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In this paper, we discuss questions related to the renormalizability of the classical statistical
approximation, an approximation scheme that has been used recently in several studies of out-of-
equilibrium problems in quantum field theory. Although the ultraviolet power counting in this
approximation scheme is identical to that of the unapproximated quantum field theory, this approximation
is not renormalizable. The leading cause of this nonrenormalizability is the breakdown of Weinberg’s
theorem in this approximation. We also discuss some practical implications of this negative result for
simulations that employ this approximation scheme, and we speculate about a possible modification of the
classical statistical approximation in order to systematically subtract the leading residual divergences.

DOI: 10.1103/PhysRevD.90.065029 PACS numbers: 11.10.Gh, 11.15.Kc

I. INTRODUCTION

In recent years, there has been a lot of interest in
the study of out-of-equilibrium systems in quantum
field theory, in view of applications to high energy heavy
ion collisions, cosmology, or cold atom physics [1–33].
Generically, the question one would like to address is that
of a system prepared in some nonequilibrium initial state,
and allowed to evolve under the sole self-interactions of its
constituents. The physically relevant quantum field theories
cannot be solved exactly, and therefore some approxima-
tion scheme is mandatory in order to make progress.
Moreover, the standard perturbative expansion in powers
of the interaction strength is in general ill suited to these
out-of-equilibrium problems. Indeed, the coefficients in the
perturbative expansion are time dependent and generically
growing with time, thereby voiding the validity of the
expansion after some finite time.
This “secularity” problem is resolved by the resumma-

tion of an infinite set of perturbative contributions, which
can be achieved via several schemes. The simplest of these
schemes is kinetic theory. However, in order to obtain a
Boltzmann equation from the underlying quantum field
theory, several important assumptions are necessary [34]:
(i) a relatively smooth system, so that a gradient expansion
can be performed, and (ii) the existence of well-defined
quasiparticles. These limitations, especially the latter, make
kinetic theory difficult to justify for describing the early
stages of heavy ion collisions.
Closer to the underlying quantum field theory, two

resummation schemes have been widely considered in
many works. One of them is the two-particle irreducible
(2PI) approximation [28,35–46]. This scheme consists in
solving the Dyson-Schwinger equations for the two-point
functions (and possibly for the expectation value of the
field, if it differs from zero). The self-energy diagrams
that are resummed on the propagator are obtained

self-consistently from the sum of 2PI skeleton vacuum
diagrams (often denoted Γ2½G� in the literature). The only
approximation arises from the practical necessity of trun-
cating the functional Γ2½G� in order to have manageable
expressions. In applications, the 2PI scheme suffers from
two limitations. One of them is purely computational: the
convolution of the self-energy with the propagator takes the
form of a memory integral, that in principle requires that
one stores the entire history of the evolution of the system,
from the initial time to the current time. The needed storage
therefore grows quadratically with time.1 The second
difficulty appears in systems that are the siege of large
fields, or large occupation numbers. For instance, in QCD,
“large” would mean of order g−1 for the fields, and of order
g−2 for the gluon occupation number. In this regime, the
functional Γ2½G� contains terms that have the same order of
magnitude at every order in the loop expansion, and
therefore one cannot justify truncating it at a finite loop
order.2 It turns out that these problems of strong fields occur
in real world problems, e.g. in the early stages of heavy ion
collisions [47–51].
There is an alternative resummation scheme, that

includes all the leading contributions in the large field
regime and is similarly free of secular terms, called the
classical statistical approximation (CSA) [52–57]. It owes
its name to the way it is implemented in practice, as an
average over classical solutions of the field equations of
motion, with a Gaussian statistical ensemble of initial

1This can be alleviated somewhat by an extra approximation,
in which one stores only the “recent” history of the system, in a
sliding time window that moves with the current time.

2Such a truncation becomes legitimate, even in the large field
regime, if there is an additional expansion parameter that one can
use to control the loop expansion in Γ2½G�. In some theories with
a large number N of constituents [e.g. an OðNÞ scalar theory in
the limit N → ∞], one can compute exactly the leading term of
Γ2½G� in the 1=N expansion [40].
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conditions. The ability of this method to remain valid in the
large field regime comes with a tradeoff: the CSA can be
tuned to be exact at the one-loop level, but starting at the
two-loop order and beyond, it includes only a subset of all
the possible contributions. The CSA can be derived via
several methods: from the path integral representation of
observables [57], as an approximation at the level of the
diagrammatic rules in the retarded-advanced formalism, or
as an exponentiation of the one-loop result [55].
The diagrammatic rules that define the classical statistical

approximationallowgraphs that havearbitrarilymany loops.
As in any field theory, the loops that arise in this expansion
involve an integral over a 4-momentum, and this integral
can be ultraviolet divergent. In the underlying—non
approximated—field theory,weknowhow to dealwith these
infinities by redefining a finite number of parameters of the
Lagrangian (namely the coupling constant, the mass and the
field normalization). In general, this is done by first intro-
ducing an ultraviolet regulator, for instance a momentum
cutoff ΛUV on the loop momenta, and by letting the bare
parameters of the Lagrangian depend on ΛUV in such a way
thatphysicalquantitiesare independentofΛUV (andofcourse
are finite in the limit ΛUV → ∞). That this redefinition is
possible is what characterizes a renormalizable field theory.
In contrast, nonrenormalizable theories are theories in

which one needs to introduce new operators that did not
exist in the Lagrangian one started from, in order to subtract
all the ultraviolet divergences that arise in the loop
expansion. This procedure defines an “ultraviolet comple-
tion” of the original theory, which is well defined at
arbitrary energy scales. The predictive power of the original
theory is limited by the order at which it becomes necessary
to introduce these new operators.3

It can also happen that, starting from a renormalizable
field theory, certain approximations of this theory (for
instance including certain loop corrections, but not all of
them) are not renormalizable. This will be our main
concern in this paper, in the context of the classical
statistical approximation. A recent numerical study [5]
showed a pronounced cutoff dependence for rather large
couplings in a computation performed in this approxima-
tion scheme. This could either mean that the CSA is not
renormalizable, or that the CSA is renormalizable but that
renormalization was not performed properly in this com-
putation. It is therefore of utmost importance to determine
to which class—renormalizable or nonrenormalizable—the
CSA belongs, since this has far-reaching practical
implications on how it can be used in order to make
predictive calculations, and how to interpret the existing
computations.

Note that the question of the renormalizability of classical
approximation schemes has already been discussed in
quantum field theory at finite temperature [58–62], follow-
ing attempts to calculate nonperturbatively the sphaleron
transition rate [63–70]. In this context, one is calculating the
leading high temperature contribution, and in the classical
approximation the Bose-Einstein distribution gets replaced
by T=ωk. This approximation leads to ultraviolet divergen-
ces in thermal contributions, that would otherwise be finite
thanks to the exponential tail of the Bose-Einstein distri-
bution. However, it has been shown that only a finite number
of graphs has such divergences, and that they can all be
removed by appropriate counterterms. The problem we will
consider in this paper is different since we are interested in
the classical approximation of a zero-temperature quantum
field theory, where the factors T=ωk are replaced by 1=2.
This changes drastically the ultraviolet behavior.
In Sec. II, we expose the scalar toy model we are going to

use throughout the paper as support for this discussion, we
also remind the reader of the closed time path formalism
and of the retarded-advanced formalism (obtained from the
latter via a simple field redefinition), and we present the
classical statistical approximation in two different ways
(one that highlights its diagrammatic rules, and one that is
more closely related to the way it is implemented in
numerical simulations). Then, we analyze in Sec. III the
ultraviolet power counting in the CSA, and show that it is
identical to that in the underlying field theory. In Sec. IV,
we examine all the one-loop two-point and four-point
functions in the CSA, and we show that one of them
violates Weinberg’s theorem. This leads to contributions
that are nonrenormalizable in the CSA. In Sec. V, we
discuss the implications of nonrenormalizability of the
CSA for the calculation of some observables. We also argue
that it may be possible to systematically subtract the
leading nonrenormalizable terms by the addition of a
complex noise term to the classical equations of motion.
Finally, Sec. VI is devoted to concluding remarks. Some
technical derivations are relegated into two appendixes.

II. PRELIMINARIES

A. Toy model

In order to illustrate our point, let us consider a massless
real scalar field ϕ in four space-time dimensions, with
quartic self-coupling, and coupled to an external source
jðxÞ (therefore mimicking the color glass condensate
framework used in the context of heavy ion collisions),

L≡ 1

2
ð∂μϕÞð∂μϕÞ −m2

2
ϕ2 −

g2

4!
ϕ4 þ jϕ: ð1Þ

In this model, jðxÞ is a real valued function, given once for
all as a part of the description of the model. Sufficient
regularity and compactness of this function will be assumed
as necessary.

3The predictive power of its ultraviolet completion may be
quite limited as well, depending on how many new operators
need to be introduced at each order (especially if this number
grows very quickly or even worse becomes infinite).
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We also assume that the state of the system at x0 ¼ −∞
is the vacuum state (by adiabatically turning off the
couplings at asymptotic times, we can assume that this
is the perturbative vacuum state j0ini). Because of the
coupling to the external source jðxÞ, the system is driven
away from the vacuum state, and observables measured at
later times acquire nontrivial values. Our goal is to compute
the expectation value of such observables, expressed in
terms of the field operator and its derivatives, in the course
of the evolution of the system,

hOi≡ h0injO½ϕ; ∂ϕ�j0ini: ð2Þ
For simplicity, one may assume that the observable is a
local (i.e. depends on the field operator at a single space-
time point) or multilocal operator (i.e. depends on the field
operator at a finite set of space-time points).

B. Closed time path formalism

It is well known that the proper framework to compute
expectation values such as the one defined in Eq. (2) is the
Schwinger-Keldysh (or “closed time path”) formalism
[71,72]. In this formalism, there are two copies ϕþ and
ϕ− of the field (corresponding respectively to fields in
amplitudes and fields in complex conjugated amplitudes),
and four bare propagators depending on which type of
fields they connect. The expectation value of Eq. (2) can be
expanded diagrammatically (each loop brings an extra
power of the coupling g2) by a set of rules that generalizes
the traditional Feynman rules in a simple manner:

(i) Each vertex of a graph can be of typeþ or −, and for
a given graph topology one must sum over all the
possible assignments of the types of these vertices.
The rules for theþ vertex (−ig2) and for the− vertex
(þig2) differ only in their sign. The same rule
applies to the external source j.

(ii) A vertex of type ϵ and a vertex of type ϵ0 must be
connected by a bare propagator G0

ϵϵ0. In momentum
space, these bare propagators read

G0þþðpÞ ¼
i

p2 −m2 þ iϵ
;

G0
−−ðpÞ ¼

−i
p2 −m2 − iϵ

G0þ−ðpÞ ¼ 2πθð−p0Þδðp2 −m2Þ;
G0

−þðpÞ ¼ 2πθðp0Þδðp2 −m2Þ: ð3Þ

Note that since the initial state in theobservable (2) is the j0ini
vacuum state, the G0þþ and G0

−− propagators are vacuum
propagators [contrary to quantum field theory at finite
temperature, where they would contain an additional term
that depends on the distribution fðpÞ of particles in the
thermal bath]. The four bare propagators of the Schwinger-
Keldysh formalism are related by a simple algebraic identity,

G0þþ þG0
−− ¼ G0þ− þ G0

−þ; ð4Þ

that one can check immediately fromEqs. (3).Note that, on a
more fundamental level, this identity follows from the
definition of the various Gϵϵ0 as vacuum expectation values
of pairs of fields ordered invariousways. For this reason, it is
truenotonly for thebarepropagators, but for their corrections
at any order in g2.

C. Retarded-advanced formalism

The Schwinger-Keldysh formalism is not the only one
that can be used to calculate Eq. (2). One can arrange the
four bare propagators G0

ϵϵ0 in a 2 × 2 matrix, and obtain
equivalent diagrammatic rules by applying a “rotation” to
this matrix [61,73–75]. Among this family of transforma-
tions, especially interesting are those that exploit the linear
relationship (4) among the G0

ϵϵ0 in order to obtain a
vanishing entry in the rotated matrix. The retarded-
advanced formalism belongs to this class of transforma-
tions, and its propagators are defined by (let us denote
α ¼ 1; 2 the two values taken by the new index)

G0
αβ ≡

X
ϵ;ϵ0¼�

ΩαϵΩβϵ0G0
ϵϵ0 ; ð5Þ

with the transformation matrix is defined as

Ωαϵ ≡
�

1 −1
1=2 1=2

�
: ð6Þ

The bare rotated propagators read

G0
αβ ¼

�
0 G0

A
G0

R G0
S

�
; ð7Þ

where we have introduced

G0
R ¼ G0þþ −G0þ−; G0

A ¼ G0þþ −G0
−þ;

G0
S ¼

1

2
ðG0þþ þG0

−−Þ:
ð8Þ

(The subscripts R, A and S stand respectively for
“retarded,” “advanced” and “symmetric.”) Again, because
the initial state in Eq. (2) is the vacuum, the propagator G0

S
is a pure vacuum propagator:

G0
SðpÞ ¼ πδðp2 −m2Þ: ð9Þ

It is straightforward to verify that in the rotated formal-
ism, the various vertices read

Γαβγδ ≡ −ig2½Ω−1þαΩ−1
þβΩ−1þγΩ−1

þδ −Ω−1
−αΩ−1

−βΩ−1
−γΩ−1

−δ�; ð10Þ

where
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Ω−1
ϵα ¼

�
1=2 1

−1=2 1

�
½ΩαϵΩ−1

ϵβ ¼ δαβ�: ð11Þ

More explicitly, we have

Γ1111 ¼ Γ1122 ¼ Γ2222 ¼ 0

Γ1222 ¼ −ig2; Γ1112 ¼ −ig2=4: ð12Þ

(The vertices not listed explicitly here are obtained by
trivial permutations.) Concerning the insertions of the
external source, the diagrammatic rules in the retarded-
advanced formalism are

J1 ¼ ij; J2 ¼ 0: ð13Þ

D. Trading the source j for an external classical field

From the above rules, we see that an external source can
only be attached to a propagator end point of type 1, i.e. to
the lowest time end point of a retarded or advanced
propagator (G0

12 ¼ G0
A, G

0
21 ¼ G0

R), as in the formula

Z
d4yG0

21ðx; yÞJ1ðyÞ: ð14Þ

(This expression corresponds to the first graph on the left of
Fig. 1.) It is easy to see that the external source can be
summed to all orders, if one introduces the object φðxÞ
defined diagrammatically in Fig. 1. It is well known that
this series obeys the classical equation of motion,

ð□þm2Þφþ g2

6
φ3 ¼ j; ð15Þ

and since all the propagators are all of type G0
21, i.e.

retarded, it obeys the following boundary condition:

lim
x0→−∞

φðxÞ ¼ 0: ð16Þ

The source j can be completely eliminated from the
diagrammatic rules, by adding to the Lagrangian couplings
between the field operator ϕ and the classical field φ,

ΔL≡ g2
�
1

2
φ2ϕ1ϕ2 þ

1

2
φϕ1ϕ

2
2 þ

1

4!
φϕ3

1

�
: ð17Þ

Note that, since in all the graphs in Fig. 1 the root of the tree
is terminated by an index 2, the classical field φ can only be
attached to an index of type 2 in these vertices.

E. Classical statistical approximation (CSA)

1. Definition as truncated retarded-advanced rules

The classical statistical approximation consists in
dropping all the graphs that contain the vertex Γ2111, under
the assumption that ϕ1 ≪ ϕ2;φ, i.e. in assuming

Γ2111 ¼ 0 ðand similarly for the permutations of 2111Þ:
ð18Þ

In the rest of this paper, we will simply call CSA the field
theory obtained by dropping all the vertices that have 3
indices of type 1 in the retarded-advanced formalism, while
everything else remains unchanged. Therefore, in the
retarded-advanced formalism, the CSA is defined by the
following diagrammatic rules:

(i) bare propagators:

G0
21ðpÞ ¼

i
ðp0 þ iϵÞ2 − p2 −m2

;

G0
12ðpÞ ¼

i
ðp0 − iϵÞ2 − p2 −m2

;

G0
22ðpÞ ¼ πδðp2 −m2Þ: ð19Þ

(ii) vertices:

Γ1222 ðand permutationsÞ ¼ −ig2;

all other combinations zero:
ð20Þ

(iii) external sources:

J1 ¼ ij; J2 ¼ 0: ð21Þ

(iii′) external field (see Sec. II D):

Φ1 ¼ 0; Φ2 ¼ φ: ð22Þ

Note that this “truncated” field theory is still quite nontrivial,
in the sense that the above diagrammatic rules allow graphs
with arbitrarily many loops. In fact, all the topologies that
exist in the full theory also exist in the CSA, but with some
restrictions regarding the possible assignments of 1 and 2
indices. The numerical simulations that implement the CSA
provide the sum to all orders of the graphs that can be
constructed with these rules (with an accuracy in principle
only limited by the statistical errors in the Gaussian average

+ 1
6

+ 1
12

+ . . .

FIG. 1 (color online). The first three terms of the diagrammatic
expansion of the external field in terms of the external source, for
a field theory with quartic coupling. The red dots represent the
source insertions J1, and the lines with an arrow are bare retarded
propagators G0

21. The quartic vertices are all of the type Γ1222.
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over the initial field fluctuations, since this average is
approximated by a Monte Carlo sampling).

2. Definition by exponentiation of the one-loop result

The previous definition of the CSA makes it very clear
what graphs are included in this approximation and what
graphs are not. However, it is a bit remote from the actual
numerical implementation. Let us also present here an
alternative—but strictly equivalent—way of introducing
the classical statistical approximation, that directly provides
a formulation that can be implemented numerically.
Firstly, observables at leading order4 (tree level) are

expressible in terms of the retarded classical field φ
introduced above [76],

h0injO½ϕ; ∂ϕ�j0iniLO ¼ O½φ; ∂φ�: ð23Þ

At next-to-leading order (one loop), it has been shown in
[55,77,78] that the observable (2) can be expressed as
follows:

h0injO½ϕ; ∂ϕ�j0iniNLO
¼

�
1

2

Z
d3k

ð2πÞ32Ek

Z
d3ud3vðαk · TuÞðα�

k · T vÞ
�

×O½φ; ∂φ�: ð24Þ

In Eq. (24), the operator Tu is the generator of shifts of the
initial condition for the classical field φ on some constant
time surface (the integration surface for the variables u and
v) located somewhere before the source j is turned on.5 This
means that if we denote φ½φinit� the classical field as a
functional of its initial condition, then for any functional
F½φ� of φ, we have

�
exp

Z
d3uða · TuÞ

�
F½φ½φinit�� ¼ F½φ½φinit þ a��: ð25Þ

(This equation can be taken as the definition of Tu.) In
Eq. (24), the fields αk are free plane waves of momentum kμ

(k2 ¼ m2):

αkðuÞ≡ eik·u; ð□þm2ÞαkðuÞ ¼ 0: ð26Þ

Note that in Eq. (24), the integration variable k is a loop
momentum. In general, the integral over k therefore
diverges in the ultraviolet, and must be regularized by a

cutoff. In a renormalizable theory, after the Lagrangian
parameters have been renormalized at one loop, this cutoff
can be safely sent to infinity.6

In this framework, the classical statistical method is
defined as the result of the exponentiation of the operator
that appears in the right-hand side of Eq. (24),

h0injO½ϕ; ∂ϕ�j0iniCSA
¼ exp

�
1

2

Z
d3k

ð2πÞ32Ek

Z
d3ud3vðαk · TuÞðα�

k · T vÞ
�

×O½φ; ∂φ�: ð27Þ
Note that by construction, the CSA is identical to the
underlying theory at leading order (LO) and next-to-leading
order (NLO), and starts differing from it at next-to-next-to-
leading order (NNLO) and beyond (some higher loop
graphs are included but not all of them). The relation
between this formula and the way the classical statistical
method is implemented lies in the fact that the exponential
operator is equivalent to a Gaussian average over a Gaussian
distribution of initial conditions for the classical field φ,

exp

�
1

2

Z
d3k

ð2πÞ32Ek

Z
d3ud3vðαk · TuÞðα�

k · T vÞ�F½φ½φinit�
�

¼
Z

½DaðuÞD _aðuÞ�G½a; _a�F½φ½φinit þ a��; ð28Þ

whereG½a; _a� is a Gaussian distribution, whose elements can
be generated as

aðuÞ ¼
Z

d3k
ð2πÞ32Ek

½ckαkðuÞ þ c�kα
�
kðuÞ�; ð29Þ

with ck complex Gaussian random numbers defined by

hcki ¼ 0; hckcli ¼ 0; hckc�l i ¼ ð2πÞ3Ekδðk − lÞ:
ð30Þ

In some works, a variant of these initial conditions has been
considered:

hckc�l i ¼ ð2πÞ3Ekð2fðkÞÞδðk − lÞ; ð31Þ

where fðkÞ is an initial distribution of quasiparticles. In this
setup, the fluctuations are due to initial particle excitations
instead of vacuum fluctuations [both types of fluctuations
can be included at the same time by the replacement
2fðkÞ → 1þ 2fðkÞ]. The renormalizability of the CSA
has already been studied with initial fluctuations of type
(31) in Refs. [58–62] when fðkÞ ∼ 1=jkj, i.e. for a system
prepared in a classical thermal equilibrium state. In this case,
it was found that the CSA is super-renormalizable; i.e. it can

4Note that in the presence of a strong external j ∼ g−1, the
leading order is the sum of an infinite set of tree level graphs.
Similarly, the next-to-leading order comprises an infinite number
of one-loop graphs. The formulas (23) and (24) do include these
complete sets of graphs, respectively at LO and NLO.

5This is why Eq. (24) does not have a term linear in Tu,
contrary to the slightly more general formulas derived in
Refs. [55,77,78].

6In the case of composite operators such as the energy-
momentum tensor, additional subtractions may be required.
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be renormalized with a finite number of subtractions [it
would be totally UV finite if fðkÞ falls faster than 1=jkj].
Situations where the initial state can be described by Eq. (31)
are thus not problematic from the point of view of UV
divergences (in this case, the validity of the CSA amounts to
the condition fðkÞ ≫ 1 [79]). However, the color glass
condensate–like setup that we have chosen in Eqs. (1) and
(2) does not lead to this type of initial conditions, but to
Eq. (30). In the rest of this paper, we consider only vacuum
fluctuations, given in Eq. (30).
We will not reproduce here the proof of the equiv-

alence among Eqs. (28), (29), (30) and the classical
statistical approximation as introduced in Sec. II E 1.
The main reason for recalling the second definition of
the CSA was to emphasize the origin of the variable k in
Eqs. (24), (27) and (29), as a loop momentum. Therefore,
an upper limit introduced in the k integration in any of these
formulas will effectively play the role of an ultraviolet
cutoff that regularizes loop integrals.
To make the connection with the diagrammatic rules

of the classical statistical approximation introduced in
the previous subsection, the cutoff on the momentum of
the initial fluctuations is equivalent to an upper limit for the
momentum flowing through the G0

22 propagators. In con-
trast, the largest momentum that can flow through the G0

21

and G0
12 propagators is only controlled by the discretization

of space, i.e. by the inverse lattice spacing. In some
implementations, these two cutoffs are identical, but other
implementations have chosen to restrict the possible
momenta of the initial fluctuations:

(i) In Refs. [2–4,80] an explicit cutoff ΛUV, distinct
from the lattice cutoff, is introduced in order to
limit the largest k of the initial fluctuations. In
Refs. [81–83], fluctuations are only included for
modes that may be subject to some instability. In
these setups, ΛUV is smaller than the lattice mo-
mentum cutoff, and the lattice spacing no longer
controls the ultraviolet limit of the computation.

(ii) In Refs. [5,13–15,17] fluctuation modes are in-
cluded up to the lattice momentum cutoff; i.e.
ΛUV is inversely proportional to the lattice spacing.

A common caveat of most of these computations is that
none has studied the behavior of the results in the limit
ΛUV → ∞, with the exception of Ref. [5] where a strong
dependence on the ultraviolet cutoff was observed.

III. ULTRAVIOLET POWER COUNTING

After having defined the classical statistical approxima-
tion, we can first calculate the superficial degree of ultra-
violet divergence for arbitrary graphs in the CSA, in order
to see what kind of divergences one may expect. This is
best done by using the definition introduced in Sec. II E 1,
that defines the CSA by its diagrammatic rules.
Let us consider a generic connected graph G built with

these diagrammatic rules, made of

(i) E external legs
(ii) I internal lines
(iii) L independent loops
(iv) V vertices of type ϕ4

(v) V2 vertices of type ϕ2φ2

(vi) V1 vertices of type ϕ3φ
Note that for the internal lines, the superficial degree
of divergence does not distinguish7 among the propaga-
tors G0

12, G0
21 and G0

22, because they all have a mass
dimension −2. These numbers are related by the following
relations:

Eþ 2I ¼ 4V þ 3V1 þ 2V2; ð32Þ

L ¼ I − ðV þ V1 þ V2Þ þ 1: ð33Þ
The first of these identities states that the number of
propagator end points must be equal to the number of slots
where they can be attached to vertices. The second
identity counts the number of independent momenta that
can circulate in the loops of the graph.
In terms of these quantities, the superficial degree of

divergence of the graph G is given by

ωðGÞ ¼ 4L − 2I

¼ 4 − E − ðV1 þ 2V2Þ
¼ 4 − E − Nφ; ð34Þ

where Nφ ≡ V1 þ 2V2 is the number of powers of the
external classical field φ inserted into the graph G.
Note that 4 − E is the superficial degree of divergence of

a graph with E external points in a four-dimensional scalar
ϕ4 theory, in the absence of an external field/source.
Therefore, the external field can only decrease the super-
ficial degree of divergence (since Nφ ≥ 0), which was
expected since the couplings to the external field [see
Eq. (17)] have a positive mass dimension; i.e. they are
super-renormalizable interactions.
The crucial point about this formula is that the superficial

degree of divergence does not depend on the fact that we
have excluded the vertices of type 2111 in the classical
statistical approximation. In other words, the ultraviolet
power counting is exactly the same in the full theory and in
the CSA. Equation (34) suggests that the only ultraviolet
divergent quantities are those for which E ≤ 4, exactly as in
the unapproximated theory.
As we shall see in the next section, there is

nevertheless an issue that hinders the renormalizability
of the classical statistical approximation. Discarding the
Γ1112 alters in subtle ways the analytic structure of Green’s
functions, which leads to a violation of Weinberg’s

7As we shall see later, due to the peculiar analytic structure of
the integrands of graphs in the CSA, this power counting is too
naive to accurately reflect the actual ultraviolet divergences.
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theorem.8 As a consequence, ultraviolet divergences in the
CSA can be stronger that one would expect on the basis of
the power counting alone.

IV. ULTRAVIOLET DIVERGENCES IN THE CSA

A. Introduction

The untruncated ϕ4 theory that we started from is well
known to be renormalizable.9 This means that all its
ultraviolet divergences can be disposed of by redefining
the coefficients in front of the operators that appear in the
bare Lagrangian.
In the retarded-advanced basis, the Lagrangian of the

CSA differs from the Lagrangian of the unapproximated
theory in the fact that the vertex Γ1112 is missing. All the
other terms of the Lagrangian are unchanged, in particular
the operators that are quadratic in the fields. In this section
we systematically examine two- and four-point functions at
one loop, in order to see whether their ultraviolet behavior
is compatible with renormalizability or not.

If one assumes that j ∼ 1
g (or, equivalently, φ ∼ 1

g), the
propagators dressed by the background field φ are of the
same order as the bared ones. In addition, some field modes
that were initially small may grow exponentially at the
initial time in systems with instabilities. In these cases, a
consistent calculation requires the resummation of an
infinite number of diagrams. However, the dressing of a
propagator by an external field does not change its behavior
in the ultraviolet [Eq. (34) shows that external field
insertions lower the degree of UV divergence]. Therefore
the discussion of renormalizability can be done in terms of
the bare propagators listed in Eqs. (19).

B. Self-energies at one loop

Let us start with the simplest possible loop correction:
the one-loop self-energy, made of a tadpole graph.
Depending on the indices 1 and 2 assigned to the two
external legs, these self-energies are given in Eq. (35):

(35)

Σ11 is zero at one loop in the CSA, because it requires a
vertex 1112 that has been discarded. Σ22 is also zero,
because it contains a closed loop made of a retarded
propagator. The only nonzero self-energy at one loop is
Σ12, that displays the usual quadratic divergence. This can
be removed by a mass counterterm in the Lagrangian,

δm2 ¼ −
g2Λ2

UV

16π2
; ð36Þ

since the mass term in the Lagrangian is precisely a ϕ1ϕ2

operator.

C. Four-point functions at one loop

1. Vanishing functions: Γ1112, Γ1111 and Γ2222

The four-point function with indices 1112 is a prime
suspect for Green’s functions that may cause problems with
the renormalizability of the CSA. Indeed, the CSA consists
in discarding the operator corresponding to this vertex from
the Lagrangian. Therefore, if an intrinsic10 ultraviolet
divergent contribution to this Green’s function can be
generated in the classical statistical approximation, then
the CSA is not renormalizable.
Let us first consider this four-point function at one

loop.At this order, the only possible contribution (up to trivial
permutations of the external legs) to the Γ1112 function is

1

1

2

1

2

2

2

1
(37)

8In addition to power counting arguments, renormalizability
requires some handle on the recursive structure of the ultraviolet
divergences. This may come in the form of Dyson’s convergence
theorem [84], whose proof was completed by Weinberg [85] and
somewhat simplified by Hahn and Zimmermann [86,87] (see also
Refs. [88,89]). This result states that if all the divergences in
the subgraphs of a given graph G have been subtracted, then
the remaining divergence is a polynomial of degree ωðGÞ in the
external momenta.

9The fact that we are dealing here with a field theory coupled to
an external source does not spoil this property, for sufficiently
smooth external sources. See Ref. [90], Chapter 11.

10Here, we are talking about the overall divergence of the
function, not the divergences associated to its various subgraphs,
that may be subtracted by having renormalized the other
operators of the Lagrangian.
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where the indices 1 and 2 indicate the various vertex
assignments. (The −i prefactor is a convention, so that the
function Γ can be viewed directly as a correction to the
coupling constant g2.) Because it must contain a vertex of
type 1112, this function is zero in the classical statistical
approximation,11

−i½Γ1112�1 loopCSA ¼ 0: ð38Þ

Therefore, this four-point function does not cause
any renormalization problem in the CSA at one loop.
Similarly, the function Γ1111 at one loop also requires the
vertex 1112, and is therefore zero in the classical statistical
approximation,12

−i½Γ1111�1 loopCSA ¼ 0: ð39Þ

For the function Γ2222 at one loop, the only possibility is the
following:

2

2

1

2

2

1

2

2
(40)

where we have represented with arrows the 12 propagators,
since they are retardedpropagators.Thisgraph is zerobecause
it is made of a sequence of retarded propagators forming a
closed loop.

2. Logarithmic divergence in Γ1222

At one loop, the function Γ1222 is given by the graph
of Eq. (41) (and several other permutations of the
indices):

1

2

2

2

2

1

2

2
(41)

It is a straightforward calculation to check that this graph has a logarithmic ultraviolet divergence, that can be removed by
the standard one-loop renormalization of the coupling constant (this is possible, since the interaction term ϕ1ϕ

3
2 has been

kept in the Lagrangian when doing the classical statistical approximation). The calculation of this four-point function is
detailed in Appendix A.

3. Violation of Weinberg’s theorem in Γ1122

Another interesting object to study is the four-point functionwith indices 1122. There is no such barevertex in theLagrangian
(both for the unapproximated theory and for the classical statistical approximation). Since the full theory is renormalizable, this
function should not have ultraviolet divergences at one loop, since such divergences would not be renormalizable. However,
since the CSA discards certain terms, it is not obvious a priori that this conclusion still holds. For the sake of definiteness, let us
denote p1;…; p4 the external momenta of this function (defined to be all incoming into the graph, and therefore
p1 þ p2 þ p3 þ p4 ¼ 0), and let us assume that the two indices 1 are attached to the legs p1; p2 and the two indices 2 are
attached to the legs p3; p4. At one loop, this four-point function (in the full field theory) receives the following contributions:
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(42)

11For the calculation of the full Γ1112 at one loop, beyond the classical statistical approximation, see Appendix A.
12At one loop, the functions Γ1111 and Γ2222 are also zero in the full theory.
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Since the full theory is renormalizable, the sum of all these
graphs should be ultraviolet finite, because there is no 1122
four-field operator in the bare Lagrangian.
It is however not obvious that the subset of these graphs

that exists in the classical statistical approximation is itself
ultraviolet finite. Among the T-channel and U-channel
graphs, only the first of the three graphs exist in the
CSA, since all the other graphs contain the 1112 bare
vertex,

1
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p
4

(43)

Some details of the calculation of these graphs are provided
in Appendix B. One obtains

−i½Γ1122�1 loopCSA ¼ −
g4

64π

�
signðTÞ þ signðUÞ

þ2ΛUV

�
θð−TÞ
jp1 þ p3j

þ θð−UÞ
jp1 þ p4j

��
; ð44Þ

where we denote

T ≡ ðp1 þ p3Þ2; U≡ ðp1 þ p4Þ2; ð45Þ

and where ΛUV is an ultraviolet cutoff introduced to
regularize the integral over the 3-momentum running in
the loop. As one sees, these graphs have a linear ultraviolet
divergence, despite having a superficial degree of diver-
gence equal to zero. This property violates Weinberg’s
theorem since, if it were applicable here, it would imply at
most a logarithmic divergence with a coefficient indepen-
dent of the external momenta. One can attribute this
violation to the analytic structure of the integrand13: unlike
in ordinary Feynman perturbation theory, we cannot
perform a Wick rotation to convert the integral to an
integral over an Euclidean momentum, which is an impor-
tant step in the proof of Weinberg’s theorem.
Since it occurs in the operator ϕ2

1ϕ
2
2, which does not

appear in the CSA Lagrangian, this linear divergence
provides incontrovertible proof of the fact that the classical
statistical approximation is not renormalizable. Moreover,
this conclusion is independent of the value of the coupling
constant. The only thing one gains at smaller coupling is
that the irreducible cutoff dependence caused by these
terms is weaker.
It should also be noted that this linear divergence is a

purely imaginary contribution to the function Γ1122 (this
can be understood from the structure of the integrand, that
was made of two delta functions, which is reminiscent of
the calculation of the imaginary part of a Green’s function
via Cutkosky’s cutting rules [91,92]).
In Appendix B, we also calculate the graphs of Eq. (42)

that do not contribute to the CSA, and we find
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(46)

(Note that the S-channel graph is in fact zero, because it is made of a sequence of retarded propagators in a closed loop.) By
adding Eqs. (44) and (46), we obtain the one-loop result in the unapproximated theory,

−iΓ1 loop
1122 ¼ −

g4

32π
½θðTÞ þ θðUÞ�; ð47Þ

which is ultraviolet finite, in agreement with the renormalizability of the full theory.

13For the graphs in Eq. (43), the integrand is of the form δðK2ÞδððPþ KÞ2Þ where P≡ p1 þ p3 or P≡ p1 þ p4. Using the first delta
function, the argument of the second one is ðPþ KÞ2 ¼ 2P · K þ P2, which is only of degree 1 in the loop momentum. Therefore, the
second propagator contributes only −1 to the actual degree of divergence of the graph, contrary to the −2 assumed based on
dimensionality when computing the superficial degree of divergence. This discrepancy is also related to the impossibility to perform a
Wick’s rotation when the integrand is expressed in terms of delta functions or retarded/advanced propagators.
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D. Two-point functions at two loops

Let us also mention two problematic two-point functions at two loops. We just quote the results here (the derivation will
be given in [93]), for an on-shell momentum P (P2 ¼ 0; p0 > 0):

1 12 2
2 2

2 2

(48)

1 22 1
2 2

2 2

(49)

An ultraviolet divergence in Σ11 is nonrenormalizable,
since there is no ϕ2

1 operator in the Lagrangian.
Similarly, the divergence at two loops in ImΣ12 is also
nonrenormalizable, because it would require an imaginary
counterterm, that would break the Hermiticity of the
Lagrangian.

V. CONSEQUENCES ON PHYSICAL
OBSERVABLES

A. Order of magnitude of the pathological terms

So far, we have exhibited a four-point function at one
loop that has an ultraviolet divergence in the CSA but not if
computed in full, and that cannot be renormalized in the

CSA because it would require a counterterm for an operator
that does not exist in the Lagrangian.
In practice, this one-loop function enters as a subdiagram

in the loop expansion of observable quantities, making
them unrenormalizable. In order to assess the damage, it is
important to know the lowest order at which this occurs. Let
us consider in this discussion two quantities that have been
commonly computed with the classical statistical method:
the expectation value of the energy-momentum tensor, and
the occupation number, which can be extracted from the
G22 propagator.
For the 22 component of the propagator, the first

occurrence of the 1122 four-point function as a subgraph
is in the following one-loop contribution:

2 21
2

1
2 (50)

where the problematic subdiagram has been highlighted
(the propagators in purple are of type G22). The fact that
this problematic subgraphs occurs only at one loop and
beyond is related to the fact that classical statistical
approximation is equivalent to the full theory up to
(including) NLO. The first differences appear at NNLO,
which means one loop for the G22 function. In a situation
where the typical physical scale is denoted Q, the subdia-
gram is of order g4ΛUV=Q, and the external field attached to
the graph is of order Φ2 ∼Q=g (we assume a system
dominated by strong fields, as in applications to heavy ion

collisions). This one-loop contribution to G22 is of order
g2ΛUVQ, to be compared to Q2=g2 at leading order.
Therefore, the relative suppression of this nonrenormaliz-
able contribution is by a factor

g4
ΛUV

Q
: ð51Þ

The same conclusion holds in the case of the energy-
momentum tensor,
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Tμν ¼ ð∂μϕ2Þð∂νϕ2Þ

− gμν
�
1

2
ð∂ρϕ2Þð∂ρϕ2Þ −

m2

2
ϕ2
2 −

g2

4!
ϕ4
2

�
; ð52Þ

for which the 1122 four-point function enters also at NNLO
(in this case, this means two loops), in the following
diagram:

2 2

1
2

1
2

(53)

(The cross denotes the insertion of the Tμν operator.) The
order of magnitude of this graph is g2ΛUVQ3, while the
leading order contribution to the energy-momentum tensor
is of order Q4=g2. Therefore, the relative suppression is the
same as in Eq. (51).
All these examples suggest that a minimum requirement

is that the ultraviolet cutoff should satisfy

ΛUV ≪
Q
g4

; ð54Þ

for the above contributions to give only a small contami-
nation to their respective observables in a classical stat-
istical computation with cutoffΛUV. However, one could be
a bit more ambitious and request that this computation be
also accurate at NLO. For this, we should set the cutoff so
that the above diagrams are small corrections compared to
the NLO contributions. This is achieved if the highlighted
four-point function in these graphs is small compared to the
tree-level four-point function, i.e. g2. This more stringent
condition reads

g4

16π

ΛUV

Q
≪ g2;

i:e: ΛUV ≪
16πQ
g2

; ð55Þ

where we have reintroduced the factors 2 and π from
Eq. (44), because in practical situations they are numeri-
cally important. One can see that this inequality is easy to
satisfy at weak coupling g2 ≪ 1, and presumably only
marginally satisfied at larger couplings g ≈ 1.

B. Ultraviolet contamination at asymptotic times

The condition of Eq. (55) ensures that the pathological
NNLO contributions are much smaller than the NLO
corrections (the latter are correctly given by the classical
statistical approximation). Another important aspect of this

discussion is whether, by ensuring that the inequality (55) is
satisfied, one is guaranteed that the contamination by the
pathological terms remains small at all times. It is easy to
convince oneself that this is not the case. In Ref. [93], we
argue that in the limit where ΛUV → ∞, these pathological
terms, if not removed, induce modifications of order 1 to
the particle distribution in a time of order

Qt� ∼ 1024π3g−4ðQ=ΛUVÞ2: ð56Þ
Effectively, these ultraviolet divergent terms act as
spurious scatterings14 with a rate proportional to
g4Λ2

UV=Q.
Moreover, the state reached by the system when t →

þ∞ is controlled solely by conservation laws and by a few
quantities that characterize the initial condition, in addition
to the ultraviolet cutoff. For instance, if the only conserved
quantities are energy and momentum, then the asymptotic
state depends only on the total energy in the system. If in
addition the particle number was conserved, then the
asymptotic state would also depend on the number of
particles in the system.
In particular, the value of the coupling constant does not

play a role in determining which state is reached at
asymptotic times; it only controls how quickly the system
approaches the asymptotic state. This means that, even if g2

is small so that the inequality (55) is satisfied, the CSA may
evolve the system towards an asymptotic state that differs
significantly from the true asymptotic state, regardless of
how small g2 is. Therefore, the strong dependence of the
asymptotic state on the ultraviolet cutoff observed in Fig. 10
of Ref. [5] is not specific to a “large” coupling g2 ¼ 1.
Exactly the same cutoff dependence would be observed at
smaller couplings, but the systemwould need to evolve for a
(much) longer time in order to reach it.

C. Could it be fixed?

An important issue is whether one could somehow alter
the classical statistical approximation in order to remove
the linear divergence that appears in the one-loop four-point
function Γ1122. As a support of these considerations, let us
consider the NNLO correction to the function G22.
Equation (50) displays the unique contribution in the
classical statistical approximation. However, in the full
theory there are two other possible arrangements of the
internal 1=2 inside the 1122 subdiagram. This topology
with the complete 1122 subdiagram reads

14This estimate can be obtained by performing the classical
approximation of Ref. [80] to the Boltzmann equation with a
2 → 2 collision term. This classical approximation gives a
spurious term in g4Λ2

UVfðpÞ=Q, in addition to the usual f3
and f2 terms. This spurious collision term stems directly from the
nonrenormalizable UV divergence in the imaginary part of the
self-energy Σ12. If ΛUV → ∞ at fixed Q and f, this term
dominates the evolution and leads to the estimate (56).
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2 (57)

The CSA result contains only the first graph, and as a
consequence it has a linear ultraviolet divergence, while the
sum of the three graphs is finite. So the question is, could
one reintroduce in the CSA the divergent part of the second
and third graphs, in order to compensate the divergence of
the first graph?
In order to better visualize what it would take to do this,

let us modify the way the graphs are represented, so that
they reflect the space-time evolution of the system and the
modus operandi of practical implementations of the CSA.
The modified representation for the first term in Eq. (57) is
shown in Fig. 2. In this representation, the lines with arrows
are retarded propagators (the time flows in the direction of
the arrow). The solution of the classical equation of motion
is a sum of trees made of retarded propagators, where the
“leaves” of the tree are anchored to the initial surface. In the
diagram shown in Fig. 2, there are two such trees, both
containing one instance of the quartic interaction term. In

order to complete the calculation in the CSA, one performs
a Gaussian average over the initial value of the classical
field. Diagrammatically, this average amounts to attaching
the leaves of the tree to one-point objects representing the
average value of the initial field, or to connecting them
pairwise with the two-point function that describes the
variance of the initial Gaussian distribution.
It is crucial to note that the trees that appear in the

solution of the classical equation of motion are “oriented”:
three retarded propagators can merge at a point, from which
a new retarded propagator starts. Let us call this a 3 → 1
vertex (when read in the direction of increasing time).
These trees do not contain any 2 → 2 or 1 → 3 vertices.
Their absence is intimately related to the absence of the
1122 and 1112 vertices in the Lagrangian in the classical
statistical approximation.
In Fig. 3, we now show the same representation for the

second and third contributions of Eq. (57). Firstly, we see that
these graphs contain a 1 → 3 vertex (surrounded by a dotted
circle in the figure), in agreementwith the fact that they do not
appear in the CSA. There is no way to generate the loop
contained in these graphs via the average over the initial
conditions, because this loop corresponds to quantum fluc-
tuations that happen later on in the time evolution. By
Fourier transforming the divergent part of these diagrams
in Eq. (46), we can readily see that it is proportional to

1

jx − yj δððx
0 − y0Þ2 − ðx − yÞ2Þ ð58Þ

in coordinate space. Thus, the divergent part of these loops is
nonlocal, with support on the light cone, as illustrated
in Fig. 4.

initial
time

time

FIG. 2 (color online). Space-time representation of Eq. (50).
The propagators with an arrow are retarded propagators. The
orange circles represent the mean value of the initial field. The
orange lines represent the link coming from the Gaussian
fluctuations of the initial field.

initial
time

time

FIG. 3 (color online). Space-time representation of the NNLO
contributions to G22 that are not included in the classical
statistical approximation. The dotted circles outline the 1112
vertices, that are missing in the CSA.

initial
time

time

FIG. 4 (color online). Space-time representation of the diver-
gent part of the graphs of Fig. 3. As explained in the text, these
divergent terms are nonlocal in space-time, with support on the
light cone.
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There can also be arbitrarily many occurrences of these
divergent subgraphs in the calculation of an observable in
the classical statistical method, as illustrated in Fig. 5 in the
case of G22. This implies that these divergences cannot be
removed by an overall subtraction, and that one must
instead modify the Lagrangian. One could formally sub-
tract them by adding to the action of the theory a nonlocal
counterterm15 of the form

ΔS≡−
i
2

Z
d4xd4y½ϕ1ðxÞϕ2ðxÞ�vðx;yÞ½ϕ1ðyÞϕ2ðyÞ�; ð59Þ

where we define16

vðx; yÞ≡ g4

64π3
ΛUV

jx − yj δððx
0 − y0Þ2 − ðx − yÞ2Þ: ð60Þ

In order to deal with such a term, the simplest is to perform
a Hubbard-Stratonovich transformation [94,95], by intro-
ducing an auxiliary field ζðxÞ via the following identity:

eiΔS ¼
Z

½Dζ�e1
2

R
x;y

ζðxÞv−1ðx;yÞζðyÞ
ei
R
x
ζðxÞϕ1ðxÞϕ2ðxÞ: ð61Þ

The advantage of this transformation is that we have
transformed a nonlocal four-field interaction term into a
local interaction with a random Gaussian auxiliary field.
The rest of the derivation of the classical statistical

method remains the same: the field ϕ1 appears as a
Lagrange multiplier for a classical equation of motion
for the field φ, but now we get an extra, stochastic, term in
this equation:

ð□þm2Þφþ g2

6
φ3 þ iξφ ¼ j: ð62Þ

Note that we have introduced ζ≡ iξ in order to have a
positive definite variance for the new variable ξ. From the
above derivation, this noise must be Gaussian distributed,
with a mean and variance given by the following formulas:

hξðxÞi ¼ 0

hξðxÞξðyÞi ¼ g4

64π3
ΛUV

jx − yj δððx
0 − y0Þ2 − ðx − yÞ2Þ: ð63Þ

By construction, the noise term in Eq. (62), once averaged
with Eq. (63), will insert a nonlocal counterterm in every
place where the Γ1122 function can appear. For instance,
when applied to the calculation of G22, the contribution
shown in Fig. 5 will be accompanied by the term shown
in Fig. 6.
Although the noise in Eq. (63) has nonlocal space-time

correlations, it is easy to generate it in momentum space,
where it becomes diagonal. The main practical difficulty
however comes from the nonlocality in time17: one would

initial
time

time

FIG. 5 (color online). Contribution to G22 with many Γ1122

subgraphs.

initial
time

time

FIG. 6 (color online). Effect of the noise term on the topology
shown in Fig. 5.

15Of course, there was no ϕ2
1ϕ

2
2 term in the original bare action.

On the other hand, we know that in the full theory, there should
not be an intrinsic ultraviolet divergence in the 1122 function.
One should view this counterterm as a way of reintroducing some
of the terms that are beyond the classical statistical approxima-
tion, in order to restore the finiteness of the 1122 function.

16The definition (59) is a minimal subtraction where only
terms proportional to the ultraviolet cutoff are included. It is
possible to add a finite part to the function vðx; yÞ,

vfiniteðx; yÞ≡ −
g4

32π
δðx − yÞ;

in order to recover the complete one-loop result for the function
Γ1122.

17This nonlocality appears to be a reminiscence of the memory
effects that exist in the full quantum field theory, but are discarded
in the classical statistical approximation. Such a nonlocality in
time is also present in the 2PI resummation scheme, which is
known to be renormalizable [41,42,96–98].
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need to generate and store the whole spatiotemporal
dependence for each configuration of the noise term prior
to solving the modified classical equation of motion.
The noise term introduced in Eq. (62) is purely imagi-

nary, and it turns the classical field ϕ into a complex valued
quantity. However, since ξ is Gaussian distributed with a
zero mean, any Hermitian observable constructed from ϕ
via an average over ξ will be real valued.18 Equation (62)
is therefore a complex Langevin equation, and may be
subject to the problems encountered with this kind of
equation (lack of convergence, or convergence to the
incorrect solution; see Refs. [99–104] and references
therein for recent discussions of these issues). At the
moment, it is an open question whether Eq. (62) really
offers a practical way of removing the linear ultraviolet
divergences from the classical statistical approximation.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have investigated the ultraviolet
behavior of the classical statistical approximation, used
to evaluate expectation values of observables in a system of
scalar fields initialized in the vacuum state and driven out of
equilibrium by a strong external source. This has been done
by using perturbation theory in the retarded-advanced
basis, where this approximation has a very simple expres-
sion, and in calculating all the one-loop subdiagrams that
can possibly be generated with these diagrammatic rules.
The main conclusion of this study is that the classical

approximation leads to a one-loop four-point function that
diverges linearly in the ultraviolet cutoff. More specifically,
the problem lies in the function Γ1122, where the 1,2 indices
refer to the retarded-advanced basis. In the unapproximated
theory, this function is ultraviolet finite, but it violates
Weinberg’s theorem in the classical statistical approxima-
tion, because it has an ultraviolet divergence with a
coefficient which is nonpolynomial in the external
momenta. Moreover, it is nonrenormalizable because it
corresponds to an operator that does not even appear in the
Lagrangian one started from.
The mere existence of these divergent terms implies that

the classical statistical approximation is not renormalizable,
no matter what the value of the coupling constant is.

We have estimated that the contamination of the results
by these nonrenormalizable terms is of relative order
g4ΛUV=Q, where Q is the typical physical momentum
scale of the problem under consideration. Based on this, the
general rule is that the coupling should not be too large, and
the cutoff should remain close enough to the physical
scales.
In this paper, we have also proposed that this one-loop

spurious (because it does not exist in the full theory)
divergence may be subtracted by adding a multiplicative
Gaussian noise term to the classical equation of motion.
This noise term can be tuned in order to reintroduce some
of the terms of the full theory that had been lost when doing
the classical approximation. In order to subtract the
appropriate quantity, this noise must be purely imaginary,
with a two-point correlation given by the Fourier transform
of the divergent term. Unfortunately, this correlation is
nonlocal in time, which makes the implementation of this
correction quite complicated. Whether this can be done in
practice remains an open question at this point.
Moreover, the ultraviolet contamination due to these

nonrenormalizable terms is cumulative over time, and will
eventually dominate the dynamics of the system no matter
how small g4ΛUV=Q is. This can be easily understood in the
quasiparticle approximation [80,105], in which the quad-
ratic UV divergences of the self-energies (48) and (49)
appear in the collision term in the corresponding
Boltzmann equation. An extensive discussion of this
asymptotic ultraviolet sensitivity, and of the time evolution
that leads to the asymptotic state, will be provided in a
forthcoming work [93].
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APPENDIX A: Γ1222 AND Γ1112 AT ONE LOOP

At one loop, the four-point functions Γ1222 and Γ1112 are
given by the following sets of graphs:
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18The average over ξ will only retain terms that are even in ξ, and the factors i will cancel.
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Note that all the one-loop contributions to Γ1112 are zero if we exclude the 1112 vertex, as done in the classical statistical
approximation. The fact that Γ1222 and Γ2111 differ only by a factor 1=4 is a consequence of their common origin in the
Schwinger-Keldysh formalism, where the þþþþ and − − −− vertex functions are mutual complex conjugates.
They are all expressible in terms of a single loop integral,

IðPÞ≡ −ig4
Z

d4K
ð2πÞ4G22ðKÞG12ðPþ KÞ: ðA3Þ

SinceG22ðKÞ is a delta function δðK2Þ, we use it in order to perform the integration over the energy k0. Then, the integration
over cosðθÞ, where θ is the angle between the three-vectors p and k, is elementary but requires that one studies carefully
whether P2 þ 2P · K can vanish in the integration range. If this quantity can vanish, the integral will also have an imaginary
part. This leads to the following expression for IðPÞ:

IðPÞ ¼ g4

32π2

�
1

p

Z
ΛUV

0

dk
X
ϵ¼�1

log

����pþ ϵp0 þ P2=2k
p − ϵp0 − P2=2k

����þ iπ

�
θðP2Þsignðp0Þ − θð−P2Þp

0

p

��

¼ g4

32π2

�
ln

���� P2

4Λ2
UV

����þ p0

p
log

����p
0 þ p

p0 − p

���� − 2þ iπ

�
θðP2Þsignðp0Þ − θð−P2Þp

0

p

��
: ðA4Þ

Therefore, the real part is logarithmically ultraviolet divergent, while the imaginary part is finite.

APPENDIX B: Γ1122 AT ONE LOOP

In this appendix, we perform the calculation of some of the graphs contributing to Γ1 loop
1122 . The list of all the relevant

graphs is given in Eq. (42). The unique S-channel graph is zero, because it has a closed loop of retarded propagators. Since
the T- and U-channel graphs are identical, up to the permutation p3 ↔ p4, we will calculate only the T-channel graphs here.

1. Classical statistical approximation at one loop

Let us consider first the graph that contributes in the classical statistical approximation:
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where we denote P≡ p1 þ p3. We first use the δðK2Þ in order to perform the integral over k0, which gives
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Anticipating the fact that the integral over k ¼ jkj is ultraviolet divergent, we have introduced an upper cutoff on this
integral. The second step is to use the remaining delta function in order to integrate over cos θ. This requires some careful
analysis, in order to determine whether there is a valid solution, i.e. one for which −1 ≤ cos θ ≤ þ1. This depends on the
sign ϵ, on the sign of P2 and on the value of k. The results are summarized here:
(1) If P2 > 0, there is a valid solution if and only if

ϵp0 > 0 and
jp0j − p

2
≤ k ≤

jp0j þ p
2

;

(2) If P2 < 0,
(a) There is no solution if k < p−jp0j

2
(b) If ϵp0 < 0, there is a solution if p−jp0j

2
≤ k

(c) If ϵp0 > 0, there is a solution if pþjp0j
2

≤ k
Using this, the integration over cos θ leads to a piecewise constant integrand for the remaining integral. We eventually
obtain
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2. One-loop graphs beyond the CSA

Let us now focus on the second and third T-channel graphs,

1

2

2

2

1

1

1

2

p
2

p
1

p
4

p
3

1

1

2

1

2

1

2

2

p
2

p
1

p
4

p
3

(B4)

ChangingKμ → −Kμ in the second term, we see that this term is the same as the first one with the change Pμ → −Pμ.
Therefore, we need only to calculate the first term, multiply by two its P-even part and discard its P-odd part. The
first step is to perform the k0 integral in the complex plane. By closing the integration contour in the lowest half-
plane, we pick the two poles of GRðKÞ, and we get
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At this point, one can decompose the retarded propagator into a principal value term and a delta function. One can
check that the principal value gives only terms that are P odd, that we can thus drop. Keeping only the delta function
leads to
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We proceed by using the delta function to perform the integral over cos θ. The conditions for having a valid solution
are the same as before. Finally, we obtain
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3. CSA result with symmetric regularization

The ultraviolet regularization introduced in Eq. (B2) is not entirely satisfactory, because it breaks the symmetry between
the two internal lines of the graph, by placing a cutoff ΛUV on the 3-momentum jkj, while the 3-momentum jp − kj in the
other internal line is not constrained.
It is perfectly fine to do so. However, some important identities obeyed by two-loop self-energies, in which the one-loop

Γ1122 function appears as a subgraph, rely on the symmetry between the internal lines of the graph. It is therefore important
that the regularization scheme employed in intermediate steps of the calculation does not break this symmetry, and in
particular that the subgraph itself respects this symmetry. This issue will be discussed at length in a forthcoming work,
Ref. [93], but for later reference we present here the formulas for the function Γ1122 at one loop with a symmetric
regularization. This just amounts to replacing Eq. (B2) by
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with jp − kj ¼ ðp2 þ k2 − 2pk cos θÞ1=2. The new constraint on jp − kj slightly complicates the discussion of the
various cases, and in the end we obtain

−
g4

32πp
×

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�
ΛUV − pþjp0j

2

�
θ

�
ΛUV − pþjp0j

2

�
½P2 < 0�

p
2

�
P2 > 0; pþjp0j

2
≤ ΛUV

�

ΛUV − jp0j
2

�
P2 > 0; jp0j

2
≤ ΛUV ≤ pþjp0j

2

�

0

�
P2 > 0;ΛUV ≤ jp0j

2

�
ðB9Þ

instead of Eq. (B3). Note that the ultraviolet divergence itself (i.e. the terms that diverge when ΛUV → þ∞ at fixed
Pμ) is not affected by this modification of the regularization procedure.
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