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Abstract: We define a non-commutative version of the A1 T-system, which underlies
frieze patterns of the integer plane. This system has discrete conserved quantities and
has a particular reduction to the known non-commutative Q-system for A1. We solve
the system by generalizing the flat GL2 connection method used in the commuting case
to a 2×2 flat matrix connection with non-commutative entries. This allows us to prove
the non-commutative positive Laurent phenomenon for the solutions when expressed in
terms of admissible initial data. These are rephrased as partition functions of paths with
non-commutative weights on networks, and alternatively of dimer configurations with
non-commutative weights on ladder graphs made of chains of squares and hexagons.
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1. The A1 T -System and its Initial Data

T -systems were defined in the context of functional relations satisfied by the transfer
matrices of integrable quantum spin chains with a Lie group symmetry [15]. Together
with their associated Y -systems, these are instrumental in the Bethe Ansatz solution of
these quantum systems. There is such a system for each classical Lie group, and in this
note we will concentrate on the simplest A1 case.

The A1 T -system is the following system of recursion relations

Tj,k+1Tj,k−1 = 1 + Tj+1,k Tj−1,k ( j, k ∈ Z). (1.1)

This expresses the “frieze” condition [1,4] that on each elementary square of the lattice
Z

2 (tilted by 45◦), the determinant of the corner variables is 1:

det

(
Tj,k−1 Tj−1,k

Tj+1,k Tj,k+1

)
= 1.

We restrict to the system (1.1) with j +k = 1 mod 2; in other words, we only consider
variables Tj,k with j + k = 0 mod 2. Admissible initial data for this system are attached
to a pair (m, xm) where m is an infinite path m = (m j ) j∈Z such that m j ∈ Z, j +m j = 0
mod 2, and |m j+1 − m j | = 1 for all j ∈ Z, and xm = {t j } j∈Z is an infinite sequence of
initial values along the path m. The initial condition is simply the assignments:

Tj,m j = t j , ( j ∈ Z). (1.2)

The fundamental initial data corresponds to the path m(0), with m(0)
j = j mod 2 for

all j ∈ Z. Any other initial data m may be obtained from m0 via (forward/backward)
mutations of the form μ±

� , � ∈ Z, such that m′ = με
�(m) iff m′

j = m j + 2εδ j,�,
ε ∈ {−1, 1}, both m and m′ being paths. Each such mutation leaves the data t j = t ′j
unchanged for j �= �, and updates t� = T�,m�

→ t�′ = T�,m�
′ by use of the relation (1.1)

for j = �, k = m� + ε = m�
′ − ε, namely t�′ = (1 + t�−1t�+1)/t�.

This system was extensively studied and solved for various boundary conditions [10].
One important feature of the system is that it may be interpreted as attached to some
special mutations in a suitable infinite rank cluster algebra [6]. As such, the solution is
expected to be expressible as a Laurent polynomial of any admissible initial data (due
to the Laurent property of cluster algebra [11]). The solutions show that this Laurent
phenomenon produces Laurent polynomials with only non-negative integer coefficients.
In addition, the system was found to be integrable in that it admits two infinite sequences
of conserved quantities [9]. The connection to cluster algebra has allowed us to define a
quantum version of the system, via the associated quantum cluster algebra [3], in which
variables no longer commute but are subject to q-commutation relations within each
cluster. It was shown in [9] that an analogous quantum Laurent property holds, this time
with coefficients in Z+[q, q−1].

In all cases, the system was solved by introducing a flat GL(2) connection, namely
a 2 × 2 matrix representation of the T -system relation, allowing for writing a compact
formula for the solution. The latter may be interpreted in terms of paths on a network,
or equivalently of matchings or dimer coverings of some suitable graphs [5,9,10].

All the T -systems admit a reduction to so-called Q-systems, in which the “spectral
parameter” index j is omitted. For the case of A1, this simply reads: Rk+1 Rk−1 = R2

k +1.
One way of thinking of Rk is as a solution Tj,k , j + k = 0 mod 2, of the T -system
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(1.1), which is 2-periodic in the variable j , for the 2-periodic fundamental initial data
(m(0), xm(0) ) with the flat path m(0) defined above and assignments (t j ) j∈Z such that
t j+2 = t j for all j . This reduces effectively to the initial conditions R0 = t0 and R1 = t1
for the corresponding Q-system. This system is naturally attached to a rank 2 cluster
algebra.

In addition to a quantum version inherited from the quantum version of the associated
cluster algebra [3], this system was extended to a fully non-commutative setting [7,14],
in which Rk are now non-commuting invertible elements of a unital algebra A. We still
impose initial conditions R0 = t0 and R1 = t1, with fixed invertible elements t0, t1 ∈ A.
This system is still integrable, i.e., it admits conserved quantities, and its solutions
satisfy the non-commutative Laurent property. It was solved using a formulation of Rk

as a partition function of paths with non-commutative weights, monomial in t±1
0 , t±1

1 [7],
thus displaying positivity of the coefficients as well. This system was used to generalize
cluster algebras for non-commutative cluster variables in rank 2, and a few examples in
higher rank were constructed as well [8]. The Laurent property, and finally its positive
version, were proved for non-commutative rank 2 cluster algebras in [2,16,18], thus
completing the proof of a general conjecture by Kontsevich.

The purpose of this note is to introduce and solve a fully non-commutative version of
the A1 T -system, still enjoying the positive Laurent property in terms of non-commuting
initial variables, and to solve it with non-commutative extensions of the previous solu-
tions. The paper is organized as follows.

In Section 2, we define the non-commutative A1 T -system and show its invariance and
integrability properties. The novel feature is that it involves two sets of non-commuting
invertible variables of a unital algebra A at each site, subject to local mixed relations.

In Section 3, we show that this system reduces to, respectively, the non-commutative
A1 Q-system and the quantum A1 T -system for suitable choices of the variables.

In Section 4, we construct the general solution of the system by introducing a flat
GL2(A) connection defined on its solutions. This extends the method already used
successfully in the commuting and quantum cases, and produces an explicit formula for
the solution, which displays the positive Laurent property manifestly. We further interpret
this solution in the language of (non-commutative) networks, namely models of paths on
directed graphs with non-commuting weights. The latter are identified bijectively with
configurations of dimers on some suitable ladder graphs with non-commuting weights
involving the initial data for the system.

We gather a few concluding remarks in Section 5.

2. The Non-Commutative A1 T -System

2.1. Definition. We consider formal invertible, non-commuting variables Tj,k , j, k ∈ Z,
j + k = 0 mod 2, and an involutive anti-automorphism denoted by•, providing us with
a second collection of independent variables T •

j,k .

Definition 2.1. The non-commutative (NC) A1 T -system is the following system of
recursion relations:

Tj,k+1T •
j,k−1 = 1 + Tj−1,k T •

j+1,k ( j, k ∈ Z) (2.1)

together with the relations

T −1
j,k−1Tj+1,k = T •

j+1,k(T
•
j,k−1)

−1 and Tj−1,k T −1
j,k−1 = (T •

j,k−1)
−1T •

j−1,k (2.2)

for all j, k ∈ Z, j + k = 1 mod 2.
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The system (2.1) above may be equivalently rewritten as:

Tj,k+1 = (T •
j,k−1)

−1 + Tj−1,k T −1
j,k−1Tj+1,k ( j, k ∈ Z; j + k = 1 mod 2)

while (2.2) is unchanged. In terms of quasideterminants, this is also equivalent to:

T •
j,k−1

∣∣∣∣Tj,k−1 Tj−1,k

Tj+1,k Tj,k+1

∣∣∣∣
2,2

= 1

in the notations of [12,13].
The system (2.1) must be supplemented by some initial conditions defined as follows.

Admissible initial data are now coded by a triple (m, xm, x•
m) made of an infinite path

m = (m j ) j∈Z (as in the commuting case) and two sequences xm = {t j } j∈Z and x•
m =

{t•j } j∈Z of initial values, satisfying the following nearest neighbor relations:

t−1
j t j+1 = t•j+1 (t•j )−1 if m j+1 = m j + 1

t j t−1
j+1 = (t•j+1)

−1 t•j if m j+1 = m j − 1
(2.3)

The initial condition (m, xm, x•
m) is simply the assignments:

Tj,m j = t j and T •
j,m j

= t•j (2.4)

2.2. Reflection invariance. It is useful to note that the system is invariant under the
composition of • and the symmetry Sa,b defined as STj,k = Ta− j,b−k for some fixed
integers a, b such that a + b = j + k mod 2. We have:

Lemma 2.2. If Tj,k is a solution of the NC A1 T -system, then Sa,bTj,k = Ta− j,b−k is
also a solution of the same system. Moreover if we set initial conditions of the form
(m, xm, x•

m), then the quantity Sa,bTj,k = Ta− j,b−k solves the NC A1 T -system for the
initial data (p, xp, x•

p), where p = Sa,bm is the reflected path with p j = b − ma−i ,
j ∈ Z, and the data xp = {ta− j } j∈Z, x•

p = {t•a− j } j∈Z.

Proof. Let us apply • to the system (2.1) and then take k → b − k and j → a − j .
We get

Ta− j,b−k−1T •
a− j,b−k+1 = 1 + Ta− j+1,b−k T •

a− j−1,b−k (2.5)

Let us define U j,k = Sa,bTj,k = Ta− j,b−k . Then the above equation becomes:

U j,k+1U •
j,k−1 = 1 + U j−1,kU •

j+1,k

and the first statement of the lemma follows. The second follows from noting that the
initial data for U j,k are exactly given by (p, xp, x•

p). ��
If we choose for (a, b) some vertex of the initial data path, Lemma 2.2 allows us to

only compute the solution of the T -system above the initial data path, namely Tj,k for
all k ≥ m j . Indeed, upon applying the reflection w.r.t. a vertex of m, we immediately get
the solution under the path. Throughout these notes we will therefore restrict ourselves
to finding the solution above the path.
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2.3. Integrability. The NC A1 T -system is integrable in the following sense.

Theorem 2.3. The quantities

� j,k = Tj−1,k+1T −1
j,k + (T •

j,k)
−1T •

j+1,k−1

� j,k = T −1
j,k Tj+1,k+1 + T •

j−1,k−1(T
•
j,k)

−1

are conserved modulo the NC A1 T -system, respectively in the (1, 1) and (−1, 1) direc-
tions, namely: � j,k = � j−1,k−1 = � j−k,0 ≡ � j−k and � j,k = � j+1,k−1 = � j+k,0 ≡
� j+k for all j, k ∈ Z. Moreover, the NC A1 T -system solutions satisfy the following
left/right linear recursion relations:

Tj−1,k+1 − � j−k Tj,k + Tj+1,k−1 = 0

Tj+1,k+1 − Tj,k � j+k + Tj−1,k−1 = 0

in which the non-trivial coefficient is a conserved quantity.

Proof. We start from Eq. (2.1):

Tj,k+1T •
j,k−1 = 1 + Tj−1,k T •

j+1,k (2.6)

Let us multiply the Eq. (2.6) on the right by (T •
j,k−1)

−1T −1
j+1,k . We get:

Tj,k+1T −1
j+1,k = (T •

j,k−1)
−1T −1

j+1,k + Tj−1,k T −1
j,k−1 (2.7)

On the other hand, multiplying (2.6) on the left by (T •
j−1,k)

−1T −1
j,k+1 yields:

(T •
j−1,k)

−1T •
j,k−1 = (T •

j−1,k)
−1T −1

j,k+1 + (T •
j,k+1)

−1T •
j+1,k

Substituting ( j, k) → ( j + 1, k − 1) gives

T •
j,k−1(T

•
j+1,k)

−1 = (T •
j,k−1)

−1T −1
j+1,k + (T •

j+1,k)
−1T •

j+2,k−1 , (2.8)

Subtracting (2.7) from (2.8) finally yields:

T •
j,k−1(T

•
j+1,k)

−1 + Tj−1,k T −1
j,k−1 = Tj,k+1T −1

j−1,k + (T •
j+1,k)

−1T •
j+2,k−1

which reads simply � j,k−1 = � j+1,k . Substituting (T •
j,k)

−1T •
j+1,k−1 = Tj+1,k−1T −1

j,k in

the definition of � j,k , we get �i, j = (Tj−1,k+1 + Tj+1,k−1)T
−1
j,k and the linear recursion

relation follows. The results for � j,k follow analogously. Let us multiply (2.6) on the
left by T −1

j−1,k and on the right by (T •
j,k−1)

−1, and use T •
j+1,k(T

•
j,k−1)

−1 = T −1
j,k−1Tj+1,k

to get:

T −1
j−1,k Tj,k+1 = T −1

j−1,k(T
•
j,k−1)

−1 + T −1
j,k−1Tj+1,k (2.9)

On the other hand, let us multiply (2.6) on the left by T −1
j,k+1 and on the right by (T •

j+1,k)
−1,

and use T −1
j,k+1Tj−1,k = T •

j−1,k(T
•
j,k+1)

−1 to get:

T •
j,k−1(T

•
j+1,k)

−1 = T −1
j,k+1(T

•
j+1,k)

−1 + T •
j−1,k(T

•
j,k+1)

−1
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Substituting ( j, k) → ( j − 1, k − 1) gives

T •
j−1,k−2(T

•
j,k−1)

−1 = T −1
j−1,k(T

•
j,k−1)

−1 + T •
j−2,k−1(T

•
j−1,k)

−1 (2.10)

Subtracting (2.9) from (2.10) finally yields:

T −1
j−1,k Tj,k+1 + T •

j−2,k−1(T
•
j−1,k)

−1 = T −1
j,k−1Tj+1,k + T •

j−1,k−2(T
•
j,k−1)

−1

which reads simply � j−1,k = � j,k−1. The linear recursion relation follows by substi-
tuting T •

j−1,k−1(T
•
j,k)

−1 = T −1
j,k Tj−1,k−1 in the definition of � j,k , and the theorem is

proved. ��
Remark 2.4. Both conserved quantities of Theorem 2.3 are invariant under • as a con-
sequence of the relations (2.2). This implies the following linear recursion relations for
the T • variables:

T •
j−1,k+1 − T •

j,k � j−k + T •
j+1,k−1 = 0

T •
j+1,k+1 − � j+k T •

j,k + T •
j−1,k−1 = 0

2.4. Main result. We now state the main theorem of these notes:

Theorem 2.5 (NC positive Laurent Property). For any fixed initial conditions (m, xm,

x•
m) the non-commutative A1 T -system’s solutions Tj,k, T •

j,k are non-commutative Lau-
rent polynomials of the initial variables ti , t•i , i ∈ Z, with non-negative integer coeffi-
cients.

To prove this theorem, we will construct the solutions of the NC A1 T -system explic-
itly by means of a matrix representation (see Sect. 4 below). Before going into this,
we show in the next section that the A1 T -system above restricts to known systems for
particular T ’s and T •’s.

3. Restrictions to Known Cases

In this section, we show that the NC A1 T -system restricts to some known non-
commutative systems for suitable choices of the variables Tj,k and T •

j,k .

3.1. The NC A1 Q-system.

Definition 3.1 [7]. The Non-Commutative A1 Q-system is the following set of recursion
relations for non-commutative invertible variables Rn , n ∈ Z:

Rn+1 R−1
n Rn−1 = Rn + R−1

n (n ∈ Z) (3.1)

The initial data (R0, R1) determine the value of a conserved quantity C such that

R−1
n+1 Rn Rn+1 R−1

n = R−1
1 R0 R1 R−1

0 = C

which can be rewritten as the following quasi-commutation relations:

Rn Rn+1 = Rn+1 C Rn or R−1
n Rn+1 C = Rn+1 R−1

n (3.2)
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while the main equation can be rewritten as

Rn+1C Rn−1 = 1 + R2
n (3.3)

or equivalently Rn−1 Rn+1C = 1 + RnC RnC . Moreover, there is a second conserved
quantity[7]:

K = Rn+1 R−1
n + R−1

n Rn−1 = R1 R−1
0 + R−1

1 R−1
0 + R−1

1 R0 (3.4)

modulo the A1 Q-system relation (3.1).
We have the following:

Theorem 3.2. The NC A1 T -system of Definition 2.1 reduces to the NC A1 Q-system of
Definition 3.1 for particular choices of the non-commutative variables Tj,k .

Proof. Setting:

Tj,k = C−a j,k RkCb j,k , T •
j,k = C−c j,k RkCd j,k ( j, k ∈ Z; j + k = 0 mod 2)

(3.5)

we easily get:

T −1
j,k−1Tj+1,k = C−b j,k−1 R−1

k−1Ca j,k−1−a j+1,k RkCb j+1,k

T •
j+1,k(T

•
j,k−1)

−1 = C−c j+1,k RkCd j+1,k−d j,k−1 R−1
k−1Cc j,k−1

Tj−1,k T −1
j,k−1 = C−a j−1,k RkCb j−1,k−b j,k−1 R−1

k−1Ca j,k−1

(T •
j,k−1)

−1T •
j−1,k = C−d j,k−1 R−1

k−1Cc j,k−1−c j−1,k RkCd j−1,k

These boil down to the quasi-commutation (3.2) iff the following relations are satisfied:

a j+1,k = a j,k−1 = d j−1,k − 1, b j+1,k − 1 = c j,k−1 = c j−1,k

c j+1,k = b j,k−1 = b j−1,k, d j+1,k = d j,k−1 = a j−1,k
(3.6)

These recursion relations determine a, b, c, d up to initial data. Assuming these hold,
let us finally express:

Tj,k+1T •
j,k−1 = C−a j,k+1 Rk+1Cb j,k+1−c j,k−1 Rk−1Cd j,k−1

Tj−1,k T •
j+1,k = C−a j−1,k RkCb j−1,k−c j+1,k RkCd j+1,k

Noting that a j,k+1 = a j−1,k , d j+1,k = d j,k−1, b j−1,k − c j+1,k = 0, b j,k+1 − c j,k−1 = 1
and a j,k+1 = d j,k−1 as a consequence of the relations (3.6), we conclude that:

0 = Tj,k+1T •
j,k−1 − Tj−1,k T •

j+1,k − 1 = C−a j,k+1(Rk+1C Rk−1 − R2
k − 1)Cd j,k−1

hence (2.1) boils down to (3.3) up to conjugation with Ca j,k+1 , and the theorem follows.
��
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Let us work out explicitly the solution of the system (3.6). First note that

a j,k = a j−k,0 = a

(
j − k

2

)
, b j,k = b j+k,0 = b

(
j + k

2

)
,

c j,k = c j+k,0 = c

(
j + k

2

)
, d j,k = d j−k,0 = d

(
j − k

2

)
,

as j = k mod 2. We conclude that a(m) = d(m − 1) − 1, b(m) = c(m − 1) + 1,
c(m) = b(m − 1) and d(m) = a(m − 1), which is easily solved say for trivial initial
data a(0) = b(0) = c(0) = d(0) = 0 as:

a(m) = −
⌊m + 1

2

⌋
, b(m) =

⌊m + 1

2

⌋
, c(m) =

⌊m

2

⌋
, d(m) = −

⌊m

2

⌋

so that we finally get

a j,k = −� j − k + 2

4
�, b j,k = � j + k + 2

4
�, c j,k = � j + k

4
�, d j,k = −� j − k

4
�
(3.7)

Remark 3.3. We note that with this choice we have the quasi-periodicity conditions:
Tj+4,k = CTj,kC and T •

j+4,k = C−1T •
j,kC−1. This is to be contrasted with the com-

muting case, for which the solutions of the A1 T -system that are 2-periodic in j are the
solutions of the A1 Q-system.

Remark 3.4. The conserved quantities of the NC A1 T -system reduce respectively to:

� j,k = C−a j−1,k+1(Rk+1 R−1
k + R−1

k Rk−1)C
−b j,k = C� j−k

4 �K C−� j−k
4 �

where we have used (3.7) and the identities: a j−1,k+1 = d j,k , a j,k = d j+1,k−1, and
b j−1,k+1 = b j,k as well as c j,k = c j+1,k−1, and:

� j,k = C−b j,k (R−1
k Rk+1C + C Rk−1 R−1

k )Cc j,k = C−� j+k+2
4 �K C� j+k

4 �

where we have used (3.7) and the identities: b j,k = c j−1,k−1 + 1, b j+1,k+1 = c j,k + 1 as
well as a j,k = a j+1,k+1 and d j−1,k−1 = d j,k . We recover the fact that � j,k is a function
of j − k only, while � j,k is a function of j + k only.

3.2. The quantum A1 T -system. The quantum A1 T -system was defined by use of a
cluster algebra formulation of the commuting A1 T -system, and by considering its
natural quantum version as provided by a corresponding quantum cluster algebra. It is
defined as follows:

Definition 3.5. The quantum A1 T -system is the following system of recursion relations:

q τ j,k+1τ j,k−1 = 1 + τ j+1,kτ j−1,k ( j, k ∈ Z; j + k = 1 mod 2) (3.8)

for non-commuting variables τ j,k subject to the following q-commuting relations:

τi,k−1τ j,k = q(−1)
� |i− j |

2 �
τ j,kτi,k−1 (i, j, k ∈ Z; i + k = 1 mod 2; j + k = 0 mod 2)

(3.9)
τi,kτ j,k = τ j,kτi,k (i, j, k ∈ Z; i + k = j + k = 0 mod 2)
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Theorem 3.6. The NC A1 T -system of Definition 2.1 reduces to the quantum T -system
of Definition 3.5 for particular choices of the non-commutative variables Tj,k .

Proof. Setting

Tj,k = qα j,k τ j,k and T •
j,k = q−β j,k τ j,k

and noting that

T −1
j,k−1Tj+1,k = qα j+1,k−α j,k−1τ−1

j,k−1τ j+1,k

T •
j+1,k(T

•
j,k−1)

−1 = qβ j,k−1−β j+1,k τ j+1,kτ
−1
j,k−1

Tj−1,k T −1
j,k−1 = qα j,k−1−α j−1,k τ j−1,kτ

−1
j,k−1

(T •
j,k−1)

−1T •
j−1,k = qβ j,k−1−β j−1,k τ−1

j,k−1τ j−1,k

we see that the first set of commutation relations in (3.9) for i = j − 1 are satisfied iff:

α j+1,k − α j,k−1 = β j,k−1 − β j+1,k + 1, α j,k−1 − α j−1,k = β j,k−1 − β j−1,k − 1

while (3.8) is satisfied iff:

α j,k+1 − β j,k−1 = 1, α j−1,k − β j+1,k = 0

We deduce that

α j+1,k + α j−1,k − α j,k+1 − α j,k−1 = 0

α j−1,k − α j−1,k+2 + α j,k+1 − α j,k−1 = 1

This system has solutions, and we find in particular that:

α j,k = 2k + 1

4
− ( j − k)2

8
, β j,k = 2 j − 1

4
− ( j − k)2

8

fulfills all the requirements. The other q-commutation relations are simply further
requirements on the variables T, T •. ��

4. Solution via Flat NC Connection

In this section, we introduce a representation of the NC T -system relation via a 2×2
matrix identity with non-commuting entries, which can be interpreted as a flat NC
connection. This is then used to write a compact expression for the solution of the
system for any initial data.

4.1. V, U matrices.

Definition 4.1. Let U, V be the following 2×2 matrices with non-commutative entries1:

V (a, b) =
(

ab−1 (b•)−1

0 1

)
, U (b, c) =

(
1 0

c−1 b•(c•)−1

)

1 Our notation is slightly abusive, as for instance V (a, b) actually depends a priori on the four independent
variables a, b, a•, b•, and likewise for U . The indication a, b here really stands for a, b and their • images.
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We have the following:

Lemma 4.2. If the variables a, b, c, a•, b•, c• are such that

ab−1 = (b•)−1a• and b−1c = c•(b•)−1,

then

V (a, b) U (b, c) = U (a, x) V (x, c) iff

{
x = (b•)−1 + ab−1c

b = (x•)−1 + cx−1a

and moreover we have:

a−1 x = x• (a•)−1 and x c−1 = (c•)−1 x•

Proof. We compute:

V (a, b) U (b, c) =
(

ab−1 + (b•)−1c−1 (c•)−1

c−1 b•(c•)−1

)

U (a, x) V (x, c) =
(

xc−1 (c•)−1

c−1 a•(x•)−1 + x−1(c•)−1

)

The identity between these is equivalent to the system:

x = (b•)−1 + ab−1c and b• = x−1 + a•(x•)−1c•

and we get the first statement of the lemma by taking the • of the second equation. For
the second statement, note that:

a−1x = a−1(b•)−1 + b−1c = b−1(a•)−1 + c•(b•)−1 = x•(a•)−1

where we have used a−1(b•)−1 = b−1(a•)−1 and b−1c = c•(b•)−1. Analogously,

xc−1 = (b•)−1c−1 + ab−1 = (c•)−1b−1 + (b•)−1a• = (c•)−1x•

and the lemma follows. ��
The equations of the Lemma above may be conveniently rewritten in a non-

commutative polynomial form. We have:

Lemma 4.3. Given the non-commuting variables a, b, c, a•, b•, c• subject to the rela-
tions ab−1 = (b•)−1a• and b−1c = c•(b•)−1, the system:{

x = (b•)−1 + ab−1c

b = (x•)−1 + cx−1a
(4.1)

is equivalent to the single equation:

x b• = 1 + a c• (4.2)

The latter also implies the relations

a−1 x = x• (a•)−1 and x c−1 = (c•)−1 x•. (4.3)
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Proof. Multiplying the first equation of the system (4.1) on the right by b•, and using
b−1c = c•(b•)−1 gives Eq. (4.2). Conversely, the latter implies that x = (b•)−1 +ab−1c
and the relations (4.3) follow. Now multiplying the latter on the left by b• yields b• x =
1+a• c by use of ab−1 = (b•)−1a•. This gives x• b = 1+c• a, upon applying •. Finally,
multiplying this on the left by (x•)−1 yields the second equation of the system (4.1), by
use of (x•)−1c• = cx−1, and the lemma follows. ��

4.2. Solution and NC positive Laurent property. Let us consider the NC A1 T -system
with initial data (m, xm, x•

m). As explained above, without loss of generality, we may
restrict ourselves to finding an expression for Tj,k with k ≥ m j , namely above the
boundary path.

Definition 4.4. Let j0, j1 ∈ Z to be the lower and upper projections of ( j, k) onto the
path m defined as follows. j0 is the largest integer � such that k − j = m� − �. j1 is the
smallest integer � such that k + j = � + m�. The section of m between j0 and j1 is also
called the projection of ( j, k) onto m.

Definition 4.5. For x, y ∈ Z, x ≤ y, we define the 2 × 2 matrix Mm(x, y) as follows.
We consider the section of m between x and y namely {m j } j∈[x,y]. From left to right
it is a succession of up (if m j+1 = m j + 1) and down (if m j+1 = m j − 1) steps. Let
Mm(x, x) = I the 2 × 2 identity matrix. We define Mm(x, j), j ≥ x by induction as:

Mm(x, j + 1) = Mm(x, j) ×
{

U (t j , t j+1) if m j+1 = m j + 1

V (t j , t j+1) if m j+1 = m j − 1

In other words Mm(x, y) is the product of U, V matrices along the section of m between
x and y, with U for up steps, and V for down steps.

The strategy for solving the NC A1 T -system is as follows. We start from the situation
when the point ( j, k) belongs to the initial data path m, in which case the solution Tj,k
is trivially t j , the initial data assignment. Next we “mutate” the initial data by local
moves consisting of replacing a succession of down-up steps with a succession of up-
down steps. This in turn corresponds to one backward application of the matrix identity
of Lemma 4.2 in which the old variables x, x• must then be replaced by b, b• on the
new (backward mutated) path. This however conserves the value of the matrix product,
allowing us to write a general formula for the solution that is independent of the path.
We have the following:

Theorem 4.6. The solution Tj,k of the NC A1 T -system with initial data (m, xm, x•
m) is

given by

Tj,k = (Mm( j0, j1))1,1 t j1 (4.4)

Proof. By induction on the shape of m. It is clear from the definitions that the projection
of ( j, k) onto m should start with a down step and end with an up step. Let us first
consider the case of a “maximal” path section p between j0 and j1 made of a succession
of up steps followed by a succession of down steps, and an associated assignment of
initial values {θi , θ

•
i }i∈[ j0, j1] where θi = Ti,pi is the solution of the system at the point

(i, pi ). The corresponding matrix Mp( j0, j1) is a (lower triangular) product U of U
matrices followed by a (upper triangular) product V of V matrices. As a consequence,
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(
Mp( j0, j1)

)
1,1 = U1,1V1,1. We easily compute U1,1 = 1 as all (1, 1) elements of U

matrices are equal to 1. We also compute:

V1,1 =
j1−1∏
i= j

V (θi , θi+1)1,1 = θ jθ
−1
j1

as the product is telescopic. Noting that θ j1 = t j1 , and θ j = Tj,k , this finally gives
(
Mp( j0, j1)

)
1,1 t j1 = θ j = Tj,k

so the formula (4.4) holds for m replaced by the maximal section of path p. We may now
“peel” p by successive mutations so as to reach m in finitely many steps. Each such step
involves substituting a product of the form U V with a product V ′U ′ by backward use of
the identity of Lemma 4.2. As each such substitution preserves the value of the matrix
M( j0, j1), we finally get Mm( j0, j1) = Mp( j0, j1), and the theorem follows. ��
Remark 4.7. Note that Theorem 4.6 immediately implies Theorem 2.5, as the non-zero
entries of the U, V matrices are all Laurent monomials of the variables t j and t•j , with
coefficient 1, and the entries of the matrix Mm( j0, j1) are therefore Laurent polynomials
of {t j , t•j } with non-negative integer coefficients.

Remark 4.8. Note that the solution given by Theorem 4.6 produces for Tj,k a Laurent
polynomial in which each contributing monomial is well-ordered, namely indices of t±1

i
and (t•i )±1 are strictly increasing from left to right. This form is unique, as applications
of the relations (2.3) on the initial data would change the ordering.

Example 4.9. Let us consider the case of the “flat” initial data path m(0), with m(0)
i = i

mod 2, and with the assignments Ti,i mod 2 = ti , i ∈ Z. Then we have:

T3,3 = (V (t1, t2)U (t2, t3)V (t3, t4)U (t4, t5))1,1 t5

=
((

t1t−1
2 + (t•2 )−1t−1

3 (t•3 )−1

t−1
3 t•2 (t•3 )−1

)
.

(
t3t−1

4 + (t•4 )−1t−1
5 (t•5 )−1

t−1
5 t•4 (t•5 )−1

))

1,1

t5

= (t1t−1
2 + (t•2 )−1t−1

3 )(t3t−1
4 t5 + (t•4 )−1) + (t•3 )−1

= t1t−1
2 t3t−1

4 t5 + t1t−1
2 (t•4 )−1 + (t•2 )−1t−1

4 t5 + (t•2 )−1t−1
3 (t•4 )−1 + (t•3 )−1 (4.5)

Note the ordering of the terms in each monomial, a manifestation of the well-ordered
structure of Remark 4.8.

4.3. NC networks. In this section, we express the solution to (2.1) in terms of any
admissible data as a non-commutative network partition function, namely as the partition
function of paths with non-commutative weights on a suitably defined oriented graph.

In the classical and quantum cases, the matrices U, V have been interpreted as transfer
matrices (or “chips”) for paths on weighted graphs. In the NC case, the interpretation is
the same, but the paths now receive NC step weights, to be multiplied in the same order
as the corresponding steps. More precisely, to each matrix Va,b, Ua,b we associate an
oriented graph with two entry connectors labeled 1, 2 on the left and two exit connectors
1, 2 on the right, and an oriented step i → j whenever the corresponding matrix element
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(i, j) is non-zero. We attach the value of this matrix element to the corresponding oriented
step on the graph. This produces two weighted oriented graphs as follows (all edges are
oriented from left to right):

−1

b b−1a
−1

a −1(b) (b)

1

a b a b

2

.. .

U(a, b) V (a, b)

(4.6)

where we have indicated the non-trivial step weights as NC Laurent monomials of
a, b, a•, b•. Note that the variables a, b become face labels in the pictorial representation.

A NC network is the graph obtained by the concatenation of such chips, forming a
chain where the exit connectors 1, 2 of each chip in the chain are identified with the
entry connectors of the next chip in the chain, while face labels are well-defined. The
latter condition imposes that U and V parameters themselves form a chain a1, a2, . . .,
for instance the matrix:

W = U (a1, a2)U (a2, a3)V (a3, a4)U (a4, a5)V (a5, a6) (4.7)

corresponds to the network:

aa a a a a
1

2 2

1
4 51 632

The partition function of a NC network with weighted adjacency matrix W , with entry
connector i and exit connector j is the matrix element Wi, j . It is the sum over paths
from entry i to exit j of the product of edges weights, taken in the order they are
traversed.

We are now in position to clarify the interpretation of the non-negative integer coef-
ficients in the positive NC Laurent property of the solutions of the NC A1 T -system,
expressed in terms of some arbitrary initial data. To each matrix Mm( j0, j1) we may
associate a NC network Nm( j0, j1) made of the j1 − j0 concatenated (U /V ) chips cor-
responding to the (up/down) step succession in the relevant section of m. In particular,
the entry (1, 1) of this matrix is interpreted as the partition function for paths of j1 − j0
steps from entry point 1 to exit point 1 on the network graph Nm( j0, j1), namely the
sum over all paths weighted by the product of their step weights in the order in which
they are taken. This is summarized in the following:

Theorem 4.10. The solution Tj,k of the NC A1 T -system with initial data (m, xm, x•
m)

is the partition function for paths from entry connector 1 to exit connector 1 on the NC
network Nm( j0, j1) associated to the initial data, multiplied by t j1 .

Example 4.11. Let us consider again the case of the “flat” initial data path m(0) of
Example 4.9. The expression (4.5) for T3,3 is the sum of five monomials. These are
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interpreted as the five paths of 4 steps, from connector 1 to connector 1, on the network
Nm(0) (1, 5):

where we have indicated the non-trivial step weights. The five paths from entry 1 on the
left to exit 1 on the right are:

path :

weight : t1t
−1
2 t3t

−1
4 t5 t1t

−1
2 (t•4)

−1 (t•2)
−1t−1

4 t5 (t•2)
−1t−1

3 (t•4)
−1 (t•3)

−1

where we have also represented their monomial contributions to T3,3 =(Mm(0) (1, 5)
)

1,1 t5 of (4.5).

4.4. NC dimers. Another interpretation of the solution Tj,k holds in terms of a dimer
partition function on a suitable 4–6 ladder graph, entirely determined by the initial
data. A dimer model on a given bipartite graph is a weighted statistical ensemble of
configurations of “dimers” occupying the edges of the graph in such a way that each
vertex of the graph is covered by exactly one dimer. The weight of the configuration is
usually the product of weights of local configurations of dimers say around each face in
the case of a graph embedded in a surface.

In this section, we extend the definition to dimer models with non-commutative
weights on particular ladder-like graphs.

4.4.1. The case of flat initial data path m(0). In this case, the corresponding network
of Theorem 4.10 is the concatenation of a succession of U /V type chips, between the
positions j0 and j1. In this section we show that the corresponding partition function of
paths from entry connector 1 to exit connector 1 may be recast into the partition function
of dimers on a suitable “ladder” graph.

Definition 4.12. The ladder graph LN of length N is a vertex-bicolored (black and white)
planar graph with 2N − 2 vertices say at integer points in the rectangle {1, 2, . . . , N −
1} × {1, 2} ⊂ Z

2, N − 2 inner square faces labeled 2, 3, . . . , N − 1, and two boundary
“faces” labeled 1,2 adjacent respectively to the leftmost and rightmost vertical edge.
By convention we color in black the vertex at the lower left corner (1, 1). Each face of
the ladder graph is equipped with a pair t j , t•j , j = 1, 2, . . . , N of non-commutative
weights, where j runs over the face labels in LN .

Definition 4.13. The Non-Commutative (NC) dimer model on the ladder graph LN is
defined by attaching to each dimer configuration on LN a non-commutative weight as
follows. The total weight of a given configuration is the product (in this order) of the
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weights of faces 1, 2, . . . , N . The left and right boundary face receive respectively the
weight t1−Di

i , i ∈ {1, N }, where Di is the number of dimers (∈ {0, 1}) adjacent to the
corresponding boundary face. Each inner face labeled i ∈ {2, 3, . . . , N − 1} receives a
weight as indicated in the table below, depending on the dimer configuration around the
face, and on the parity of the face label:

dimer
configuration other

face
weight t−1

i (t•i )
−1 t•i (t•i )

−1 t−1
i ti 1

(4.8)

(the face label in the first three cases is even, and odd in the next three). The partition
function Z(LN ) of the NC dimer model on the NC weighted ladder graph LN is the sum
over all dimer configurations on LN of the corresponding weights.

Theorem 4.14. The solution Tj,k of the NC A1 T -system with fundamental initial data
(m(0), xm(0) , x•

m(0) ) is the partition function Z(LN ) for NC dimers on the ladder graph
LN with N = 2k + 1 and with face variables t j0 , t•j0 , t j0+1, t•j0+1, · · · t j1, t•j1 , where j =
j0+ j1

2 and k = j1− j0
2 .

Proof. By bijection. We use the known bijection between paths of length 2k from entry
connector 1 to exit connector 1 on the network Nm(0) ( j0, j1) and the dimer configurations
on L2k+1. On even faces, the bijection maps the five possible local path configurations
to five local dimer configurations according to the following dictionary:

a

.

ba c b cc ba c ba c ba

−1

ba c ba c ba bc b a ca c

b b1 1

dimer

path

weight b
−1

(4.9)

where we have indicated the b, b• dependence of the step weights, which we take to be
the weight of the corresponding square face labeled b of the dimer model. Odd faces are
treated similarly, with b and b• interchanged. The theorem follows by inspection of the
weights, namely by collecting all contributions of path weights that involve the variables
b, b• of any given face. ��
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Example 4.15. Let us present the dimer version of Examples 4.9 and 4.11. The five paths
contributing to T3,3 correspond bijectively to the following dimer configurations:

121 3 4 5 2 3 4 5 21 3 4 5

21 3 4 5 21 3 4 5

321 21 2
.

4 5 4 5

32
.

.
4

.
4

.
3

−1t t−1 t t t−1 −1 tt

t

t

−1t

−1

−1

ttt

tt 1−1−

−1

where we have indicated all the non-trivial face weights.

4.4.2. General initial data path m. In [5], it was shown that for general initial data the
partition function of network paths giving rise to Tj,k may be reformulated as the partition
function of dimers on some 4−6 generalized ladder graph Lm( j0, j1), made of chains of
a succession of labeled square and hexagonal faces (with labels j0 + 1, j0 + 2, ..., j1 −1)
with an additional left boundary face labeled j0 and a right one labeled j1. More precisely,
successions of up-down or down-up steps of m give rise to square faces (as in the flat
case of previous section):

V (a, b)U(b, c) → b ca → cba

U(a, b)V (b, c) → b ca → cba

while successions of up-up or down-down steps of m give rise to hexagons as follows:

U(a, b)U(b, c) → a cb → b ca

V (a, b)V (b, c) → a b c → ca b

One way of understanding this is via the generalized bijection between arbitrary paths
from 1 to 1 on the network Nm( j0, j1) and dimer configurations on the generalized
ladder Lm.

As before the bijection is local, and in addition to the five cases (4.9) giving rise to
squares, we have the following four cases giving rise to hexagons on even faces (with a
black lower left vertex):
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ac

.

ba ca b c b cb a

1weight b
−1

path

−1
b

dimer

a b c a b c a b ca b c

1

(4.10)

and similarly for the odd one (those with white lower left vertex), with b and b• inter-
changed.

Definition 4.16. We define the NC dimer model on a generalized ladder graphLm( j0, j1)
as the statistical ensemble of dimer configurations on Lm( j0, j1), each receiving the
product of face weights from j0 to j1 (from left to right), each face being weighted
according to the previous rules of (4.8) and their odd counterparts with b ↔ b• for
square faces and boundary faces and to those of (4.10) and their odd counterparts with
b ↔ b• for hexagonal ones. The partition function Z(Lm( j0, j1)) of the NC dimer
model on the NC weighted generalized ladder graph Lm( j0, j1) is the sum over all
dimer configurations on Lm( j0, j1) of the corresponding weights.

Theorem 4.17. The solution Tj,k of the NC A1 T -system with arbitrary initial
data (m, xm, x•

m) is the partition function Z(Lm( j0, j1)) for NC dimers on the
generalized ladder graph Lm( j0, j1) with N = 2k − 1 faces with variables
t j0 , t•j0 , t j0+1, t•j0+1, · · · t j1, t•j1 , where j = j0+ j1

2 and k = 1 + j1− j0
2 .

Proof. By bijection. We use the above-mentioned bijection between the paths from 1
to 1 on Nm( j0, j1) and the dimer configurations on Lm( j0, j1), and collect the weights
involving the variables t, t• of any given face to recover the rules (4.8) and (4.10). ��

Example 4.18. Let us express T2,4 in terms of initial data T0,2 = a, T1,1 = b, T2,0 = c,
T3,1 = d, T4,0 = e, and T5,1 = f . We have the following situation:

2,4

0

a

b

c e

d f

T
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with j0 = 0 and j1 = 5. The solution from Theorem 4.6 is

T2,4 = (V (a, b)V (b, c)U (c, d)V (d, e)U (e, f ))1,1 f

= (b•)−1d−1e−1 + (b•)−1e−1 f + (b•)−1c•(d•)−1 + a(b•)−1(c•)−1d−1(e•)−1

+ ab−1(c•)−1e−1 f + ab−1(d•)−1 + ac−1(e•)−1 + ac−1de−1 f

To the relevant portion of initial data path between j0 = 0 and j1 = 5, we associate the
following generalized ladder graph:

and the eight dimer configurations contributing to T2,4 are:

a c feb d a c feb d da c feb

(b•)−1d−1(e•)−1 (b•)−1e−1f (b•)−1c•(d•)−1

da c feb a b dc fe a c fedb

ab−1(c•)−1d−1(e•)−1 ab−1(c•)−1e−1f ab−1(d•)−1

a c fb d e a c fb d e

ac−1(e•)−1 ac−1de−1f

5. Conclusion and Perspectives

In this paper, we have introduced and solved a new non-commutative discrete integrable
system of infinite dimension, and proved the positive Laurent property of its solutions in
terms of initial data. In view of previous work in rank 2, it would be interesting to extend
the definition of this system to a full (infinite rank) non-commutative cluster algebra,
allowing for more non-commutative transformations preserving the Laurent property.

As a motivating example, let us consider the case of a general solution of the A1
T -system, for some fixed arbitrary initial data. Assume we have mutated the initial data
so as to reach a situation where the new path is made locally of a succession of two up
steps, say with vertex values a, b, c subject to a−1b = b•(a•)−1 and b−1c = c•(b•)−1.
We claim that the new “mutation” b → b′ at the central vertex (which takes us away
from the T -system relations) still makes sense if defined by:

b (b′)• = a + c or equivalently b′b• = a• + c•.

It is easy to see that this preserves the positive Laurent property, by noting that (b′)• =
b−1(a + c) = b−1c + a•(b•)−1 is nothing but the conserved quantity � of Theorem 2.3,
expressed in terms of three aligned vertex values a, b, c. Indeed, this conserved quantity
may be easily re-expressed in terms of the initial data, and it is readily seen that the
expression for (b)• divides that for a + c on the left. From Remark 2.4, we deduce that
(b′)• = b′. In addition, we learn that the new variable b′ satisfies the following “triangle”
relation:
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(a•)−1(b′)•c−1 = (c•)−1b′a−1 or equivalently b′a−1c = c•(a•)−1(b′)•,
easily derived by straightforward algebra. This relation generalizes the relations (2.3).
It is very reminiscent of the triangular relations imposed in the finite rank case of non-
commutative triangulations defined by Berenstein and Retakh [17].

As in the classical case of [10], we may try to extend the definition of the A1 T -system
for various geometries (half-plane, strip, etc.) in such a way as to preserve the positive
Laurent property. We will address this problem in a later publication. We may also hope
for a non-commutative version of Zamolodchikov’s periodicity conjecture (say for type
A).

Another direction of generalization should be to higher rank T - or Q-systems [8].
Many questions remain unanswered, such as the interpretation of higher order quaside-
terminants in terms of paths or dimers with non-commutative weights.
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