This is due
to an interference between the fields of the previously
produced particles and of the newly produced particles
[38]. It is remarkable that the CSS method can describe
this intricate pattern of peaks, which are purely quantum
effects. At even larger times, when the electrical field has
become small, the pz distribution becomes roughly cen-
tered around pz ¼ 0, as one can see from the plot on the
left of Fig. 11. Because the electric field has changed its
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15In a semiclassical tunneling picture, a particle and an antipar-
ticle are produced with a distance 2m2

eE between them. This initial
separation contributes to the polarization current, while the sub-
sequent charge acceleration creates the conduction current [37].
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sign for several times, the spectrum has gone through
several stages of Bose enhancement and is now much
larger than its value at early times. Finally, one can also
check that the inclusion of the backreaction effects cure the
main problem of the plain one-loop calculation, i.e. the
energy conservation. In the plot on the right of Fig. 11,
we have represented the energy density carried by the
produced particles, the energy density carried by the elec-
tromagnetic fields, and the sum of the two contributions.
We observe a transfer into particles of the energy initially
stored in the electrical field, while the total energy remains
constant.

V. SELF-INTERACTIONS AND MASS
RENORMALIZATION

So far, all the results we have shown have neglected the
self-interactions of the scalar fields. This means that after
the external electrical field has been ‘‘neutralized’’ by the
produced particles, their distribution is frozen and ceases to
evolve. In particular, it has noway to thermalize. The effect
of these self-interactions has been studied in the classical
statistical framework employed here, where it is rather
straightforward to take into account since it just amounts
to adding a nonlinear term in the equation of motion of the
classical scalar fields,�

D2
0 �

X
i¼x;y;z

D�
i D

þ
i þm2

�
’þ �

2
ð’�’Þ’ ¼ 0; (47)

written here for a quartic self-interaction. In the slightly
simpler example of a real scalar field theory, it has been
shown that these nonlinearities lead to the isotropization
and thermalization16 of the momentum distribution of the
particles. Diagrammatically, including the self-interactions
in the classical equation of motion of the scalar fields
changes Fig. 7 into Fig. 12. In particular, the Gaussian
average over the initial conditions for the scalar field can
now produce loop corrections such as (but not only)
tadpoles.

Our goal in this section in not to reproduce previous
results on thermalization in classical statistical simula-
tions, but to stress the complication due to mass renormal-
ization,17 which is crucial when dealing with a tunneling
phenomenon such as the Schwinger mechanism. The main
issue is that the probability of particle production by
quantum tunneling is extremely sensitive to the value of
the mass of the scalar particles, since its square enters in
the exponential exp ð��m2=eEÞ. However, when we in-
clude the nonlinear term in the equation of motion of the

scalar field and we average over its initial conditions, we
resum some loop corrections that are ultraviolet divergent.
In a lattice simulation, they are regularized by the lattice
spacing, but provide a potentially large renormalization
of the mass that will alter significantly the production of
particles by the Schwinger mechanism. The worst
offenders are the tadpole corrections, which have a qua-
dratic dependence on the inverse lattice spacing.
This problem is illustrated in Fig. 13. The black curve,

which is almost overlapping with the orange curve, shows
the spectrum of produced particles (at t ¼ 10, i.e. shortly
after the external field has been switched on) without self-
interactions (i.e. with a coupling constant � ¼ 0). The
(bare) mass in the Lagrangian, and hence in the classical
equation of motion, is m ¼ 0:1. This curve should be
compared to the blue curve, where the same computation
has been performed with a nonzero self-coupling � ¼ 1,
and the same value of the bare mass. We see that the
particle yield has been considerably reduced. As we shall
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FIG. 13 (color online). pz spectrum of the produced scalar
particles at t ¼ 10, in the non-self-interacting case (� ¼ 0)
and the self-interacting case (� ¼ 1), without and with mass
renormalization. The two horizontal bands indicate the values of
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FIG. 12 (color online). Left: Topologies included when
solving the equations of motion of the scalar field � with
self-interactions and the Maxwell’s equations with the induced
current simultaneously, from some given boundary conditions
’0, �0 at the initial time t0. Right: Topologies obtained after the
Gaussian average over the initial conditions ’0, �0, with hj�i as
the source term in Maxwell’s equations.

16Since it is a semiclassical approximation, the asymptotic
spectrum obtained in the classical statistical framework is not
a full fledged Bose-Einstein distribution but only its soft
part fðpÞ ¼ T=Ep.
17One can find other discussions of renormalization in classical
approaches in Refs. [48,49].
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argue, this is a consequence of the fact that these two
computations correspond to two different values of the
renormalized mass. This is an unphysical effect that should
be fixed. Indeed, one expects that the self-interactions
among the scalar fields alter their long-time evolution
(and in particular play a crucial role in their thermaliza-
tion), but should have little physical effect at short times.
This issue is also visible in the two plots of Fig. 14, where
the computation at � ¼ 0 and the bare computation at
� ¼ 1 lead to very different results, even at short times.

As explained in the Appendix, one can remove the
quadratic divergence coming from the tadpoles by adding
a mass counterterm �m2 in the equation of motion for the
classical scalar field. This mass counterterm is space-time
independent, and can thus be computed once and for all at
the initial time. We define it by

�m2 � ��h’�ð0; xÞ’ð0; xÞi; (48)

which is directly given by Eq. (19) and is obviously
independent of the external electrical field. With the value
of the self-coupling � ¼ 1 that we are using, we have
�h’�ð0; xÞ’ð0; xÞi ¼ 0:26, which is why the calculation
done without any mass renormalization gives a yield that
is well reproduced by exp ð��m2=eEÞ with m2 ¼ 0:26þ
0:01 ¼ 0:27 (see Fig. 13). In Fig. 13, we also show the pz

spectrum obtained when this counterterm is added to the
classical equation of motion. Now, we see that the particle
yield is back at the level expected for a renormalized
mass18 m2

R ¼ 0:01. Similarly, Fig. 14 shows that this
mass renormalization cures the unphysical effect of the
self-interactions at short times.

VI. CONCLUSIONS

Motivated by recent works on thermalization in
heavy-ion collisions using classical statistical field theory,
in which one computes one-loop quantum corrections by
performing a Gaussian average over the initial condition of
a purely classical field, we have applied the same method
to the calculation of the Schwinger mechanism of particle
production in an external electrical field.
We have first shown that, at leading order (i.e. at

one-loop), the spectrum of particles produced by the
Schwinger mechanism can be expressed as a path integral
over classical fields that have a Gaussian ensemble of
initial conditions. The two-point correlation function that
characterizes this Gaussian distribution is uniquely deter-
mined by the propagator of small fluctuations on top of the
external field. This representation of the spectrum is exact
at one-loop, and is a mere rewriting of the original quantum
field theory result. Moreover, this formulation of the spec-
trum leads to a very efficient method for the numerical
evaluation of the spectrum on a lattice.
Then, by promoting the gauge potential to a dynamical

variable, this formulation makes easy the inclusion of the
backreaction effects that are important for the physical con-
sistency of the model. Indeed, the charged particles that are
produced via the Schwinger mechanism tend to screen the
applied external field, thereby reducing progressively their
production rate. This backreaction is essential for the con-
servation of total energy (particlesþ electromagnetic field).
In the last section, we have studied the possibility of

taking into account the self-interactions of the produced
charged particles, which is an essential ingredient for their
eventual thermalization. In the classical statistical ap-
proach, they can be simply included by keeping the non-
linear interaction term in the classical equation of motion
for the field. However, since the Schwinger mechanism is
very sensitive to the value of the mass of the particles, it is
important to take proper steps in order to renormalize the
mass: the naive (i.e. without any mass renormalization)
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FIG. 14 (color online). Time evolution of the electrical current density (left) and of the electrical field (right). Curves are shown for
the non-self-interacting case (� ¼ 0), and for the self-interacting case (� ¼ 1), without and with mass renormalization.

18The combination m2 þ �m2 that appears in the equation of
motion should now be viewed as the bare mass. This bare mass
combines with the tadpole that results from the Gaussian aver-
age, in such a way that the renormalized mass is back at the
expected value.
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inclusion of the self-interactions leads to an unphysical—-
lattice-spacing-dependent—reduction of the charged par-
ticle yield, because the self-interactions produce large
corrections to the mass. The main correction to the mass
is a quadratic ultraviolet divergence that comes from tad-
pole corrections. We have shown that it can be systemati-
cally subtracted in the classical statistical framework by
adding a mass counterterm in the classical field equation of
motion.

To close this paper, we would like to digress with a
remark regarding the applicability of the classical statis-
tical approach to the calculation of observables. The
example considered in this paper, as well as other
quantities previously considered in the literature, is an
inclusive observable. This means that it measures the
expectation value of a certain operator (here the particle
number operator) in the final state of the system, without
putting any constraints on this final state. This is the
reason why these observables can be expressed in terms
of fields that obey retarded boundary conditions, which
in turn are amenable to a computation in terms of a
Gaussian average over their initial conditions. Very little
is known about exclusive observables, whose definition
vetoes certain final states. The archetypal example of this
kind of observable would be the probability of producing
a specific number of charged particles, which obviously
excludes any final state that does not contain the expected
number of particles. In some examples, it has been shown
that exclusive observables can be expressed at leading
order in terms of classical fields that obey nonretarded
boundary conditions (e.g. fields that are constrained both
at t ¼ �1 and at t ¼ þ1). At least on the surface, it
seems very implausible that such an observable can be
obtained by a classical statistical simulation where one
performs an average over the initial conditions of the
classical field.
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APPENDIX: TADPOLES IN CLASSICAL
STATISTICAL FIELD THEORY

In this appendix, we show how to deal with the
quadratic divergences that arise from the tadpoles

when we keep the self-interactions in a classical statis-
tical simulation. In this appendix, we disregard the cou-
pling of the scalars to the gauge fields, since our purpose
is to discuss an issue related to the scalar self-coupling.
Moreover, in order to keep the notations simple, we use
continuum notations in this appendix. In practical appli-
cations to an actual lattice computation, all the integrals
would become discrete sums.
Let us illustrate the issue in the case of the simple

calculation of the expectation value of the field operator
itself, h�ðxÞi. Before we go further, it is useful to recall the
Green’s formula that relates the classical field ’ðxÞ to its
initial value at x0 ¼ 0,

’ðxÞ ¼ ��

2

Z
y0>0

d4yG0
Rðx; yÞ’�ðyÞ’2ðyÞ

þ
Z
y0¼0

d3yG0
Rðx; yÞ@

$0

y’ð0; yÞ; (A1)

where G0
Rðx; yÞ is the free retarded Green’s function of the

d’Alembertian operator. By iterating the interaction term,
one sees that the functional dependence of ’ with respect
to its initial condition can be represented as a sum of tree
diagrams, of the form

In this equation, we have represented the terms that arise
up to the second order in the coupling. The vertical dotted
line symbolizes the initial time surface y0 ¼ 0, and the red
circles the initial value of the field ’ at this initial time.
The average over the initial field is a Gaussian average; it
can be done diagrammatically by introducing the following
objects:

where the green dot represents the central value of the
Gaussian ensemble,19 and the green link represents its
two-point correlation function. When we apply these
diagrammatic rules to the expectation value of the field
operator, we obtain the following contributions:

19Assuming a nonzero central value is a slight generalization of
Eq. (19), which allows us to have a nonzero h�ðxÞi for the
purposes of the discussion in this appendix.
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In this diagrammatic representation, the green lines and dots represent the average over the initial condition, while the
black lines are genuine (retarded) propagators coming from the subsequent time evolution. The first line is the sum of tree-
level contributions, the second line is the one-loop contribution, etc. The tree-level contribution (first line) is nothing but
the classical field whose initial condition at x0 ¼ 0 is the central value of the Gaussian ensemble, ’0. We see that in the
classical statistical approach, this classical solution is corrected by an infinite set of loop corrections.

The tadpoles are the loops that have the strongest dependence on the ultraviolet cutoff. Before going further, it is worth
clarifying an important point: it is not obvious a priori that the tadpole-like subgraphs that appear in the diagrams of
Eq. (A4) are identical to the usual tadpoles encountered in Feynman’s perturbation theory. Let us demonstrate that they are
in fact equal. By using the Green’s formula (A1), the tadpoles of Eq. (A4) can be expressed as

In the second line, we have replaced the retarded propagators by their Fourier representation. Then, a straightforward
calculation, using Eqs. (19), leads to the final expression, which is indeed the usual vacuum tadpole. Given the
combinatorics for connecting a ’ and a ’� in the product ’�’2, each tadpole will arise with a prefactor � in the expansion
of Eq. (A4), which is also the right coupling and symmetry factor.

It is possible to subtract all the tadpoles that arise during the time evolution by adding a mass counterterm �m2 in the
classical equation of motion, which becomes

ðhþm2 þ �m2Þ’þ �

2
’�’2 ¼ 0: (A6)

The effect of this counterterm in the equation of motion is to insert in its solution a mass counterterm in every place where a
tadpole is allowed to appear. It therefore adds the following contributions to Eq. (A4):
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x x x

x x

where the red cross denotes the mass counterterm. The outcome is that the tadpoles are systematically cancelled by this
procedure if one tunes the counterterm to precisely cancel the quadratic divergence of the tadpole,

�m2 þ �
Z d3k

ð2�Þ32k <1: (A8)

Equation (A8) only specifies the divergent part of the mass counterterm; it also has a finite part that should be adjusted in
order to have the desired renormalized mass. Note also that the inclusion of this counterterm in the equation of motion only
subtracts the quadratic divergences, possibly leaving a residual logarithmic dependence on the lattice spacing.
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