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in the Color Glass Condensate framework
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Abstract. In this short review, we present the description of the early stages of a heavy ion collision
at high energy in the Color Glass Condensate framework.
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1. Introduction

Heavy ion collisions at ultra-relativistic energies are used as a way to study in the labo-
ratory the properties of nuclear matter in extreme conditions of temperature and density,
where it is expected to undergo a transition to a deconfined state called the quark-gluon
plasma [1]. In such a collision, one can distinguish several stages, illustrated in the fig-
ure 1, from the initial impact between the two nuclei to the final freeze-out after which
the produced particles stop interacting. As the matter formed in the collision evolves, it
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Figure 1. Successive stages of a heavy ion collision.

expands and cools down, which also implies that the strong coupling constant becomes
progressively larger. Therefore, only the first stages (the impact itself, and shortly after-
wards) stand a chance to be amenable to a description in terms of perturbative Quantum
Chromo-Dynamics (QCD). The bulk evolution of the system during the subsequent stages
is well described by means of transport models such as relativistic hydrodynamics [2–9],
that only borrow a few inputs from QCD, in the form of transport coefficients and initial
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François Gelis

conditions. The aim of this review is to discuss our present understanding of the QCD
description of the early stages of heavy ion collisions, up to the stage where the hydrody-
namical description may become applicable.

2. Gluon saturation, McLerran-Venugopalan model

In fact, the application of QCD to the study of heavy ion collisions faces two difficul-
ties. Firstly, it is not at all obvious that the problem of calculating the bulk properties of
the produced quarks and gluons can be treated by perturbative techniques. Indeed, most
of the partons produced in such a collision are much softer than the collision energy it-
self. For a perturbative approach to be possible, one needs to justify that these partons
are produced with a typical momentum much larger than the QCD non-perturbative scale
ΛQCD . The second difficulty is that the parton density in nucleons becomes very large at
high energy, as shown in the figure 2 (the longitudinal momentum fraction x is inversely
proportional to the nucleon energy). When the occupation number in the projectiles ap-
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Figure 2. Parton distributions in a proton. From [10].

proaches the inverse of the coupling constant, the calculation of transition amplitudes
becomes non-perturbative and cannot be done with the standard perturbative techniques.
The difference between the dilute (left) and dense (right) regimes is illustrated in the fig-
ure 3. At high density, processes initiated by more than two partons become important

Figure 3. Typical process in a nucleus-nucleus collision. Left: dilute regime. Right:
dense regime.

(the power counting relevant for this regime will be discussed in detail later), and multiple
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The initial stages of heavy-ion collisions

disconnected subprocesses can occur simultaneously.
These two difficulties are in fact intimately related: the non-linear corrections that be-

come important in the dense regime lead to the dynamical generation of a characteris-
tic momentum scale –called the saturation momentum, denoted Qs– proportional to the
gluon density. The saturation momentum increases with the gluon density, and therefore
with the collision energy, and at sufficiently high energy it is much larger than Λ

QCD
, jus-

tifying a weak coupling treatment. It owes its name to the fact that these non-linear effects
tend to limit –to saturate– the growth of the gluon occupation number once it reaches val-
ues of order α−1

s . Since the relevant density is the surface density, i.e. integrated over the
collision direction, the saturation momentum also increases like the radius of the nucleus
under consideration, proportional to the third power of the atomic number, A1/3. The
variations of Qs with A and with the momentum fraction x are represented in the figure
4. For lead nuclei (A ∼ 200) at LHC energy (i.e. x ∼ 10−4), the value of Q2

s is in the

Figure 4. Saturation domain as a function of x and A. From [11].

range 2−4 GeV2, which should be sufficiently above Λ
QCD
≈ 200 MeV to justify a weak

coupling expansion.
The concept of gluon saturation goes back to the early 80’s [12–14]. Later on, these

ideas were implemented in the McLerran-Venugopalan model [15–17], in which the fast
partons are described as classical color sources moving on the light-cone, while the slower
partons (mostly gluons) are described in terms of ordinary quantum fields. It is thus
described by the following effective Lagrangian,

L ≡ −1

4
FµνF

µν + JµA
µ , (1)

where Jµ is the color current carried by the fast partons. In the case of the collision
between two hadrons or nuclei, this current is the sum of two terms, representing color
charges moving in opposite directions. There is an implicit cutoff Λ that separates the fast
from the slow partons, depending on their longitudinal momentum. These color sources
are static, because the transverse motion of the color charges inside the wave function of
the projectiles is considerably slowed down by time dilation, and they appear as frozen
during the short duration of the collision. In a given collision, Jµ is a snapshot of the
transverse position of the color charges inside the projectiles. As a consequence, it cannot
be known deterministically, and one can only hope to have a probability distribution for
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J , usually denoted W [J ]. Observables should be calculated for an arbitrary J , and then
averaged over this probability distribution.

When this formalism is applied to the study of a collision, the initial state of the system
is the “vacuum”, since the two projectiles are entirely encoded in the current Jµ. Thus, to
compute the expectation value of an observable Ô, one must in fact evaluate

〈
0in

∣∣Ô∣∣0in

〉
in the quantum field theory described by eq. (1). The best tool to organize the calculation
of this type of matrix element is the Schwinger-Keldysh formalism [18, 19] (that can also
been viewed in this context as a realization of Cutkosky’s cutting rules [20, 21]).

In the saturated regime, the color current J is of order Q3
sg
−1 (the factor Q3

s just sets
the correct dimension). The inverse power of the coupling, g−1, is due to the fact that
the occupation number (quadratic in J) is of order g−2 in the saturated regime. This
factor deeply alters the power counting when applying this effective description to the
calculation of observables. In order to see this, consider any connected subgraph of the
diagram shown in the right panel of the figure 3. In the saturated regime, the order of such
a graph is [22, 23]

1

g2
× g# of produced gluons × g2(# of loops) , (2)

which does not depend on the number of times the external source J is inserted into the
graph. The loop expansion still corresponds to an expansion in powers of g2, but each
order in this expansion receives contributions from an infinite set of Feynman graphs that
have a fixed number of loops but differ in how many sources J they contain.

Consider an observable that depends on the gluon field operator, O[Â(x)] (an example
could be the energy momentum tensor carried by the gluons produced in the collision). At
leading order in g2, one can show that this observable is expressible in terms of retarded
classical solutions of the classical field equations of motion,〈

0in

∣∣O[Â(x)]
∣∣0in

〉
LO

= O[A(x)] , (3)

where [
Dµ,Fµν

]
= Jν , lim

x0→−∞
Aµ(x) = 0 . (4)

The solution of the classical Yang-Mills equations sums the infinite series of tree graphs
represented in the figure 5, where the black dots represent the external source J (only
cubic vertices are represented, but in Yang-Mills theory there is also a quartic vertex).
The retarded boundary condition stating that the field must vanish in the remote past is

+ + + +
1

2
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1

2

1

8

Figure 5. The first few terms in the solution of the classical equation of motion.

related to the fact that the initial state is the vacuum. The derivation of the observable in
the Schwinger-Keldysh formalism provides a more rigorous justification of this boundary
condition. In practical uses in heavy ion collisions, one can solve analytically the classical
Yang-Mills equations up to the forward light-cone (i.e. in the regions 0, 1 and 2 of the
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Figure 6. Division of space-time in four regions. Region 0 and empty. Regions 1
and 2 are causally disconnected and describe a single nucleus. Only region 3 contains
information about the collision.

figure 6 [24]), i.e. the hypersurface where the proper time is τ = 0+ [25]. Beyond this
time (i.e. in the region 3 in the figure 6), the analytical solution is not known, but it is
straightforward to solve the equations of motion numerically by discretizing space on a
lattice (time remains a continuously varying variable) [26–35].

3. Factorization of the distributions of sources, Color Glass Condensate

The calculation at leading order of the energy-momentum tensor of the system after the
collision already provides some insight on the energy density released in the collision.
However, the LO predictions for the pressure tensor are more problematic. Immediately
after the collision, the longitudinal pressure is exactly the opposite of the energy density,
because the chromo-electric and magnetic field lines are parallel to the collision axis [36].
At later times, the longitudinal pressure at LO always remains much smaller than the
transverse pressure [36, 37], which if taken at face value would cast some doubts about
the applicability of hydrodynamics to describe the bulk evolution of the system.

The hope to find large corrections at next-to-leading order, and therefore alter this pes-
simistic conclusion, is the main motivation to go beyond the leading order. At one loop,
one encounters in fact two types of large corrections. The first one (the second type of
large corrections, related to the Weibel instability, will be discussed in the next section) is
made of contributions that contain logarithms of the cutoff Λ that separates the fast and
the slow partons [38]. Λ enters in 1-loop corrections as the upper bound on the longitu-
dinal loop momentum, necessary in order to avoid double counting the fast modes that
are already described as external sources. The resummation of these large logarithms,
that we shall describe in this section, promotes the McLerran-Venugopalan model into a
full-fledged effective theory called the Color Glass Condensate1.

The first step is to obtain a formula for the NLO corrections. For the expectation value
of any inclusive observable, the NLO contribution can be written as follows [43, 44]

〈
0in

∣∣O[Â(x)]
∣∣0in

〉
NLO

=

[∫
u

α(u)Tu+
1

2

∫
uv

Γ2(u,v)TuTv

]
O[A(x)] .

(5)

1For more detailed reviews of the Color Glass Condensate, one can consult Refs. [39–42].
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The integrations are over the space-like surface where the initial conditions for A are
set, and α and Γ2 are 1- and 2-point functions, evaluated on this surface, that can be
computed in perturbation theory. The operator Tu is the generator of shifts of the value
of the classical field at the point u on this surface (roughly speaking,Tu = δ/δAinit(u)).
One can understand pictorially the action of this operator in the figure 7. The left diagram

A(x)

A
init

J

Σ

a(x)

α

J

Σ

A
NLO
(x)(1)

Γ2

J

Σ

Figure 7. Illustration of the action of the shift operatorTu.

shows that the dependence of the classical field A(x) on its initial condition has a tree
structure. In the middle diagram, we see that by replacing at one point the initial field
Ainit by some quantity α (this is what the operator α(u)Tu does), one generates the
retarded propagator that connects the points u and x, fully dressed by the background
classical field. In the diagram on the right, we see that by acting with Γ2(u,v)TuTv ,
one generates a loop correction to the classical field. These considerations, plus a little
bookkeeping, are the basis of eq. (5).

In eq. (5), the space-like surface on which the initial fields are set can be chosen at
will, and the left hand side is independent of this choice. In order to extract the large
logarithms that arise at NLO, it is convenient to choose a surface located just above the
past light-cone (i.e. the wedge made of the lower borders of the regions 1 and 2 in the
figure 6). With this choice, one can determine the logarithms analytically [43–45]:∫

u

α(u)Tu +
1

2

∫
uv

Γ2(u,v)TuTv = log(Λ)
[
H1 +H2

]
+ terms w/o logs

(6)

whereH1 andH2 are operators known as the JIMWLK Hamiltonians [46–54] for the two
nuclei. A remarkable feature of eq. (6) is that the coefficient of the logarithms does not
contain terms mixing the sources of the two nuclei. Instead, it is nicely arranged as the
sum of two terms, one for each nucleus. It is this absence of mixing that allows these
logarithms to be absorbed into separate distributions of sources for the nucleus 1 and the
nucleus 2, respectively. Schematically, the leading log terms (αs log Λ)n (i.e. at each
order in αs, the terms that have the maximal number of logarithms) can be resummed in
formulas such as〈

0in

∣∣O[Â(x)]
∣∣0in

〉
Leading Log

=

∫
[DJ1DJ2] W [J1]W [J2]O[A

J1,2
(x)] ,

(7)

where A
J1,2

is the classical solution of the Yang-Mills equations with sources J1,2, and
the W [J1,2] are the probability distributions for each projectile. The latter obey the
JIMWLK equation that drives their rapidity evolution :

∂W

∂Y
= HW . (8)
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The initial stages of heavy-ion collisions

The possibility to factorize these logarithms into distributions that describe the color

τcoll ∼ E
-1

space-like interval

Figure 8. Causality argument for the factorization of the logarithms.

content of the two projectiles can be understood qualitatively from a simple causality
argument, illustrated in the figure 8. The logarithms come from soft gluon radiation,
which can only occur over long time-scales, and not during the collision itself, whose
duration is very short (inversely proportional to the collision energy). For this reason,
these gluons must be produced (long) before the collision, at a time when the two nuclei
where not yet in causal contact. This explains why the coefficients of the logarithms
cannot mix the sources of the two projectiles.

4. Instabilities, Resummation

The terms that are logarithmic in the cutoff Λ are not the only large corrections one should
worry about at NLO. In order to see that, it is useful to have in mind the following repre-
sentation for the 2-point function Γ2(u,v) that enters in eq. (5) :

Γ2(u,v) =

∫
d3k

(2π)32k
αk(u)α∗k(v) , (9)

where αk(x) obeys the linearized classical equation of motion around the classical solu-
tion A, and whose initial condition in the remote past is a plane wave of momentum k.
In other words, the αk form a complete basis for the vector space of linear perturbations
around the classical solution A. Note that the modes that give the logarithms of Λ are
those that are independent of the rapidity η.

As we shall see, large corrections to the observable can also arise from some of the
modes that depend on rapidity. From the definition of the shift operator Tu, we also
know that [∫

u

αk(u)Tu

]
A(x) = αk(x) .

The loop expansion of observables is based on the assumption that the mode functions
αk(x) remain small at all times. If for some k, the perturbation αk(x) becomes as large
as g−1, then the NLO corrections can be as large as the LO result. It turns out that
this is the case for Yang-Mills equations, that are known to exhibit chaotic behavior at
the classical level [37, 55–63]. The fact that their solutions are exponentially sensitive
to the initial conditions means that the linearized equations of motion have some mode
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functions that grow exponentially with time. In fact, these instabilities of the solutions of
the classical equations of motion are closely related to the Weibel instability in anisotropic
Yang-Mills plasmas [64–85]. If a mode function αk grows exponentially as exp(µkt),
then it gives a term that grows like exp(2µkt) in the NLO correction to the observable2.
One can see the effect of these instabilities in the calculation of the pressure in a φ4 scalar
field theory (that also has unstable classical solutions for certain k-modes) in the figure 9.
The NLO correction is a very small correction at the beginning of the time evolution, but
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Figure 9. Example of secular divergence due to instabilities in the classical equations
of motion, for the pressure in a φ4 scalar field theory [86].

it grows exponentially with time. At late times, the loop expansion breaks down and one
should seek a resummation that will collect and resum these large corrections. The first
step in doing this is to improve the power counting in order to keep track of the growth
rate of each contribution. How to do this is illustrated in the figure 10. The standard power

u

T
µν
(x)

vΓ
2
(u,v)

T
µν
(x) T

µν
(x)

Γ3(u,v,w)

Figure 10. Loop corrections to the energy-momentum tensor.

counting (see the eq. (2)) indicates that one gets a power of g2 for each loop. From the
above discussion, one may also get an exponentially growing factor for each operator T.
From the examples of the figure 10, we see that diagrams with n loops can have up to 2n
insertions of the operator T, and that this maximum is reached only when the loops are
independent below the surface used as initial Cauchy surface. From this observation, it
appears that one can resum to all loop orders the contributions that have the fastest growth

2Note that the term in α(u)Tu in eq. (5) cannot lead to a similar problem. Indeed, the 1-point function
α(u) is rapidity independent, and boost invariant mode functions are stable.
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by exponentiating the term in TuTv in eq. (5) :

〈
0in

∣∣O[Â(x)]
∣∣0in

〉
resummed

= exp

[
1

2

∫
uv

Γ2(u,v)TuTv

]
O[A(x)] . (10)

(At this point, we assume that the leading logs in the cutoff Λ have already been taken
care of. Not double counting these contributions is ensured by excluding the rapidity in-
dependent modes in Γ2(u,v) in eq. (10).) The right hand side of this equation is not easy
to evaluate in this form, but it is equivalent to letting the initial condition of the classical
field A fluctuate with a Gaussian distribution of variance G(u,v). More precisely, we
have 〈

0in

∣∣O[Â(x)]
∣∣0in

〉
resummed

=

=

∫
[Dχ(u)] exp

[
− 1

2

∫
uv

Γ−1
2 (u,v)χ(u)χ(v)

]
O[A[Ainit + χ](x)] ,(11)

where the notationA[Ainit+χ](x) denotes the value at the point x of the classical solution
whose initial condition is Ainit +χ (Ainit being the initial condition of the classical field
at LO). This alternative form of the resummed observable can be evaluated by performing
a Monte-Carlo average of classical solutions that have Gaussian distributed initial condi-
tions. It is important to note that the variance Γ2(u,v) of the fluctuating initial conditions
is not arbitrary: it is the same function that enters in the representation (5) of the NLO
result. This means that one should first perform a 1-loop calculation in order to obtain it.
This Gaussian average has also been derived in different approaches and contexts [87–91].

Given its origin as the exponentiation of the 1-loop result, this resummation contains
by construction the complete LO and NLO contributions (for the latter, this is true only
if one uses the variance G(u,v) given by the 1-loop calculation), and a subset of all
the higher orders. The possibility to include all NLO effects solely by altering the initial
conditions while keeping the time evolution classical is an example of the general property
that quantum corrections to the time evolution arise only at NNLO and beyond. Order ~
corrections in the initial state come from the uncertainty principle: the fields and their
conjugate momenta cannot be known simultaneously with absolute accuracy, and their
distribution in phase-space must have a support of area at least ~ for each mode.

It is easy to see why this resummation cures the problem of secular divergences that
plagues fixed loop order calculations. Indeed, since the resummation has promoted lin-
earized fluctuations to fields that obey the full non-linear equation of motion, and since
the potential is bounded from below (for a theory that has a well defined ground state),
the fields that enter in the evaluation of the resummed observable cannot run away and
generate large contributions.

Q

P

Q

P

Q

P

Q

P

Figure 11. Illustration of the decoherence that occurs with non-linear interactions.
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In the presence of non-linear interactions, one can foresee without any extensive com-
putation that the resummed result may evolve towards some form of statistical equilibrium
state. This is illustrated in the figure 11, for a single non-harmonic oscillator mode. The
left figure shows that the oscillation frequency depends on the amplitude of the oscilla-
tions for such an oscillator. The 2nd, 3rd and 4th figures (from left to right) then illustrate
the time evolution of an initially narrow Gaussian distribution in phase-space. The non-
harmonicity will cause this distribution to stretch around the classical orbits, since the
outer points rotate at a frequency that differs from that of the inner points. Eventually, the
distribution covers uniformly the area allowed by energy conservation, which one may
view as a micro-canonical equilibrium distribution (i.e. a distribution for which all the
micro-states allowed by energy conservation are equally likely).

In order to apply this resummation to heavy ion collisions, we need to determine the
variance Γ2(u,v) of the spectrum of fluctuations. From this spectrum, one will then gen-
erate random initial conditions and solve numerically the classical Yang-Mills equations.
For practical reasons, the numerical resolution of the equations of motion is started after
the collision, at a small but positive proper time. Because of this, it is necessary to have
analytical expressions for the initial background field and for the variance of the fluctuat-
ing part. The background field at Qsτ � 1 is already known analytically [25]. In order

z

t

0

21

3

e ik.x

Figure 12. Evolution of a perturbation on top of the classical background field.

to calculate the variance, we use the representation of eq. (9), which reduces the problem
to solving the linearized equation of motion for small perturbations to the classical back-
ground field, with a plane wave initial condition at x0 = −∞ (i.e. a mode with fixed
initial momentum, color, and polarization). This calculation is illustrated in the figure 12.
In order to be used as initial conditions for the Yang-Mills equations, we need these mode
functions in the same gauge as the one used when solving numerically the equations, usu-
ally the Fock-Schwinger gauge Aτ = 0. The propagation of the perturbation over the
region 0 is of course trivial, since the background field is zero there. The crossings of the
light-cones (where the sources of the two nuclei are located) are a bit more delicate, be-
cause the background field has an infinite field strength there – this produces a finite jump
of the fluctuation while crossing the light-cones. Finally, the propagation in the regions
1 and 2 are rather simple, because the background field is a pure gauge in these regions.
On the proper time surface located at Qsτ � 1, the perturbation of momentum k⊥, ν (ν
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is the Fourier conjugate of the rapidity η), color c and polarization λ reads [92]

αiνk⊥cλ
= β+i

νk⊥cλ
+ β−iνk⊥cλ

, eiνk⊥cλ
= −iν

(
β+i
νk⊥cλ

− β−iνk⊥cλ

)
αηνk⊥cλ

= Di
(β+i

νk⊥cλ

2 + iν
−
β−iνk⊥cλ

2− iν

)
, eηνk⊥cλ

= −Di
(
β+i
νk⊥cλ

− β−iνk⊥cλ

)
,

(12)

(the e’s are the electrical fields associated to the α’s) where we denote

β+i
νk⊥cλ

≡ e
πν
2 Γ(−iν)eiνη U†1 (x⊥)

∫
p⊥

eip⊥·x⊥ Ũ1(p⊥ + k⊥)

×
(
p2
⊥τ

2k⊥

)iν(
δij − 2

pi⊥p
j
⊥

p2
⊥

)
εjλ , (13)

and

β−iνk⊥cλ
≡ e−

πν
2 Γ(iν)eiνη U†2 (x⊥)

∫
p⊥

eip⊥·x⊥ Ũ2(p⊥ + k⊥)

×
(
p2
⊥τ

2k⊥

)−iν(
δij − 2

pi⊥p
j
⊥

p2
⊥

)
εjλ .(14)

A generic initial condition is the sum of the background field at the initial time τ0, and
of all the mode functions ανk⊥cλ, weighted by random Gaussian distributed complex
numbers cνk⊥cλ, normalized so that〈

cνk⊥cλ c
∗
ν′k′

⊥c
′λ′

〉
=

1

2
δ(ν − ν′)δ(k⊥ − k′⊥)δcc′δλλ′ . (15)

5. Evolution after the collision

Thanks to these mode functions, one can implement numerically the resummation de-
scribed in the previous section in the case of heavy ion collisions. At LO, the chromo-
electric and chromo-magnetic fields are parallel to the collision axis when Qsτ � 1 and
the corresponding longitudinal pressure is negative, opposite to the energy density, while
the transverse pressure equals the energy density. At later time, the longitudinal pres-
sure increases near zero, but remains negligible compared to the transverse pressure at all
times. This can be understood if the system is nearly free streaming, as illustrated in the

τ1

τ2

Figure 13. Evolution of the distribution of longitudinal momenta in the comoving
frame for a free streaming system.

figure 13. If one starts from an arbitrary distribution of momenta at the time τ1, and let the
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particles evolve freely to the time τ2, there will be a segregation of the local momentum
distributions, such that only particles with momentum rapidity y ≈ η stay at the rapidity
η. This means that the longitudinal momenta in the comoving frame are nearly zero, and
the longitudinal pressure is very small.

One of the main physical issues is therefore whether the instabilities that one is re-
summing by including Gaussian fluctuations of the initial fields can efficiently reshuffle
the momenta and compete against the longitudinal expansion of the system, in order to
generate a sizable longitudinal pressure.

In order to solve numerically the classical Yang-Mills equations, one must discretize
space. Moreover, one should use the (x⊥, η, τ) system of coordinates, for the boost in-
variance of a high energy collision to become manifest. Due to limited computational
resources, one usually simulates only a small part of the collision domain, as shown in
the left figure 14. The plots that will be presented later in this section have been ob-

x

y

η

L

L
N

a⊥aη

x x+µ̂

x+ν̂

Figure 14. Lattice setup for the numerical solution of the classical Yang-Mills equa-
tions.

tained on a 64 × 64 × 128 lattice (with a longitudinal lattice spacing aη = 1/64, and a
transverse lattice spacing Qsa⊥ = 1) [93]. In order to preserve on the lattice an exact
invariance with respect to time independent gauge transformations, the gauge potentials
must be traded in favor of Wilson lines (link variables) that live on the edges of the lattice,
as shown in the right figure 14. The electrical fields, that transform covariantly under
these gauge transformations, live on the nodes of the lattice. In this representation, the
classical Hamiltonian is a sum of the squares of the electrical fields, and of the traces of
the plaquettes (product of link variables along a closed loop) that span the elementary
squares of the lattice (see the figure 14).

The equations of motion are solved with the leapfrog algorithm, with time steps that
are adjusted in order to conserve Gauss’s law to very good accuracy. From the solution of
the Yang-Mills equations, we compute the components of the energy-momentum tensor.
By construction, we have

2P
T

+ P
L

= ε . (16)

The energy density and longitudinal pressure are also related by Bjorken’s law,

∂ε

∂τ
+
ε+ P

L

τ
= 0 , (17)

which arises as a consequence of local energy and momentum conservation for a boost
invariant system.

A crucial step in this numerical calculation is the subtraction of the terms that would
be singular in the continuum limit (i.e. in the ultraviolet). The most singular terms come
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from the zero point energy, that produce a quartic divergence in the energy-momentum
tensor. These terms do not depend on the background, and can be removed by performing
the calculation a second time with Qs ≡ 0. However, this procedure is made difficult
by the fact that the ultraviolet cutoff on longitudinal momentum pz is time dependent
(pmax
z ∼ aη/τ ) on a lattice with a fixed spacing in the rapidity η. Therefore, the terms

that should be subtracted become very large at small τ . Since their accuracy is limited
by the statistics used in the Monte-Carlo average over the initial field fluctuations, the
statistical errors in the difference are large at small times.

After the zero point energy has been subtracted, the energy-momentum tensor (a dimen-
sion 4 operator) can also mix with dimension 2 operators to produce a weaker quadratic
ultraviolet divergence. In the continuum, there is no local gauge invariant dimension 2 op-
erators in Yang-Mills theory, with which it could mix. At finite lattice spacing however,
an operator like the trace of a plaquette could play this role, and produce terms that are
quadratic in the inverse longitudinal lattice spacing (they would affect mostly the small
time behavior since the longitudinal ultraviolet cutoff behaves as 1/τ ). In fact, such terms
are seen numerically, in energy density and in the longitudinal pressure (but not in the
transverse pressure, which indicates that they affect only the transverse chromo-electric
and chromo-magnetic fields). In order to preserve eq. (16), the counterterms in ε and in
P
L

must be the same, and Bjorken’s law then tells us that this common counterterm must
be of the form A/τ2. A deeper understanding would necessary in order to compute the
prefactor A from first principles, and at the moment it is simply fitted in order to elimi-
nate the singular 1/τ2 behavior in ε and in P

L
. The following equations summarize the

subtraction procedure :

〈P
T
〉phys. = 〈P

T
〉 backgd.

+ fluct.
−〈P

T
〉 fluct.

only

〈ε, P
L
〉phys. = 〈ε, P

L
〉 backgd.

+ fluct.︸ ︷︷ ︸
computed

−〈ε, P
L
〉 fluct.

only︸ ︷︷ ︸
computed

+Aτ−2︸ ︷︷ ︸
fitted

. (18)

Numerical results3 are displayed in the figure 15, for two values of the strong coupling
constant : g = 0.1 (left) and g = 0.5 (right). The curves show the time evolution of the
ratios P

L
/ε and P

T
/ε, and the bands are a rough estimate of the statistical errors (they are

very large at small times, because one needs to subtract two quantities varying as 1/τ2, in
order to get a result of order τ0). The lower horizontal axis is in units of Qsτ , while the
upper horizontal axis is in fm/c (the calibration of the time axis in physical units requires
that one chooses the value of Qs, here taken to be Qs = 2 GeV, a typical value for
heavy ion collisions at LHC energy). The dotted lines show the LO results for these two
ratios. As said before, there is no significant buildup of longitudinal pressure at LO, and
it remains much smaller than the transverse pressure at all times. The first thing to note is
that at early times, Qsτ � 1, the resummed results are identical to the LO results. In fact,
since the Weibel instabilities need a time Qsτ ∼ 1 to develop, this was to be expected for
the small values of the coupling considered here (note that this agreement is somewhat
non-trivial because it relies on the proper subtraction of the ultraviolet contributions). At
the smallest of the two couplings, the resummed result stays very close to the LO result
at all times, and there is no significant increase of the longitudinal pressure compared
to LO. At g = 0.5 (which corresponds to a 25-fold increase of αs), some qualitative
changes in the behavior of the longitudinal pressure become visible : at times Qsτ & 2
it deviates significantly from the LO result and becomes comparable to the transverse

3A closely related study has also been performed in Refs. [94, 95]. In that work, weaker couplings, later
times (in units of Q−1

s ), and a completely incoherent distribution of initial fields were considered.
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Figure 15. Time evolution of the ratios PT /ε and PL/ε, for g = 0.1 (left) and g = 0.5
(right). The lower horizontal axis is in units of Qsτ , and the upper horizontal axis is in
fm/c, assuming the value Qs = 2 GeV. The LO results are also shown for comparison.

pressure. Concomitantly, the ratio P
T
/ε decreases from 1/2 to a value which is much

closer to 1/3. This result suggests, that even at rather weak couplings, the higher order
corrections –that involve the modes that are subject to the Weibel instability– play an
important role in the isotropization of the pressure tensor.

6. Summary

In this short review, we have summarized our present understanding on how to describe
the early stages of high energy heavy ion collisions in terms of quantum chromodynamics.

A central tool for these studies is the Color Glass Condensate, an effective theory for
strong interactions in the regime of large gluon densities. Indeed, the gluon distribution
in a hadron increases with energy due to repeated gluon emissions by bremsstrahlung.
Eventually, the gluon occupation number becomes of order 1/g2, and the non-linear in-
teractions among the gluons in the hadronic wavefunctions can no longer be neglected – a
regime known as gluon saturation. The CGC provides a framework to study the approach
to saturation, and the subsequent evolution of the gluon distribution into the saturation
regime.

The CGC is also the framework of choice in order to consistently calculate the expec-
tation value of observables after the collision of two saturated projectiles. A consequence
of having large gluon occupation numbers in the two projectiles is that an infinite set of
graphs contribute at each order in g2. The leading order is given by the sum of all the tree
graphs, which can be conveniently expressed in terms of solutions to the classical Yang-
Mills equations. The next-to-leading order is the sum of all the 1-loop graphs, where the
loop is dressed by the classical field found at leading order.

In addition to large logarithms of the collision energy (that can be absorbed into the
JIMWLK evolution of the distribution of color sources), the NLO also contains secular
terms, that grow exponentially with time because of the Weibel instability. It is possible
to collect at each loop order the terms that have the fastest growth, and to resum them. It
turns out that these contributions can all be attributed to fluctuations of the initial fields,
whose time evolution remains classical. A practical way of performing this resummation
is to repeat the same classical computation as the one needed at LO, with a Gaussian
distribution of initial fields which is sampled with a Monte-Carlo. The variance of this
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Gaussian distribution has been derived from a 1-loop calculation in [92], which paves
the way for a numerical implementation of this resummation. The first numerical results
implementing this program have been obtained in [93], and show that the higher order
terms included via this resummation lead to an increase of the longitudinal pressure.
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