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Event-by-event fluctuations of observables are often modeled using the Monte Carlo Glauber model, in which
the energy is initially deposited in sources associated with wounded nucleons. In this paper, we analyze in detail
the correlations between these sources in proton-nucleus and nucleus-nucleus collisions. There are correlations
arising from nucleon-nucleon correlations within each nucleus, and correlations due to the collision mechanism,
which we dub twin correlations. We investigate this new phenomenon in detail. At the Brookhaven Relativistic
Heavy Ion Collider and CERN Large Hadron Collider energies, correlations are found to have modest effects on
size and eccentricity fluctuations, such that the Glauber model produces to a good approximation a collection of
independent sources.

DOI: 10.1103/PhysRevC.90.034906 PACS number(s): 25.75.Gz, 25.75.Ld

I. INTRODUCTION

Quantum fluctuations in the wave functions of colliding
nuclei at ultrarelativistic energies result in energy-density
correlations in the initial stage of these collisions. These
density correlations in turn produce observable correlations,
which have been actively studied over the past few years
[1]. There are two sources of such quantum fluctuations:
fluctuations of positions of nucleons within the nucleus, and
fluctuations at the subnucleonic level. In this paper, we analyze
the first source, and the resulting density correlations in
the proton-nucleus and nucleus-nucleus collisions, using the
Glauber approach [2–5].

Initial-state fluctuations have a number of observable
consequences in nucleus-nucleus collisions: their relevance
has first been pointed out in the study of the elliptic flow,
which is significantly enhanced by fluctuations [6–8]. They
also generate odd harmonic components of anisotropic flow
[9], such as the triangular flow [10] and the directed flow at
midrapidity [11–13]. These new flow phenomena have been
analyzed at the Brookhaven Relativistic Heavy-Ion Collider
(RHIC) [14,15] and at the CERN Large Hadron Collider
(LHC) [16–18].

The recognition that initial-state fluctuations act as a seed
for anisotropic flow has triggered searches of collective flow in
much smaller systems, such as in the proton-nucleus collisions
[19,20], where collective behavior could explain the observed
correlations [21–24]. Anisotropic flow is also a candidate
[25–27] among others [28,29] for explaining the “ridge” in the
high-multiplicity proton-proton collisions at the LHC [30,31].

The relevance of event-by-event fluctuations [32,33] ex-
tends beyond the realm of anisotropic flow. In particular,
comprehensive studies have been devoted to fluctuations of the
average transverse momentum 〈pT 〉, both from the theoretical
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[34–37] and experimental side [38–41], as these fluctuations
may reflect critical phenomena expected at the phase transition.

Much progress has been made in understanding the re-
sponse to initial fluctuations [11,42–46]: typically, elliptic
flow is proportional to the initial eccentricity [7]; triangular
flow is proportional to the initial triangularity [10]; finally,
〈pt 〉 fluctuations arise as a natural consequence of initial-state
(size) fluctuations [47]. Eventually, the study of fluctuations
essentially boils down to the study of the initial fluctuations.

There have been many dedicated studies of the initial
fluctuations using the Glauber approach [5,48–53], as well as
other approaches inspired by the saturation physics [54,55].
Partonic correlations, which are neglected here, have also
been studied in proton-proton and proton-nucleus collisions
[56,57]. In other studies of fluctuations, the Gaussian color
glass condensate model was considered in [58] and the
Fourier-Bessel fluctuating mode decomposition was applied
in [59,60].

In the Glauber model, each wounded nucleon [61,62] is
treated as a localized source. The resulting correlations are of
two types:

(i) the correlations already present in the colliding nuclei,
due in particular to the short-range nucleon-nucleon
repulsion (Sec. III);

(ii) the correlations generated by the collision mechanism
itself: a projectile nucleon can collide with a target
nucleon only if they are close by in the transverse
coordinate space, therefore wounded nucleons go
in pairs. We refer to this effect as to the “twin”
correlations.

While the first effect has already been thoroughly studied
[48,63], there are fewer studies of twin correlations [64].

Most effects of initial-state fluctuations are encoded in the
two-body correlation of the initial (energy)1 density S(x, y)

1Throughout this paper we refer to the energy density simply as the
density. We shall also assume that ρ is divided by a constant energy
factor, so as to give it the dimension of a number density.
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[32,58,65]. This quantity is defined in Sec. II, where we explain
how fluctuations of observables can be expressed in terms of
S(x, y). In Sec. III, we introduce a simple parametrization of
nuclear correlations and show that their effect is reduced by
the projection onto the transverse plane, which results from
the collision geometry at ultrarelativistic energies. Proton-
nucleus collisions are studied in Sec. IV and nucleus-nucleus
collisions in Sec. V. We carry out numerical simulations with
GLISSANDO [66,67], a flexible code for Monte Carlo Glauber
[68] calculations. Since we wish to focus on situations where
the initial fluctuations are most relevant, we only study central
collisions, with exactly zero impact parameter (b = 0). Along
with the first systematic investigation of twin correlations
(Sec. V), we present semi-analytic estimates of effects of
nuclear correlations, which have been investigated numerically
in greater detail by other groups [48,63].

II. FROM CORRELATIONS TO FLUCTUATIONS

In this section, we first define the simple Glauber model
which is used throughout this paper. We introduce the density-
density correlation function S(x, y) and show its decomposi-
tion. We then explain how fluctuations of observables can be
expressed in terms of S(x, y).

A. Glauber models

In Glauber models, a proton-nucleus (p-A) or a nucleus-
nucleus (A-A) collision is viewed as a superposition of
elementary processes, each of which deposits entropy and
energy locally [5] in “sources”. The simplest implementation
is the wounded nucleon model of A-A collisions [61,62]:
nucleons from the colliding nuclei wound whenever their
transverse distance is sufficiently small, and point-like sources
are created at the centers of wounded nucleons. For p-A
collisions, we use an alternative prescription [20], where
the point-like sources are located in the center-of-mass of
the incident proton and the wounded nucleons from the
target nucleus. Note that we choose different prescriptions
for the nucleus-nucleus and proton-nucleus collisions. For the
nucleus-nucleus collisions, this is the standard prescription.
For the proton-nucleus collisions, our choice is dictated by
simplicity, as explained later in this paper.

In a given event, the density of sources in the transverse
plane is

ρ(x) =
n∑

i=1

δ(x − xi), (1)

where n is the number of sources and xi denote their transverse
positions. The integrated density is the number of sources:∫

d2x ρ(x) = n. (2)

The number n fluctuates from event to event, and so do the
positions xi . Since n is related to the multiplicity of the event,
we shall refer to it simply as the multiplicity.

Equation (1) defines the simplest form of the Glauber
model, which is used throughout this paper. It can easily be
improved by taking into account the fact that sources may

not all be equivalent [66] (Appendix B), or by incorporating
the finite transverse size of the sources (Appendix C). Further
ramifications take into account the number of binary nucleon-
nucleon collisions [66,69,70], or include a fluctuating nucleon-
nucleon cross section [71–75].

Note that Monte Carlo Glauber calculations frequently
involve recentering corrections: typically, one imposes∑n

i=1 xi = 0 in Eq. (1). The correlation induced by this
recentering correction is discussed in Appendix D.

B. Density-density correlations

The central object of our study is the density-density
correlation function, defined as

S(x, y) ≡ 〈ρ(x)ρ( y)〉 − 〈ρ(x)〉〈ρ( y)〉,
= 〈δρ(x) δρ( y)〉, (3)

where 〈· · · 〉 denotes the average over a large number of events,
and δρ(x) ≡ ρ(x) − 〈ρ(x)〉 is the fluctuation at a given point
around the average density 〈ρ(x)〉.

From Eq. (2), one derives the normalization∫
d2xd2 y S(x, y) = Var(n). (4)

Using Eq. (1), one can put S(x, y) in the form (see Appendix
A)

S(x, y) = 〈ρ(x)〉δ(x − y) + 〈ρ(x)〉〈ρ( y)〉[g(x, y) − 1].

(5)

The first term in the right-hand side is the so-called autocorrela-
tion, which is proportional to δ(x − y) for point-like sources:
it is the contribution of density fluctuations. The remaining
terms involve the standard pair distribution function g(x, y)
[cf. Eq. (A7)], which contains the information on correlations
between sources. The decomposition (5) can be generalized to
the case of sources of fluctuating strength (Appendix B) and
sources of finite size (Appendix C).

Many analyses in heavy-ion collisions are done at a
fixed centrality, where the centrality is typically determined
according to the multiplicity. Within our simple Glauber
model, this amounts to fixing the number of sources, therefore
our simulations in this paper are always carried out for fixed
n. Note that we fix both the impact parameter b = 0 and the
number of sources n throughout the paper. This is done in
practice by randomly generating events with b = 0, and then
accepting events with a given value of n. The purpose to fix
b (which can be done in simulated events) is to eliminate
the extra fluctuations originating from the impact parameter,
which obscure the mechanisms we wish to point out. If the
sources are uncorrelated (which is the case considered in
[76,77]), the pair distribution function reduces to

g(x, y) = 1 − 1

n
. (6)

By inserting this expression into Eq. (5) one obtains

S(x, y) = 〈ρ(x)〉δ(x − y) − 1

n
〈ρ(x)〉〈ρ( y)〉. (7)
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The density-density correlation thus reduces to the autocorre-
lation term, minus a compensating term which ensures that it
integrates to 0, as required by Eq. (4).

C. Fluctuations of observables

We now explain how fluctuations of observables relate to
the density-density correlation function S(x, y). Observables
are determined, to a good approximation, by simple properties
of the initial density profile—which we also refer to as
“observables” by a slight abuse of terminology—such as the
mean squared radius

r2
rms ≡

∫
d2x r2ρ(x)∫
d2x ρ(x)

, (8)

and the initial anisotropy εn in harmonic n [11], with n � 2:

εn ≡
∫

d2x rneinφρ(x)∫
d2x rnρ(x)

, (9)

where (r,φ) are polar coordinates for the transverse position x.
Note that εn thus defined is a complex number, whose modulus
is the usual anisotropy, and whose phase yields the participant
plane angle in harmonic n.

In this paper, we use slightly different definitions of
observables, in the sense that we replace ρ(x) by 〈ρ(x)〉 in
the denominators of Eqs. (8) and (9). The denominator of
Eq. (8) is the number of sources n, which is kept fixed in all
our simulations, and therefore coincides with its mean 〈n〉. For
Eq. (9), the argument is different: The numerator vanishes by
symmetry if one replaces ρ(x) by 〈ρ(x)〉 for central collisions.
Therefore, if one replaces ρ(x) by 〈ρ(x)〉 in the denominator,
εn is unchanged to leading order in the fluctuations δρ(x).
We have checked numerically that the difference is irrelevant
in practice. The practical purpose of averaging separately the
numerators and denominators in Eqs. (8), (9) is that these
expressions are linear in ρ(x). Then parts of the analysis can
be carried our analytically.

Strictly speaking, Eqs. (8) and (9) hold in a centered
coordinate system, such that

∫
d2x xρ(x) = 0 for every event.

In this section, we neglect this recentering correction and
only center the average distribution:

∫
d2x x〈ρ(x)〉 = 0. The

recentering correction is a higher-order correction to the size,
and also to anisotropies for central collisions [77], except for
the dipole asymmetry ε1 which is not studied here [11].

With these approximations, observables are determined by
simple integrals of the density profile of the type

O ≡
∫

d2x �(x)ρ(x), (10)

with �(x) = r2,rneinφ .
The mean value of O is obtained by replacing ρ(x) with

〈ρ(x)〉 in this equation. One thus obtains

〈
r2

rms

〉 = 1

n

∫
d2x r2〈ρ(x)〉

〈εn〉 = 0. (11)

The mean anisotropy is 0 for all n because we are considering
central collisions.

Similarly, the variance of O is readily expressed as a
function of the density-density correlation (3):

Var(O) = 1

n2

∫
d2x d2 y �(x)�∗( y)S(x, y). (12)

The uncorrelated case, defined by Eq. (6), will often serve
as a benchmark. Inserting Eq. (7) into Eq. (12), one obtains

Var
(
r2

rms

)nocorr. = 1

n
(〈r4〉 − 〈r2〉2),

Var(εn)nocorr. = 〈r2n〉
n〈rn〉2

, (13)

where

〈rn〉 ≡ 1

n

∫
d2x rn〈ρ(x)〉 (14)

are the moments of the r distribution with the average density
profile 〈ρ(x)〉 (note that 〈r2〉 = 〈r2

rms〉). These results (13) are
already known for uncorrelated sources [77]. Note that the last
term in Eq. (7), which is disconnected, does not contribute to
the εn fluctuations, which are solely due to the autocorrelation
term.

One of our goals in this paper is to carefully evaluate the
effect of correlations on fluctuation measures. To this end, we
introduce the ratio

R(O) = Var(O)

Var(O)nocorr
(15)

which we will evaluate for the proton-nucleus in Sec. IV and
for the nucleus-nucleus collisions in Sec. V.

III. NUCLEAR CORRELATIONS

It is well known that the nucleons inside nuclei are strongly
correlated, making nuclear matter behave more as a Fermi
liquid than a Fermi gas. In this section, we recall their effects
on the Glauber calculations. These effects have been studied
in detail in Refs. [48,63].

Sources in the Glauber model are associated with wounded
nucleons, projected onto the transverse plane [Eq. (1)].
Correlations between sources stem from correlations between
wounded nucleons, hence they are affected by nuclear correla-
tions. We are going to show that these effects are significantly
reduced by the projection onto the transverse plane.

The strong repulsive character of the nucleon-nucleon
(NN ) interaction at short distances, together with the Pauli
exclusion principle, generate short range correlations. In this
section, we model these with a hard sphere repulsion or a
smoother Gaussian repulsion which mimics the distributions
of Ref. [78].

A natural measure of the correlation is the ratio be-
tween the normalized two-body probability distribution of
nucleons and the product of the one-body distributions
f (2)(x1,x2)/f (1)(x1)f (1)(x2) (see Appendix A). In order to
see how it varies as a function of the relative distance r =
|x1 − x2|, we integrate both the numerator and denominator
over the mean point:

P (r) ≡
∫

d3 R f (2)
(
R + r

2 ,R − r
2

)
∫

d3 R f (1)
(
R + r

2

)
f (1)

(
R − r

2

) . (16)
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FIG. 1. (Color online) The pair distribution function of Eq. (16)
in the relative distance, P (r), for the 208Pb nucleus for the hard-
sphere expulsion (dashed line) and Gaussian correlation (solid line),
obtained from a Monte Carlo simulation with GLISSANDO [66] using
the expulsion distance.

The half-integrated pair correlation function P (r) thus defined
is plotted in Fig. 1 for the hard sphere and the Gaussian
repulsion. Note the strong repulsion dip near the origin,
compensated by a slight overshoot above unity at large
distances.

The relevant quantity for the present study, however,
is the pair correlation function in the relative transverse
distance, obtained by integrating both the numerator and the
denominator of Eq. (16) along the collision axis z (in the same
way as the nuclear thickness function [4]). The resulting pair
correlation function P (s) is shown in Fig. 2. We note that
the projection leading from P (r) to P (s) greatly reduces the
repulsion dip, from 1 to � 0.15. This is easy to understand,
since the two nucleons may lie close to each other in the
transverse plane, i.e., be at small s, while being sufficiently
separated in z, and hence outside the volume over which they
feel the short range correlation. This property will allow us to
treat these correlations as a small perturbation.

We thus write P (s) = 1 − d(s), where d(s) � 1. In the
following sections, we use the Gaussian parametrization of the

  [fm]ρ
0 0.5 1 1.5 2 2.5

)ρ
P

(

0.84
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0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

FIG. 2. (Color online) Same as Fig. 1 but for the distribution in
the transverse distance, P (ρ) (ρ = s).

nuclear repulsion, which is more realistic than the hard-sphere
repulsion [79]. The resulting d(s) is itself Gaussian to a good
approximation:

d(s) = B exp

(
− s2

2σ 2
d

)
,

(17)
B = 0.11, σd = 0.56 fm,

where the numerical values have been fitted to the results
shown in Fig. 2. When comparing the cases of nuclear
distributions with and without the NN correlations, we make
sure that the single-particle distributions f (1)(x) are identical.
The way to accomplish this in Monte Carlo studies with NN
expulsion distance is explained in Ref. [66].

IV. PROTON-NUCLEUS COLLISIONS

In this section, we study the one-body density and the
density-density correlation in the proton-nucleus collisions
analytically and numerically. We then evaluate fluctuation
observables.

We consider central proton-nucleus collisions (b = 0). We
denote with θ (s) the wounding profile, i.e., the probability
that the proton interacts inelastically with a nucleon sitting at
a transverse distance s away from it. We use the following
Gaussian parametrization [78]:

θ (s) = A exp

(
− s2

2σ 2
w

)
,

(18)
A = 0.92, σw = 1.08 fm.

The normalization reproduces the total inelastic NN cross
section, i.e.,

∫
ds θ (s) = 2πAσ 2

w = σ inel
NN . The choice of pa-

rameters in Eq. (18) is such that σ inel
NN � 68 mb, corresponding

to the LHC energy
√

sNN = 5.02 TeV. Nucleons hit by the
proton as it crosses the nucleus are referred to as participants
or wounded nucleons.

In the model considered here [20], a source is produced at
mid-distance between the proton and each participant nucleon.
Since the proton is by assumption located at the origin, the
sources are placed at the positions zi ≡ si/2, where si denotes
the transverse location of the i th participant. Thus there is a
one-to-one correspondence between sources and hit nucleons
in the target, and all the sources play symmetric roles. Another
option is to assume that the sources are created on top of each
participant. The resulting differences are discussed briefly at
the end of Sec. IV A.

A. Analytic model

As seen above, the distribution of sources closely follows
that of the participants within the target nucleus; in particular,
this distribution directly reflects nuclear correlations that are
inherited from those among the nucleons of the target nucleus.
As explained in Appendix E, for weak correlations, the two-
body distribution of the sources is approximately given by
(with si = 2zi)

f (2)(z1,z2) � c2 θ (s1)θ (s2)(1 − d(|s1 − s2|)), (19)
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where c2 is a normalization constant. It is thus entirely
determined by the wounding profile θ and the correlation factor
1 − d.

The one-body distribution f (1)(z1) is obtained by integrat-
ing Eq. (19) over z2 [see Eq. (A2)]. For uncorrelated nucleons
(d(|s1 − s2|) = 0), it reduces to

f (1)(z1) = 1

n
〈ρ(z1)〉 ∝ θ (s1). (20)

The one-body distribution thus reproduces the wounding
profile (18). When the nucleon-nucleon correlations are taken
into account, the one-body distribution of the sources changes
slightly, even though the one-body distribution of nucleons
is strictly unchanged (see the statement at the very end of
Sec. III). However, this is a very tiny change in practice, such
that Eq. (20) holds to a very good approximation with realistic
correlations.

In order to study how the density-density correlation de-
pends on the relative distance, we introduce the half-integrated
density-density correlation function, much in the same way as
in Eq. (16):

S(�) =
∫

d r S

(
r + �

2
,r − �

2

)
. (21)

The decomposition (5) can be easily transposed to the half-
integrated correlation:

S(�) = 〈n〉δ(�) + R(�)[g(�) − 1], (22)

where

R(�) ≡
∫

d r
〈
ρ

(
r + �

2

)〉 〈
ρ

(
r − �

2

)〉
,

g(�) ≡ 1

R(�)

∫
d r

〈
n(n − 1)f (2)

(
r + �

2
,r − �

2

)〉
.

(23)

With the approximation of Eq. (19) for the two-body
distribution, all integrals can be evaluated analytically. The
pair distribution function g(�) is plotted in Fig. 3 (right). The

FIG. 3. (Color online) The half-integrated pair distribution func-
tion g(
x,
y) for the fireball created in the p+Pb collisions at the
impact parameter b = 0 and the number of participants n = 15, 
 is
the relative transverse distance between the two sources.

central dip reflects the short-range nucleon-nucleon repulsion.
As a crude approximation, by using Eq. (20), one may
replace θ (si) by f 1(zi) in Eq. (19), and write f (2)(z1,z2) �
f (1)(z1)f (1)(z2)(1 − d(|s1 − s2|)). One thus obtains

g(�) �
(

1 − 1

n

)
(1 − d(2
)), (24)

where we have used the fact that the source is half-way between
the nucleons, si = 2zi . Eq. (24) is a good approximation to the
exact result in Fig. 3. A more careful calculation, enforcing
the proper normalization, shows that this approximation only
holds when the range of correlations is much smaller than
the wounding profile, σd � σw, a condition which is only
marginally satisfied with the chosen numerical values.

The simplicity of the results in Eqs. (20) and (24) is a
consequence of the prescription to locate sources halfway
between the proton and the wounded nucleons. If one chooses
instead the “standard” prescription where sources are located
around each participant, the proton also acts as a source
in addition to the hit nucleons: this results in cumbersome
expressions for the one-body and two-body densities, but no
new insight.

B. Monte Carlo simulations

We now show that our simple analytic results, based on
the approximation of weak correlations, are fully supported
by numerical simulations made with GLISSANDO [66] at zero
impact parameter, b = 0. The condition b = 0 is not realistic,
in the sense that it cannot be implemented experimentally.
On the other hand, it allows us to clearly isolate correlations
which do not originate in impact parameter fluctuations. For
sake of simplicity, we fix the number of participants to n =
15, corresponding to a typical value at the LHC energy. In
the presented simulations we are using the correlated nuclear
distributions of Ref. [78] and the Gaussian wounding profile
[79] of Eq. (18).

In Fig. 4 we show the two-dimensional plots of the
simulated half-integrated correlation function R(
), and
the pair correlation function g(
) of Eq. (23). The func-
tion R(
) simply reflects the shape of the folding of the
two single-particle distributions, while g(
) is remarkably
close to the result of the analytic calculation presented in
Fig. 3.

C. Observables

The approximations made in Sec. IV A [specifically,
Eqs. (17), (18), and (19)] allow us to obtain analytic expres-
sions of observables introduced in Sec. II C. For a fixed number
of participants n, the mean squared radius, Eq. (8), is〈

r2
rms

〉 =
∫

d2x r2f (1)(x)

= σ 2
w

2

(
1 + B

σ 2
d σ 2

w(
σ 2

d + 2σ 2
w

)2 + O(B2)

)
, (25)

where the one-body density f (1)(x) has been obtained by
integrating Eq. (19). If nucleons are uncorrelated (B = 0),
the rms radius is proportional to the wounding radius σw.
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FIG. 4. (Color online) Functions R(
) (a) and g(
) (b) defined in Eq. (23) for p+Pb collisions at the impact parameter b = 0 and the
number of participants n = 15, obtained with GLISSANDO.

The proportionality constant would be typically a factor 2
larger if we had assumed that the sources were on top of the
participants, instead of halfway between the proton and the
participants in the target nucleus.

Equation (25) shows that repulsive correlations (B > 0)
result in a very small increase of the fireball size. The effect
of correlations vanishes not only in the limit of a small
correlation length, σd � σw, but also in the opposite limit
where the correlation length is much larger than the fireball
size, σd 
 σw. This is a general result, as we shall see below
for other observables. Numerically, the increase of 〈r2

rms〉 due
to repulsive correlations is a modest 0.6%.

We now evaluate fluctuation observables, namely, the
variance of the mean-square radius and the mean square
eccentricity. In the uncorrelated case (B = 0), Eq. (13)
simplifies to

Var
(
r2

rms

)no corr. =
〈
r2

rms

〉2
n

,

(26)

Var(ε2)no corr. = 2

n
,

where we have used the fact that the one-body distribution,
Eq. (20), is Gaussian.

We finally evaluate the changes in these observables due to
correlations (B > 0), which are conveniently expressed by the
ratio of Eq. (15). Correlations modify all terms in the density-
density correlation function Eq. (5): The autocorrelation term
changes slightly due to the modification of the one-body
distribution of sources. We neglect this contribution, which
is typically less than 1%, and evaluate the contribution of
pair correlations. This contribution is enhanced by a factor n
because the pair correlation g(x, y) in Eq. (5) is multiplied by
a the square of the average density, which scales as n2, while
the autocorrelation term only scales as n. After some algebra,

one obtains

R
(
r2

rms

) = 1 − 2nB
σ 2

d σ 4
w(

σ 2
d + 2σ 2

w

)3 + O(B2),

(27)

R(ε2) = 1 − nB
σ 2

d σ 4
w(

σ 2
d + 2σ 2

w

)3 + O(B2).

Numerically, correlations decrease 〈|ε2|2〉 by a modest 4%.
We have also evaluated numerically their effect of 〈|ε3|2〉
which is even smaller, at the level of 1%. Generally, effects of
correlations are usually even smaller when realistic NN corre-
lations are implemented [48], rather than just the short-range
part considered here. We conclude that for the proton-nucleus
collisions in the Glauber model, correlations between sources
are essentially negligible for the considered observables.

V. NUCLEUS-NUCLEUS COLLISIONS

The Glauber [3,61,62] description of the A + A collisions is
inherently more complicated than that of the p + A collisions.
We are no longer able to determine analytically the distribution
of sources, and hence deduce their correlations with analytic
tools. Nevertheless, one can get a simple understanding of
these correlations in the two limiting cases of small and
large inelastic cross sections. Further understanding is gained
through GLISSANDO simulations.

A. Twin correlations

In the wounded-nucleon model, the density is created by
participant nucleons, which come from one of the two colliding
nuclei A and B. By definition, to each participant in nucleus A
corresponds at least one participant in nucleus B, at a distance

of the order
√

σ inel
NN in the transverse plane. This condition

creates nontrivial correlations between participants, which we
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dub “twin” correlations. The effect of the twin correlations can
be easily understood in the limits of very small or very large
wounding cross section σ inel

NN .
For this discussion, it is useful to separate the contributions

of the sources coming from nuclei A and B, respectively, and
write the total density of sources as ρ(x) = ρA(x) + ρB(x).
In the limit of small σ inel

NN , each nucleon of A sees at most
one nucleon of B, i.e., the wounded nucleons come in pairs,
one from nucleus A and the other one from nucleus B.
Furthermore, the smallness of the cross section also implies
that both nucleons in the pair are close to each other in the
transverse plane. Thus, if there is a source from nucleus A
at point x, there is also a source from nucleus B at the
almost same point x, therefore ρA(x) � ρB(x). One can take
into account the correlations among sources within nucleus
A by defining a density-density correlation SA(x, y), and
decomposing it according to Eq. (5):

SA(x, y) = 〈ρA(x)〉δ(x − y)
+〈ρA(x)〉〈ρA( y)〉[gA(x, y) − 1]. (28)

Since ρ(x) � 2ρA(x), the full density-density correlation
function is S(x, y) � 4SA(x, y), and the previous equation
gives

S(x, y) = 2〈ρ(x)〉δ(x − y) + 〈ρ(x)〉〈ρ( y)〉[gA(x, y) − 1].

(29)

Comparing with the general decomposition (5), one sees
that the twin correlations double the autocorrelation term.
Equivalently, they give a δ contribution to the pair distribution
function:

g(x, y) = gA(x, y) + 1

〈ρ( y)〉δ(x − y). (30)

Figure 5 illustrates this result with a Monte Carlo Glauber
simulation carried out for central (b = 0) Pb-Pb collisions with
a value of the cross section much lower than the actual value at
the LHC, namely, σ inel

NN = 20 mb. We use a Gaussian wounding
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FIG. 5. (Color online) The half-integrated pair correlation func-
tion g(
) for Pb-Pb collisions at impact parameter b = 0 with σ inel

NN =
20 mb and n = 371. No NN repulsion in the nuclear distributions
is included. A sharp peak from the twin-production mechanism is
clearly visible.
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FIG. 6. (Color online) Same as Fig. 5 but for with σ inel
NN = 68 mb

and n = 410 (i.e., we again fix n to its most probable value). We
observe a significant melting of the peak compared to Fig. 5.

profile. In order to eliminate effects of multiplicity fluctuations,
we select events with a fixed number of wounded nucleons
n, corresponding to the most probable value for this choice
of σ inel

NN (this value is obtained by first running a minimum-
bias calculation and then choosing the most frequent value of
n). In order to isolate the effect of the twin correlations, we
switch off the nuclear correlations studied in Sec. III as well
as the correlations from recentering (cf. Appendix D): as a
consequence, gA(x, y) in Eq. (30) is a constant [see Eq. (6)].
The half-integrated pair distribution function g(
), with 
 =
x − y, clearly shows the sharp positive peak expected from
Eq. (30). The finite width corresponds to the finite value of
σ inel

NN . Note that the asymptotic value at large relative distance

, where correlations are negligible, is slightly smaller than
unity, and approximately given by Eq. (6).

Figure 6 illustrates the effect of increasing the cross section
up to the actual value at the LHC, σ inel

NN = 68 mb. Naturally,
the width of the correlation peak increases proportionally to√

σ inel
NN . Meanwhile, the height of the peak decreases by a

factor ∼35, such that the integral of the peak decreases by
a factor ∼10. We have checked that as one further increases
σ inel

NN , the peak broadens and completely melts down: The twin
correlations disappear. This can also be easily understood: In
the limit of infinite σ inel

NN , all the nucleons are wounded, hence
become uncorrelated.

The dimensionless control parameter separating the
regimes of “small” and “large” wounding cross section is
the average number of target nucleons hit by each projectile
nucleon, which we denote by N : this is roughly the product of
the average density A/(πR2

A) with RA, the nuclear radius, and
the cross section σ inel

NN . Taking RA � A1/3r0, with r0 = 1.2 fm,
one obtains

N ∼ A1/3σ inel
NN

πr2
0

� 4
σ inel

NN [fm2]

π
, (31)

where, in the last equality, we have chosen A = 208. The
value σ inel

NN = 20 mb chosen in Fig. 5 corresponds to N ∼ 2.6,
a number significantly larger than unity: The twin correlations
are already significantly suppressed for this value of the cross
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FIG. 7. (Color online) The ratios defined in Eq. (15) for the
Pb+Pb collisions at various values of the total inelastic NN cross
section, σ inel

NN . The corresponding fixed values of the number of the
wounded nucleons, n, is shown on the upper horizontal axis.

section, which explains why the peak is only a few percent
above unity.

The strength of the twin correlations can also be investigated
differentially as a function of the position in the transverse
plane. For realistic values of σ inel

NN , all nucleons in the center
are wounded, and the twin correlations are only present near
the boundary of the fireball. This expectation is confirmed by
our numerical simulations.

Finally, if one takes into account repulsive nuclear corre-
lations (Sec. III), the correlation functions of Figs. 5 and 6
display an additional central dip, as in Fig. 4(b), thus partially
hiding the effect of the twin correlations.

B. Fluctuation observables

We now study numerically the effect of the twin correlations
on fluctuation observables, namely, the variances of r2

rms, ε2,
ε3. To this end, we evaluate for each observable the ratio R in
Eq. (15), which gives its relative increase due to correlations.
These ratios are plotted in Fig. 7 as a function of σ inel

NN .2

As in Sec. V A, we simulate central Pb-Pb collisions, where
nuclear correlations are switched off, and we fix the number of
wounded nucleons n to its most probable value for each value
of of σ inel

NN . The limits σ inel
NN → 0 and σ inel

NN → ∞ are readily
understood from the discussion of Sec. V A. For small σ inel

NN ,
the twin correlations double the density-density correlation
with respect to the uncorrelated case, hence all ratios tend
to 2. For large σ inel

NN , the twin correlations vanish and all
ratios approach 1. The behavior between these two limits
controlled by the parameter N in Eq. (31), which is 1 for
(σ inel

NN/π )1/2 � 0.5. This behavior is nontrivial: in particular,
all ratios increase above 2 before deceasing to 1. This increase

2We vary σ inel
NN by varying the wounding radius σw in Eq. (18), while

A is kept constant.

is an effect of induced secondary correlations: a nucleon from
nucleus A wounds a nucleon from nucleus B, which in turn
wounds another nucleon from nucleus A, thus inducing a
correlation between participants of nucleus A. Note that while
all three curves have the same asymptotic limits, intermediate
values differ depending on the observable. At the values of
the wounding cross section corresponding to the collisions at
RHIC and the LHC (42 mb, and 68 mb, respectively), the ratios
are closer to the uncorrelated limit.

Our result at the RHIC energy is somewhat smaller than that
of Alver et al. [64], where the ratios of physical to mixed-event
results were presented. However, their calculation is slightly
different: in particular, they do not fix the impact parameter
or the number of participants, thus including more sources
of fluctuations which increase the variance. Similarly, it was
found in Ref. [77] that correlations increase the variance
of ε2 and ε3 by a factor ∼2 at RHIC and the LHC. The
difference with our result is likely due to the fact that the
present simulation gives an identical weight to each wounded
nucleon, in contrast with the usual implementation at RHIC or
the LHC where weights increase linearly with the number of
binary collisions [4]. Generally, one expects that any additional
source of fluctuations [72,73] will increase the variance, thus
producing an effect similar to the twin correlations.

In order to further investigate the origin of correlations, in
particular confirm the mechanism of secondary correlations,
we now repeat the simulation using a modified Glauber model,
where participants from only one nucleus contribute to the
density. In other terms, we assume ρ(x) = ρA(x), following
the notations of Sec. V A. In the wounded nucleon model, this
corresponds to the density at very forward rapidity [80]. This
modification effectively switches off direct twin correlations,
which involve nucleons from different nuclei. The resulting
values of R are displayed in Fig. 8. Correlations now disappear
in both limits of large and small σ inel

NN , as expected. The
departure from unity at intermediate values of σ inel

NN is again an
effect of induced secondary correlations. We note that at the

Pb Pb one nucleus
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2

3

SPS
LHCRHIC

0.0 0.5 1.0 1.5 2.0
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41641441040239537130320810429
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n

FIG. 8. (Color online) Same as Fig. 7 but for the case where
wounded nucleons coming only from one nucleus are taken into
account.
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FIG. 9. (Color online) Same as Fig. 7 but for the case where
nuclear distributions of Ref. [78] with NN repulsion are used.

SPS, RHIC, and LHC energies, the secondary correlations are
negligible.

Finally, we study the combined effects of the twin corre-
lations and nuclear correlations [78]. Results are presented in
Fig. 9. As already shown in Ref. [63], repulsive correlations
result in a sizable decrease of fluctuation observables, which is
at the level of 20% for large σ inel

NN . Let us analyze the origin of
this result. Much of the discussion of Sec. IV A can be carried
over to the nucleus-nucleus collisions. For large σ inel

NN , the twin
correlations are negligible, and the only correlations among
sources are those already present in the colliding nuclei. We
therefore write

f (2)(x, y) � f (1)(x)f (1)( y)
(
1 − 1

2d(|x − y|)), (32)

where the factor 1/2 accounts for the fact that only pairs of
sources from the same nucleus are correlated (neglecting 1/n
corrections). In writing Eq. (32), we neglect the small change
of normalization induced by the repulsive correlation, i.e., we
assume ∫

d2xd2 yf (1)(x)f (1)( y)d(|x − y|) � 1. (33)

Inserting Eq. (32) into Eq. (A9), and ignoring small corrections
of order 1/n, one obtains

g(x, y) � 1 − 1
2d(|x − y|). (34)

Inserting this equation into Eq. (5) yields

S(x, y) � 〈ρ(x)〉δ(x − y) − 1
2 〈ρ(x)〉〈ρ( y)〉d(x − y)

� 〈ρ(x)〉δ(x − y) − 1
2 〈ρ(x)〉2d(x − y), (35)

where in the second line we have used the fact that the range
of the nucleon-nucleon correlation is much shorter than the
nuclear radius, such that ρ(x) � ρ( y). Note that Eq. (35)
does not satisfy the normalization condition Eq. (4): the
integral of S(x, y) should be 0. A more careful calculation
[enforcing the proper normalization in Eq. (32) and restoring
terms of order 1/n in Eq. (34)] shows that S(x, y) has an
additional disconnected term of the form c〈ρ(x)〉〈ρ( y)〉. This

disconnected term, however, does not contribute to the εn

fluctuations for symmetry reasons, as already noted at the end
of Sec. II C.

Inserting Eq. (35) into Eqs. (12) and (15) results in

R(εl) = 1 − 1

2

∫ 〈ρ(x)〉2r2ld2x∫ 〈ρ(x)〉r2ld2x

∫
d(s)d2s. (36)

To get numerical estimates we take a rough approximation
where 〈ρ(x)〉 is a projection of a uniform sphere of radius RA

on a plane, 〈ρ(x)〉 = 6n

√
R2

A − x2/(4πR3
A). Then

R(εl) ∼ 1 − 3nBσ 2
d �(l + 5/2)√

πR2
A�(l + 3)

, (37)

which yields for n = 416 the values R(ε2) ∼ 0.71 and R(ε3) ∼
0.74, in approximate agreement (at the level of 10%) with the
detailed simulation shown in Fig. 9.

As in the case of the proton-nucleus collisions [Eq. (27)],
the effect of nuclear correlations is enhanced by a factor n. Our
results show that a repulsive short-range correlation always
reduces the εn fluctuations. It has been found numerically [48]
that when realistic two- and three-body correlations are im-
plemented, the rms anisotropy barely changes, which suggests
that the short-range repulsive NN correlation is compensated
by a intermediate-range attractive NN correlation.

VI. CONCLUSIONS

We have shown that quantities characterizing fluctuations
in the early phase of relativistic heavy-ion and proton-
nucleus collisions—specifically, the size and eccentricity
fluctuations—can be generally expressed in terms of the
density-density correlation. We have analyzed the structure
of this density-density correlation within the Monte Carlo
Glauber model. It can be written as the sum of an autocor-
relation part, which is the contribution of fluctuations, and a
part involving genuine two-body correlations.

We have investigated in detail the effect of these genuine
correlations on selected observables. We have shown that
effects of the nucleon-nucleon correlations inside colliding
nuclei are parametrically enhanced by a factor n, where n is the
number of participants, yet they are expected to be small with
realistic interactions [48]. For nucleus-nucleus collisions, we
have identified a new type of correlations, due to the collision
mechanism itself, which we have dubbed twin correlations;
they increase fluctuations. At the RHIC and LHC energies,
however, the nucleon-nucleon cross section is so large that
essentially all nucleons in the interaction region are wounded.
As a result, the twin correlations are small and localized near
the boundary of the fireball.

All sources of correlations studied in this paper—
namely, the autocorrelation, nuclear correlations, and the twin
correlations—involve scales much shorter than the nuclear
radius. The eccentricity and size fluctuations in the Glauber
model appear then to be created by uncorrelated, small-scale
fluctuations in the transverse plane. Subnucleonic fluctuations,
which are not incorporated in the Glauber model, are also
intrinsically small-scale phenomena. They typically increase
the magnitude of the local fluctuations, but do not give rise
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to any large-distance correlation. To a good approximation,
the Monte Carlo Glauber model provides a picture of energy
deposition for the RHIC at LHC energies in terms of
independent sources, that seems to capture the main features
of these fluctuations and their correlations.
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APPENDIX A: DISTRIBUTIONS OF SOURCES

The sources are defined by their locations {xi} in the
transverse plane and by their number n. The positions {xi}
and the number n are random variables that fluctuate from
event to event. For a given n, we denote by fn(x1, . . . ,xn) the
probability distribution that sources are localized at x1, . . . ,xn.
By definition, fn is completely symmetric. The k-body
distribution is defined by integrating over n − k positions:

f (k)
n (x1, . . . ,xk) =

∫
d2xk+1 . . . d2xn fn(x1, . . . ,xn). (A1)

In particular, the one-body density can be obtained by
integrating the two-body density:

f (1)
n (x1) =

∫
d2x2 f (2)

n (x1,x2). (A2)

Note that in general the k-body distribution thus defined
depends on the total number of sources n. Note also that∫

d2x f (1)
n (x) = 1.

The average value of the density ρ(x) [Eq. (1)] is

〈ρ(x)〉 =
〈 ∫

d2x1 . . . d2xn fn(x1, . . . ,xn)
n∑

i=1

δ(x − xi)

〉
= 〈

nf (1)
n (x)

〉
, (A3)

where we have allowed the multiplicity n to fluctuate for sake
of generality, and the angular brackets in the right-hand side of
Eq. (A3) denote an average over the distribution of n. Similarly,

〈ρ(x)ρ( y)〉

=
〈 ∫

d2x1 . . . d2xn fn(x1, . . . ,xn)
∑
i,j

δ(x−xi)δ( y−xj )

〉

= 〈
nf (1)

n (x)〉δ(x − y) + 〈n(n − 1)f (2)
n (x, y)

〉
. (A4)

Equations (A3),(A4) yield the following generic decomposi-
tion of the density-density correlation function (3):

S(x, y) = 〈
nf (1)

n (x)
〉
δ(x − y)

+ 〈
n(n − 1)f (2)

n (x, y)
〉 − 〈

nf (1)
n (x)

〉〈
nf (1)

n ( y)
〉
.

(A5)

The first term is commonly referred to as an autocorrelation,
the second term is the inclusive distribution of pairs, and

the last term is the disconnected part, composed of the
product of the inclusive single-particle distributions. Note that
the autocorrelation term follows from the rearrangement of
the sums in the definition Eq. (A4). It represents a major
contribution to the correlation function and is by all means
physical. Using Eq. (A3), one can rewrite Eq. (A5) as

S(x, y) = 〈ρ(x)〉δ(x − y)

+ 〈
n(n − 1)f (2)

n (x, y)
〉 − 〈ρ(x)〉〈ρ( y)〉. (A6)

The pair distribution function is defined by

g(x, y) =
〈
n(n − 1)f (2)

n (x, y)
〉

〈ρ(x)〉〈ρ( y)〉 . (A7)

Inserting into Eq. (A6), one obtains Eq. (5). Occasionally, we
also use a differently normalized pair correlation function

P (x, y) = 〈n〉2

〈n(n − 1)〉g(x, y), (A8)

which asymptotes to unity in the absence of correlations.
In this paper, we carry out simulations where n is fixed. In

this case, one can drop the subscript n and Eq. (A7) simplifies
to

g(x, y) =
(

1 − 1

n

)
f (2)(x, y)

f (1)(x)f (1)( y)
. (A9)

When no correlations are present, the n-particle distribution
function is a product of the single-particle distributions. In
particular,

f (2)(x, y) = f (1)(x)f (1)( y), (A10)

and g(x, y) takes the form displayed in Eq. (6), while
P (x, y) = 1.

APPENDIX B: SUPERPOSITION MODELS

In Eq. (1), we assume that the strength of each source is the
same. This restriction is lifted in superposition models, where
the strength of the source is allowed to fluctuate. In this case,
one introduces an additional random variable wi that measures
the strength of the source i, and writes the density ρ(x) as

ρ(x) =
n∑

i=1

wiδ(x − xi), (B1)

with the weights wi generated according to some suitable
statistical distribution.

One generally assumes for simplicity that the weight of
a source, wi , is uncorrelated with its location xi . One also
assumes that weights of different sources are not correlated
with one another or with the multiplicity n. Then, Eqs. (A3)
and (5) are replaced respectively by

〈ρ(x)〉 = 〈w〉〈nf (1)
n (x)

〉
, (B2)

and

S(x, y) = 〈w2〉
〈w〉 〈ρ(x)〉δ(x − y) + 〈ρ(x)〉〈ρ( y)〉[g(x, y) − 1],

(B3)
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while the pair distribution function remains given by Eq. (A7).
Comparison of Eq. (B3) with Eq. (5) shows that fluctuations
of the weight w enhance the relative contribution of the
autocorrelation term.

APPENDIX C: SMEARING

In a more realistic situation, the sources may be attributed
a finite width. This can be implemented by smearing the
point-like source with a finite-width function, s: One replaces
Eq. (B1) by

ρ(x) =
n∑

i=1

wis(x − xi). (C1)

Then, Eqs. (B2) and (A4) are replaced by

〈ρ(x)〉 = 〈w〉
∫

d2x1s(x − x1)
〈
nf (1)

n (x1)
〉
, (C2)

and

〈ρ(x)ρ( y)〉
= 〈w2〉

∫
d2x1s(x1 − x)s(x1 − y)

〈
nf (1)

n (x1)
〉

+〈w〉2
∫

d2x1d
2x2s(x1 − x)s(x2 − y)

〈
nf (2)

n (x1,x2)
〉
.

(C3)

Note that the autocorrelation term is no longer singular.
A typical choice for the smearing function in practical
applications is a Gaussian of a width of a fraction of a fermi
[42,81,82].

APPENDIX D: CORRELATIONS FROM RECENTERING

For completeness, we also discuss the long-range cor-
relations present in the Monte Carlo simulations due to
recentering, i.e., the condition that the center of mass of each
nucleus is fixed at a given location in each event. Recentering
is implemented in calculating initial anisotropies: they are
evaluated in a coordinate system where the fireball is centered
[11].

In each event, the two-dimensional transverse coordinates
x1, . . . ,xn are independent. We denote their distribution by
f (xi). Without loss of generality we may assume 〈xi〉 =∫

xif (xi)dxi = 0. The recentered coordinate is defined by

x′
1 = x1 − x1 + . . . + xn

n
= n − 1

n

(
x1 − x2 + . . . + xn

n − 1

)

= n − 1

n
(x1 − T ) , (D1)

where we have introduced the auxiliary variable

T ≡ x2 + . . . + xn

n − 1
. (D2)

In the limit n 
 1, the distribution of T is Gaussian according
to the central limit theorem. Its normalized distribution is

Pn−1(T ), where

Pk(T ) = k

2πσ 2
exp

(
−kT 2

2σ 2

)
, (D3)

with σ 2 ≡ 〈x2
i 〉 assumed to be identical for all i. Furthermore,

x1 and T are independent variables, such that the distribution
of x′

1 as defined in Eq. (D1) is

f (1)
n (x′

1) =
∫

f (x1)d2x1Pn−1(T )d2T

×δ

(
x′

1 − n − 1

n
(x1 − T )

)

= n

n − 1

∫
f

(
nx′

1

n − 1
+ T

)
Pn−1(T )d2T .

(D4)

Then we find easily

〈x′
1〉s = 〈x1〉 (= 0),

(D5)

Vars(x′
1) =

(
1 − 1

n2

)
σ 2,

Hence the recentered distributions are shrunk by a term of the
order 1/n2.

Carrying out a similar calculation for the case of the two-
particle distributions we arrive at

f (2)
n (x′

1,x
′
2) =

∫
f (x1)d2x1f (x2)d2x2Pn−2(T )d2T

×δ

(
x′

1 − x1 + x1 + x2

n
+ n − 2

n
T

)

×δ

(
x′

2 − x2 + x1 + x2

n
+ n − 2

n
T

)
,

(D6)

which yields

cov(x′
1,x

′
2) = −2σ 2

n2
. (D7)

Thus the correlations from recentering are small if the number
of sources n is large.

APPENDIX E: DISTRIBUTION OF PARTICIPANTS
IN p-A COLLISIONS

Transverse positions of nucleons within the target nucleus
at the time of impact are random variables. The probability
distribution that the A nucleons in the nucleus are in a
configuration (x1, . . . ,xA) is projected on the transverse plane,
yielding the distribution T (s1, . . . ,sA), where si denotes
the position of the ith nucleon in the transverse plane. By
construction,

∫
ds1 . . . dsAT (s1, . . . ,sA) = 1. In the absence

of correlations, the function T (s1, . . . ,sA) is of the form
T (s1, . . . ,sA) = T0(s1) . . . T0(sA). In order to take into account
the short-range two-body correlations in the nucleus wave
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function (Sec. III), we use the simple ansatz

T (s1, . . . ,sA) = cT0(s1) . . . T0(sA)
A∏

i,j=1
i<j

(1 − d(|si − sj |)),

(E1)
where c is a normalization constant.

The probability that the proton, incident at an impact
parameter b, interacts inelastically with n selected participants
in a given configuration, and does not interact with the
remaining A − n nucleons (called spectators), also in a given
configuration, is proportional to

θ (b − s1) . . . θ (b − sn)

×(1 − θ (b − sn+1)) . . . (1 − θ (b − sA))T (s1, . . . ,sA),

(E2)

where θ (s) is the wounding profile, Eq. (18). By integrating
over the coordinates of the spectators, one obtains the
probability pn(s1, . . . sn; b) to find n participants at positions
{s1, . . . ,sn}.

We now derive Eq. (19). For a given number of participants
n, the two-body distribution of participants is obtained by
integrating Eq. (E2) over s3, . . . ,sA. The terms which do not
depend on s3, . . . ,sA are

θ (b − s1)θ (b − s2)T0(b − s1)T0(b − s2)(1 − d(|s1 − s2|)).
(E3)

The remaining terms depend on s1 and s2 only through nuclear
correlations. In order to estimate the magnitude of these terms,

we use the fact that d is small, as can be seen, for instance, in
Fig. 2, where numerically we have d(ρ) � 0.15. Expanding to
first order in d(|si − sj |), one rewrites the correlation term in
Eq. (E1) as

A∏
i,j=1
i<j

(1 − d(|si − sj |)) = (1 − d(|s1 − s2|))

×
⎛
⎝1 −

∑
i�3

d(|s1 − si |) −
∑
i�3

d(|s2 − si |)
⎞
⎠

×
A∏

i,j=3
i<j

(1 − d(|si − sj |)). (E4)

Upon integration over s3, . . . ,sA, the terms in the second line
of the right-hand side can be written in the form k(1 − ε(s1) −
ε(s2)) � k(1 − ε(s1))(1 − ε(s2)), where ε(s1,2) is a first-order
correction proportional to d, and k is independent of s1 and s2.
To first order, the effect of interactions is therefore to slightly
change the factors depending on s1 and s2 in Eq. (E3). This
modification can be neglected in a first approximation.

Since the range of nucleon-nucleon collisions, σw in
Eq. (18), is much smaller than the nuclear radius, one can
further neglect the variation of the thickness function T0(s)
in Eq. (E3), which then reduces to Eq. (19). This is a very
good approximation for central collisions (b = 0) considered
in Sec. IV, where T0(s) is close to its maximum T0(0).
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(1976).

[62] A. Białas, J. Phys. G 35, 044053 (2008).
[63] W. Broniowski and M. Rybczyński, Phys. Rev. C 81, 064909
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[73] M. Rybczyński and Z. Włodarczyk, J. Phys. G 41, 015106

(2013).
[74] M. Alvioli, L. Frankfurt, V. Guzey, and M. Strikman (2014),

arXiv:1402.2868 [hep-ph].
[75] C. E. Coleman-Smith and B. Müller, Phys. Rev. D 89, 025019

(2014).
[76] R. S. Bhalerao and J.-Y. Ollitrault, Phys. Lett. B 641, 260 (2006).
[77] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 84,

054901 (2011).
[78] M. Alvioli, H.-J. Drescher, and M. Strikman, Phys. Lett. B 680,

225 (2009).
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