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Event-by-event fluctuations of observables are often modeled using the Monte Carlo Glauber
model, in which the energy is initially deposited in sources associated with wounded nucleons.
In this paper, we analyze in detail the correlations between these sources in proton-nucleus and
nucleus-nucleus collisions. There are correlations arising from nucleon-nucleon correlations within
each nucleus, and correlations due to the collision mechanism, which we dub twin correlations. We
investigate this new phenomenon in detail. At the RHIC and LHC energies, correlations are found
to have modest effects on size and eccentricity fluctuations, such that the Glauber model produces
to a good approximation a collection of independent sources.

PACS numbers: 25.75.-q, 25.75.Gz, 25.75.L.d

Keywords: ultra-relativistic nucleus-nucleus and proton-nucleus collisions, two-particle correlations, event-
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I. INTRODUCTION

Quantum fluctuations in the wave functions of colliding
nuclei at ultrarelativistic energies result in energy-density
correlations in the initial stage of these collisions. These
density correlations in turn produce observable correla-
tions, which have been actively studied over the past few
years [1]. There are two sources of such quantum fluc-
tuations: fluctuations of positions of nucleons within the
nucleus, and fluctuations at the subnucleonic level. In
this paper, we analyze the first source, and the resulting
density correlations in the proton-nucleus and nucleus-
nucleus collisions, using the Glauber approach [2-5].

Initial-state fluctuations have a number of observable
consequences in nucleus-nucleus collisions: their rele-
vance has first been pointed out in the study of the elliptic
flow, which is significantly enhanced by fluctuations [6-
8]. They also generate odd harmonic components of
anisotropic flow [9], such as the triangular flow [10] and
the directed flow at midrapidity [11-13]. These new flow
phenomena have been analyzed at Relativistic Heavy-Ton
Collider (RHIC) [14, 15] and at the Large Hadron Col-
lider (LHC) [16-18].

The recognition that initial-state fluctuations act as a
seed for anisotropic flow has triggered searches of collec-
tive flow in much smaller systems, such as in the proton-
nucleus collisions [19, 20], where collective behavior could
explain the observed correlations [21-24]. Anisotropic
flow is also a candidate [25-27] among others [28, 29] for
explaining the “ridge” in the high-multiplicity proton-
proton collisions at the LHC [30, 31].

The relevance of event-by-event fluctuations [32, 33]
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extends beyond the realm of anisotropic flow. In partic-
ular, comprehensive studies have been devoted to fluctu-
ations of the average transverse momentum (pr), both
from the theoretical [34-37] and experimental side [38—
41], as these fluctuations may reflect critical phenomena
expected at the phase transition.

Much progress has been made in understanding the
response to initial fluctuations [11, 42-46]: typically, el-
liptic flow is proportional to the initial eccentricity [7];
triangular flow is proportional to the initial triangular-
ity [10]; finally, (p:) fluctuations arise as a natural con-
sequence of initial-state (size) fluctuations [47]. Eventu-
ally, the study of fluctuations essentially boils down to
the study of the initial fluctuations.

There have been many dedicated studies of the ini-
tial fluctuations using the Glauber approach [5, 48-53],
as well as other approaches inspired by the saturation
physics [54, 55]. Partonic correlations, which are ne-
glected here, have also been studied in proton-proton and
proton-nucleus collisions [56, 57]. In other studies of fluc-
tuations, the Gaussian Color Glass Condensate model
was considered in [58] and the Fourier-Bessel fluctuating
mode decomposition was applied in [59, 60].

In the Glauber model, each wounded nucleon [61, 62] is
treated as a localized source. The resulting correlations
are of two types:

e the correlations already present in the colliding nu-
clei, due in particular to the short-range nucleon-
nucleon repulsion (Sec. III);

e the correlations generated by the collision mecha-
nism itself: a projectile nucleon can collide with a
target nucleon only if they are close by in the trans-
verse coordinate space, therefore wounded nucleons
go in pairs. We refer to this effect as to the “twin”
correlations.

While the first effect has already been thoroughly stud-



ied [48, 63], there are fewer studies of twin correla-
tions [64].

Most effects of initial-state fluctuations are encoded in
the two-body correlation of the initial (energy)! density
S(x,y) [32, 58, 65]. This quantity is defined in Sec. II,
where we explain how fluctuations of observables can be
expressed in terms of S(x,y). In Sec. III, we introduce a
simple parametrization of nuclear correlations and show
that their effect is reduced by the projection onto the
transverse plane, which results from the collision geom-
etry at ultrarelativistic energies. Proton-nucleus colli-
sions are studied in Sec. IV and nucleus-nucleus colli-
sions in Sec. V. We carry out numerical simulations with
GLISSANDO [66, 67], a flexible code for Monte Carlo
Glauber [68] calculations. Since we wish to focus on sit-
uations where the initial fluctuations are most relevant,
we only study central collisions, with exactly zero im-
pact parameter (b = 0). Along with the first systematic
investigation of twin correlations (Sec. V), we present
semi-analytic estimates of effects of nuclear correlations,
which have been investigated numerically in greater de-
tail by other groups [48, 63].

II. FROM CORRELATIONS TO
FLUCTUATIONS

In this section, we first define the simple Glauber
model which is used throughout this paper. We intro-
duce the density-density correlation function S(x,y) and
show it decomposition. We then explain how fluctuations
of observables can be expressed in terms of S(x,y).

A. Glauber models

In Glauber models, a proton-nucleus (p-A) or a
nucleus-nucleus (A-A) collision is viewed as a superpo-
sition of elementary processes, each of which deposits
entropy and energy locally [5] in “sources”. The sim-
plest implementation is the wounded nucleon model of
A-A collisions [61, 62]: nucleons from the colliding nuclei
wound whenever their transverse distance is sufficiently
small, and point-like sources are created at the centers
of wounded nucleons. For p-A collisions, we use an al-
ternative prescription [20], where the point-like sources
are located in the center-of-mass of the incident proton
and the wounded nucleons from the target nucleus. Note
that we choose different prescriptions for the nucleus-
nucleus and proton-nucleus collisions. For the nucleus-
nucleus collisions, this is the standard prescription. For
the proton-nucleus collisions, our choice is dictated by
simplicity, as explained later in this paper.

1 Throughout this paper we refer to the energy density simply as
the density. We shall also assume that p is divided by a constant
energy factor, so as to give it the dimension of a number density.

In a given event, the density of sources in the transverse
plane is

n

plx) =) oz — ), (1)

=1

where n is the number of sources and x; denote their
transverse positions. The integrated density is the num-
ber of sources:

/dzaz p(x) =n. (2)

The number n fluctuates from event to event, and so do
the positions x;. Since n is related to the multiplicity of
the event, we shall refer to it simply as the multiplicity.

Eq. (1) defines the simplest form of the Glauber model,
which is used throughout this paper. It can easily be im-
proved by taking into account the fact that sources may
not all be equivalent [66] (Appendix B), or by incorporat-
ing the finite transverse size of the sources (Appendix C).
Further ramifications take into account the number of bi-
nary nucleon-nucleon collisions [66, 69, 70], or include a
fluctuating nucleon-nucleon cross section [71-75].

Note that Monte Carlo Glauber calculations frequently
involve recentering corrections: typically, one imposes
> x; =0in Eq. (1). The correlation induced by this
recentering correction is discussed in Appendix D.

B. Density-density correlations

The central object of our study is the density-density
correlation function, defined as

S(x,y) = (p(z)p(y)) — (p(x))(p(y)),
= (dp(x) op(y)), (3)

where (---) denotes the average over a large number of
events, and dp(x) = p(x) — (p(x)) is the fluctuation at a
given point around the average density (p(x)).

From Eq. (2), one derives the normalization

/dgwde S(x,y) = Var(n). (4)

Using Eq. (1), one can put S(x,y) in the form (see Ap-
pendix A)

S(x,y) = (p(x))d(x —y) + (p(x))(p(¥))[9(z,y) — 1].
(5)

The first term in the right-hand side is the so-called au-
tocorrelation, which is proportional to §(x —y) for point-
like sources: it is the contribution of density fluctuations.
The remaining terms involve the standard pair distribu-
tion function g(x,y) (cf. Eq. (A7)), which contains the
information on correlations between sources. The decom-
position (5) can be generalized to the case of sources of
fluctuating strength (Appendix B) and sources of finite
size (Appendix C).



Many analyses in heavy-ion collisions are done at a
fixed centrality, where the centrality is typically deter-
mined according to the multiplicity. Within our simple
Glauber model, this amounts to fixing the number of
sources, therefore our simulations in this paper are al-
ways carried out for fixed n. Note that we fix both the
impact parameter b = 0 and the number of sources n
throughout the paper. This is done in practice by ran-
domly generating events with b = 0, and then accepting
events with a given value of n. The purpose to fix b
(which can be done in simulated events) is to eliminate
the extra fluctuations originating from the impact pa-
rameter, which obscure the mechanisms we wish to point
out. If the sources are uncorrelated (which is the case
considered in [76, 77]), the pair distribution function re-
duces to

glay) =1 (6

By inserting this expression into Eq. (5) one obtains

1
S(@,y) = (p(@))d(x —y) — —{p(x)){p(y)).  (7)
The density-density correlation thus reduces to the au-
tocorrelation term, minus a compensating term which
ensures that it integrates to 0, as required by Eq. (4).

C. Fluctuations of observables

We now explain how fluctuations of observables relate
to the density-density correlation function S(x,y). Ob-
servables are determined, to a good approximation, by
simple properties of the initial density profile —which
we also refer to as “observables” by a slight abuse of
terminology— such as the mean squared radius

s _ [Pz r?p(x)
= P p(a)

and the initial anisotropy &, in harmonic n [11], with
n > 2:

(8)

r

o [ d?zrme™?p(x)
" [xrrp(x)

where (r, ¢) are polar coordinates for the transverse po-
sition . Note that &, thus defined is a complex number,
whose modulus is the usual anisotropy, and whose phase
yields the participant plane angle in harmonic n.

In this paper, we use slightly different definitions of
observables, in the sense that we replace p(x) by (p(x))
in the denominators of Egs. (8) and (9). The denomina-
tor of Eq. (8) is the number of sources n, which is kept
fixed in all our simulations, and therefore coincides with
its mean (n). For Eq. (9), the argument is different: The
numerator vanishes by symmetry if one replaces p(x) by
(p(x)) for central collisions. Therefore, if one replaces

9)

p(x) by {p(x)) in the denominator, &, is unchanged to
leading order in the fluctuations dp(x). We have checked
numerically that the difference is irrelevant in practice.
The practical purpose of averaging separately the numer-
ators and denominators in Eqgs. (8,9) is that these expres-
sions are linear in p(z). Then parts of the analysis can
be carried our analytically.

Strictly speaking, Eqs (8) and (9) hold in a cen-
tered coordinate system, such that fdQZBCL‘p(CL‘) =0
for every event. In this section, we neglect this re-
centering correction and only center the average dis-
tribution: [ d?zx(p(x)) = 0. The recentering correc-
tion is a higher-order correction to the size, and also
to anisotropies for central collisions [77], except for the
dipole asymmetry £; which is not studied here [11].

With these approximations, observables are deter-
mined by simple integrals of the density profile of the

type
0= /dzzc Q(x)p(x), (10)

with Q(x) = r2,r"en?,
The mean value of O is obtained by replacing p(x)
with (p(2)) in this equation. One thus obtains

1
(rims) = — [ dzr*(p(x))
n
(en) = 0. (11)
The mean anisotropy is 0 for all n because we are con-
sidering central collisions.

Similarly, the variance of O is readily expressed as a
function of the density-density correlation (3):

1
Var(0) = ﬁ/cﬂm d*y Qx)Q* (y)S(z, y). (12)
The uncorrelated case, defined by Eq. (6), will often

serve as a benchmark. Inserting Eq. (7) into Eq. (12),
one obtains

Var(r2,, )™ <% = 1 () — 1)),
Var(gn)no corr. — 7/L<z;ﬂn>>27 (13)

where
o= [ der o) (14

are the moments of the r distribution with the average
density profile (p(x)) (note that (r2) = (r2,.)). These re-
sults (13) are already known for uncorrelated sources [77].
Note that the last term in Eq. (7), which is disconnected,
does not contribute to the ¢, fluctuations, which are
solely due to the autocorrelation term.

One of our goals in this paper is to carefully evaluate
the effect of correlations on fluctuation measures. To this

end, we introduce the ratio

Var(O)

R(O) = Var(o)no corr

(15)
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FIG. 1. (Color online) The pair distribution function of
Eq. (16) in the relative distance, P(r), for the **Pb nucleus
for the hard-sphere expulsion (dashed line) and Gaussian cor-
relation (solid line), obtained from a Monte Carlo simulation
with GLISSANDO [66] using the expulsion distance.

which we will evaluate for the proton-nucleus in Sec. IV
and for the nucleus-nucleus collisions in Sec. V.

III. NUCLEAR CORRELATIONS

It is well known that the nucleons inside nuclei are
strongly correlated, making nuclear matter behave more
as a Fermi liquid than a Fermi gas. In this section, we
recall their effects on the Glauber calculations. These
effects have been studied in detail in Refs. [48, 63].

Sources in the Glauber model are associated with
wounded nucleons, projected onto the transverse plane
(Eq. (1)). Correlations between sources stem from cor-
relations between wounded nucleons, hence they are af-
fected by nuclear correlations. We are going to show that
these effects are significantly reduced by the projection
onto the transverse plane.

The strong repulsive character of the nucleon-nucleon
(NN) interaction at short distances, together with the
Pauli exclusion principle, generate short range correla-
tions. In this section, we model these with a hard sphere
repulsion or a smoother Gaussian repulsion which mimics
the distributions of Ref. [78].

A natural measure of the correlation is the ratio be-
tween the normalized two-body probability distribution
of nucleons and the product of the one-body distributions
F(xq,29)/fD (1) D (22) (see Appendix A). In order
to see how it varies as a function of the relative distance
r = |x1 — x2|, we integrate both the numerator and de-
nominator over the mean point:

 [EPRFPR+Z,R-I)
~ JERFOER+5OER-3)

P(r) (16)

The half-integrated pair correlation function P(r) thus
defined is plotted in Fig. 1 for the hard sphere and the
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FIG. 2. (Color online) Same as Fig. 1 but for the distribution
in the transverse distance, P(p) (p = s).

Gaussian repulsion. Note the strong repulsion dip near
the origin, compensated by a slight overshoot above unity
at large distances.

The relevant quantity for the present study, however,
is the pair correlation function in the relative transverse
distance, obtained by integrating both the numerator and
the denominator of Eq. (16) along the collision axis z
(in the same way as the nuclear thickness function [4]).
The resulting pair correlation function P(s) is shown in
Fig. 2. We note that the projection leading from P(r) to
P(s) greatly reduces the repulsion dip, from 1 to < 0.15.
This is easy to understand, since the two nucleons may
lie close to each other in the transverse plane, i.e., be at
small s, while being sufficiently separated in z, and hence
outside the volume over which they feel the short range
correlation. This property will allow us to treat these
correlations as a small perturbation.

We thus write P(s) = 1 —d(s), where d(s) < 1. In the
following sections, we use the Gaussian parametrization
of the nuclear repulsion, which is more realistic than the
hard-sphere repulsion [79]. The resulting d(s) is itself
Gaussian to a good approximation:

d(s) = Bexp (-5%) : (17)

B=0.11, o4=0.56 fm,

where the numerical values have been fitted to the re-
sults shown in Fig. 2. When comparing the cases of
nuclear distributions with and without the NN corre-
lations, we make sure that the single-particle distribu-
tions f(1)(z) are identical. The way to accomplish this
in Monte Carlo studies with NN expulsion distance is
explained in Ref. [66].

IV. PROTON-NUCLEUS COLLISIONS

In this section, we study the one-body density and
the density-density correlation in the proton-nucleus col-



lisions analytically and numerically. We then evaluate
fluctuation observables.

We consider central proton-nucleus collisions (b = 0).
We denote with 0(s) the wounding profile, i.e., the prob-
ability that the proton interacts inelastically with a nu-
cleon sitting at a transverse distance s away from it. We

use the following Gaussian parametrization [78]

2
0(s) = Aexp (_M) , (18)
A =092, o, =108 fm.

The normalization reproduces the total inelastic NN
cross section, i.e., [ dsf(s) = 2rAc? = o19}. The choice
of parameters in Eq. (18) is such that oSl ~ 68 mb,
corresponding to the LHC energy /syny = 5.02 TeV.
Nucleons hit by the proton as it crosses the nucleus are
referred to as participants or wounded nucleons.

In the model considered here [20], a source is produced
at mid-distance between the proton and each participant
nucleon. Since the proton is by assumption located at the
origin, the sources are placed at the positions z; = s;/2,
where s; denotes the transverse location of the i*? partici-
pant. Thus there is a one-to-one correspondence between
sources and hit nucleons in the target, and all the sources
play symmetric roles. Another option is to assume that
the sources are created on top of each participant. The
resulting differences are discussed briefly at the end of
Sec. IVA.

A. Analytic model

As seen above, the distribution of sources closely fol-
lows that of the participants within the target nucleus; in
particular, this distribution directly reflects nuclear cor-
relations that are inherited from those among the nucle-
ons of the target nucleus. As explained in Appendix E,
for weak correlations, the two-body distribution of the
sources is approximately given by (with s; = 2z;)

FP (21, 22) = c20(51)0(s2) (1 — d(|s1 — s2])),  (19)

where co is a normalization constant. It is thus entirely
determined by the wounding profile § and the correlation
factor 1 —d.

The one-body distribution f()(z;) is obtained by inte-
grating Eq. (19) over z5 (see Eq. (A2)). For uncorrelated
nucleons (d(|s1 — s2|) = 0), it reduces to

FO (1) = o)) o 0. (20)

The one-body distribution thus reproduces the wound-
ing profile (18). When the nucleon-nucleon correlations
are taken into account, the one-body distribution of the
sources changes slightly, even though the one-body dis-
tribution of nucleons is strictly unchanged (see the state-
ment at the very end of Sec. III). However, this is a very

FIG. 3. (Color online) The half-integrated pair distribution
function g(A,Ay) for the fireball created in the p+Pb col-
lisions at the impact parameter b = 0 and the number of
participants n = 15, A is the relative transverse distance be-
tween the two sources.

tiny change in practice, such that Eq. (20) holds to a very
good approximation with realistic correlations.

In order to study how the density-density correlation
depends on the relative distance, we introduce the half-
integrated density-density correlation function, much in
the same way as in Eq. (16):

S(A)Z/dTS(T“F%,T’*%). (21)

The decomposition (5) can be easily transposed to the
half-integrated correlation:

S(A) = (n)d(A) + R(A)[g(A) — 1], (22)

where

R(A) = [ dr <p(1° + §)> <p <r - §)> ,
1l

9(A) = R(A) /dr <n(n DfD(r+ %,r— §)>
(23)

With the approximation of Eq. (19) for the two-body
distribution, all integrals can be evaluated analytically.
The pair distribution function g(A) is plotted in Fig. 3
(right). The central dip reflects the short-range nucleon-
nucleon repulsion. As a crude approximation, by using
Eq. (20), one may replace 0(s;) by f(z;) in Eq. (19), and
write f2)(z1,25) >~ fO(z1)fW (22)(1 — d(|s1 — s2)).
One thus obtains

9(A) = (1 - i) (1 d(2A)), (24)
where we have used the fact that the source is half-way
between the nucleons, s; = 2z;. Eq. (24) is a good ap-
proximation to the exact result in Fig. 3. A more careful
calculation, enforcing the proper normalization, shows
that this approximation only holds when the range of
correlations is much smaller than the wounding profile,
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FIG. 4. (Color online) Functions R(A) (a) and g(A) (b) defined in Eq. (23) for p+Pb collisions at the impact parameter b = 0
and the number of participants n = 15, obtained with GLISSANDO.

04 < 04, a condition which is only marginally satisfied
with the chosen numerical values.

The simplicity of the results in Eqgs. (20) and (24) is
a consequence of the prescription to locate sources half-
way between the proton and the wounded nucleons. If
one chooses instead the “standard” prescription where
sources are located around each participant, the proton
also acts as a source in addition to the hit nucleons: this
results in cumbersome expressions for the one-body and
two-body densities, but no new insight.

B. Monte Carlo simulations

We now show that our simple analytic results, based
on the approximation of weak correlations, are fully
supported by numerical simulations made with GLIS-
SANDO [66] at zero impact parameter, b = 0. The
condition b = 0 is not realistic, in the sense that it can-
not be implemented experimentally. On the other hand,
it allows us to clearly isolate correlations which do not
originate in impact parameter fluctuations. For sake of
simplicity, we fix the number of participants to n = 15,
corresponding to a typical value at the LHC energy. In
the presented simulations we are using the correlated nu-
clear distributions of Ref. [78] and the Gaussian wound-
ing profile [79] of Eq. (18).

In Fig. 4 we show the two-dimensional plots of the
simulated half-integrated correlation function R(A), and
the pair correlation function g(A) of Eq. (23). The func-
tion R(A) simply reflects the shape of the folding of the
two single-particle distributions, while g(A) is remark-
ably close to the result of the analytic calculation pre-
sented in Fig. 3.

C. Observables

The approximations made in Sec. IV A (specifically,
Eqgs.(17), (18) and (19)) allow us to obtain analytic ex-
pressions of observables introduced in Sec. IIC. For a
fixed number of participants n, the mean squared radius,
Eq. (8), is

(2) = [ s )

o (|, g ook
2 (o

+0 (BZ)) , (25)

where the one-body density f*)(z) has been obtained by
integrating Eq. (19). If nucleons are uncorrelated (B =
0), the rms radius is proportional to the wounding radius
0. The proportionality constant would be typically a
factor 2 larger if we had assumed that the sources were
on top of the participants, instead of half-way between
the proton and the participants in the target nucleus.

Equation (25) shows that repulsive correlations (B >
0) result in a very small increase of the fireball size. The
effect of correlations vanishes not only in the limit of a
small correlation length, o4 < oy, but also in the op-
posite limit where the correlation length is much larger
than the fireball size, o4 > 0,,. This is a general result,
as we shall see below for other observables. Numerically,
the increase of (r2 ) due to repulsive correlations is a
modest 0.6%.

We now evaluate fluctuation observables, namely, the
variance of the mean-square radius and the mean square
eccentricity. In the uncorrelated case (B = 0), Eq. (13)
simplifies to

2 2
Var(rfms)no corr. _ <rrms> ,



Var(€2)no corr. __ %7 (26)
where we have used the fact that the one-body distribu-
tion, Eq. (20), is Gaussian.

We finally evaluate the changes in these observables
due to correlations (B > 0), which are conveniently ex-
pressed by the ratio of Eq. (15). Correlations modify all
terms in the density-density correlation function Eq. (5):
The autocorrelation term changes slightly due to the
modification of the one-body distribution of sources. We
neglect this contribution, which is typically less than 1%,
and evaluate the contribution of pair correlations. This
contribution is enhanced by a factor n because the pair
correlation g(x, y) in Eq. (5) is multiplied by a the square
of the average density, which scales as n?, while the au-
tocorrelation term only scales as n. After some algebra,
one obtains

0'20'4
R(r2,) =1-2nB—<4% - 1 0 (B?),
e (02 +202)°
0‘20'4
R(es) =1-nB—4% -+ 0 (B%). (27)

(03 +20%)

Numerically, correlations decrease {(|e2]?) by a modest
4%. We have also evaluated numerically their effect of
{|e3]?) which is even smaller, at the level of 1%. Gener-
ally, effects of correlations are usually even smaller when
realistic NN correlations are implemented [48], rather
than just the short-range part considered here. We con-
clude that for the proton-nucleus collisions in the Glauber
model, correlations between sources are essentially neg-
ligible for the considered observables.

V. NUCLEUS-NUCLEUS COLLISIONS

The Glauber [3, 61, 62] description of the A+A col-
lisions is inherently more complicated than that of the
p+A collisions. We are no longer able to determine an-
alytically the distribution of sources, and hence deduce
their correlations with analytic tools. Nevertheless, one
can get a simple understanding of these correlations in
the two limiting cases of small and large inelastic cross
sections. Further understanding is gained through GLIS-
SANDO simulations.

A. Twin correlations

In the wounded-nucleon model, the density is created
by participant nucleons, which come from one of the two
colliding nuclei A and B. By definition, to each par-
ticipant in nucleus A corresponds at least one partici-

pant in nucleus B, at a distance of the order Uil\r}?\l, in

the transverse plane. This condition creates nontrivial
correlations between participants, which we dub “twin”
correlations. The effect of the twin correlations can be

easily understood in the limits of very small or very large
wounding cross section UiNn‘]?\l,.

For this discussion, it is useful to separate the con-
tributions of the sources coming from nuclei A and B,
respectively, and write the total density of sources as
p(x) = pa(x) + pp(x). In the limit of small o119}, each
nucleon of A sees at most one nucleon of B, i.e., the
wounded nucleons come in pairs, one from nucleus A and
the other one from nucleus B. Furthermore, the small-
ness of the cross section also implies that both nucleons in
the pair are close to each other in the transverse plane.
Thus, if there is a source from nucleus A at point x,
there is also a source from nucleus B at the almost same
point @, therefore ps(x) ~ pp(x). One can take into
account the correlations among sources within nucleus A
by defining a density-density correlation Sa(x,vy), and

decomposing it according to Eq. (5):

Sa(z,y) = (pa(z))d(x —y)
+(pa(x))(pa(y))ga(z,y) —1].  (28)

Since p(x) ~ 2pa(x), the full density-density correlation
function is S(x,y) ~ 454 (x,y), and the previous equa-
tion gives

S(x,y) = 2(p(x))d(x — y)
+(p(@))(p(y))lgalz,y) —1].  (29)

Comparing with the general decomposition (5), one sees
that the twin correlations double the autocorrelation
term. Equivalently, they give a 0 contribution to the
pair distribution function:

1

Fig. 5 illustrates this result with a Monte Carlo
Glauber simulation carried out for central (b = 0) Pb-
Pb collisions with a value of the cross section much lower
than the actual value at the LHC, namely, o} = 20 mb.
We use a Gaussian wounding profile. In order to elimi-
nate effects of multiplicity fluctuations, we select events
with a fixed number of wounded nucleons n, correspond-
ing to the most probable value for this choice of %
(this value is obtained by first running a minimum-bias
calculation and then choosing the most frequent value
of n). In order to isolate the effect of the twin correla-
tions, we switch off the nuclear correlations studied in
Sec. III as well as the correlations from recentering (cf.
Appendix D): as a consequence, ga(x,y) in Eq. (30) is
a constant (see Eq. (6)). The half-integrated pair distri-
bution function g(A), with A = x — y, clearly shows the
sharp positive peak expected from Eq. (30). The finite
width corresponds to the finite value of o%. Note that
the asymptotic value at large relative distance A, where
correlations are negligible, is slightly smaller than unity,
and approximately given by Eq. (6).

Fig. 6 illustrates the effect of increasing the cross sec-
tion up to the actual value at the LHC, oi0% = 68 mb.
Naturally, the width of the correlation peak increases



FIG. 5. (Color online) The half-integrated pair correlation
function g(A) for Pb-Pb collisions at impact parameter b = 0
with ¢i2% = 20 mb and n = 371. No NN repulsion in the
nuclear distributions is included. A sharp peak from the twin-
production mechanism is clearly visible.
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FIG. 6. (Color online) Same as Fig. 5 but for with ¢ii% =
68 mb and n = 410 (i.e., we again fix n to its most probable
value). We observe a significant melting of the peak compared
to Fig. 5.

proportionally to 1/0116‘?\1,. Meanwhile, the height of the

peak decreases by a factor ~ 35, such that the integral
of the peak decreases by a factor ~ 10. We have checked
that as one further increases oi0%}, the peak broadens and
completely melts down: The twin correlations disappear.
This can also be easily understood: In the limit of infi-
nite oS all the nucleons are wounded, hence become

uncorrelated.
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FIG. 7. (Color online) The ratios defined in Eq. (15) for the
Pb+PDb collisions at various values of the total inelastic NN
cross section, oS, The corresponding fixed values of the
number of the wounded nucleons, n, is shown on the upper

horizontal axis.

The dimensionless control parameter separating the
regimes of “small” and “large” wounding cross section
is the average number of target nucleons hit by each pro-
jectile nucleon, which we denote by N: this is roughly
the product of the average density A/(mR?%) with Ra,
the nuclear radius, and the cross section o%,. Taking
Ry ~ AY3ry, with 7o = 1.2 fm, one obtains

1/3 Linel inel 2
Al ONN N4UNN[fm ]

2
Ty ™

~

; (31)

where, in the last equality, we have chosen A = 208.
The value oS, = 20 mb chosen in Fig. 5 corresponds to
N ~ 2.6, a number significantly larger than unity: The
twin correlations are already significantly suppressed for
this value of the cross section, which explains why the
peak is only a few percent above unity.

The strength of the twin correlations can also be inves-
tigated differentially as a function of the position in the
transverse plane. For realistic values of o3}, all nucle-
ons in the center are wounded, and the twin correlations
are only present near the boundary of the fireball. This
expectation is confirmed by our numerical simulations.

Finally, if one takes into account repulsive nuclear cor-
relations (Sec. III), the correlation functions of Figs. 5
and 6 display an additional central dip, as in Fig. 4 (b),
thus partially hiding the effect of the twin correlations.

B. Fluctuation observables

We now study numerically the effect of the twin corre-
lations on fluctuation observables, namely, the variances
of 72, €2, €3. To this end, we evaluate for each ob-
servable the ratio R in Eq. (15), which gives its relative
increase due to correlations. These ratios are plotted in



Fig. 7 as a function of oi%}.2 As in Sec. V A, we simulate

central Pb-Pb collisions, where nuclear correlations are
switched off, and we fix the number of wounded nucleons
n to its most probable value for each value of of i1, The

L inel inel :
limits oy — 0 and oy — oo are readily understood

from the discussion of Sec. V A. For small ¢i2%!, the twin
correlations double the density-density correlation with
respect to the uncorrelated case, hence all ratios tend to
2. For large 039!, the twin correlations vanish and all
ratios approach 1. The behavior between these two lim-
its controlled by the parameter A in Eq. (31), which is
1 for (oi0%/7)1/2 ~ 0.5. This behavior is nontrivial: in
particular, all ratios increase above 2 before deceasing to
1. This increase is an effect of induced secondary correla-
tions: a nucleon from nucleus A wounds a nucleon from
nucleus B, which in turn wounds another nucleon from
nucleus A, thus inducing a correlation between partici-
pants of nucleus A. Note that while all three curves have
the same asymptotic limits, intermediate values differ de-
pending on the observable. At the values of the wounding
cross section corresponding to the collisions at RHIC and
the LHC (42 mb, and 68 mb, respectively), the ratios are
closer to the uncorrelated limit.

Our result at the RHIC energy is somewhat smaller
than that of Alver et al. [64], where the ratios of physical
to mixed-event results were presented. However, their
calculation is slightly different: in particular, they do
not fix the impact parameter or the number of partici-
pants, thus including more sources of fluctuations which
increase the variance. Similarly, it was found in Ref. [77]
that correlations increase the variance of €5 and €3 by a
factor ~ 2 at RHIC and the LHC. The difference with
our result is likely due to the fact that the present simula-
tion gives an identical weight to each wounded nucleon,
in contrast with the usual implementation at RHIC or
the LHC where weights increase linearly with the num-
ber of binary collisions [4]. Generally, one expects that
any additional source of fluctuations [72, 73] will increase
the variance, thus producing an effect similar to the twin
correlations.

In order to further investigate the origin of correla-
tions, in particular confirm the mechanism of secondary
correlations, we now repeat the simulation using a mod-
ified Glauber model, where participants from only one
nucleus contribute to the density. In other terms, we as-
sume p(x) = pa(x), following the notations of Sec. V A.
In the wounded nucleon model, this corresponds to the
density at very forward rapidity [80]. This modification
effectively switches off direct twin correlations, which in-
volve nucleons from different nuclei. The resulting values
of R are displayed in Fig. 8. Correlations now disappear

in both limits of large and small o}j%;, as expected. The
departure from unity at intermediate values of oS is

again an effect of induced secondary correlations. We

2 We vary a}(,‘?\], by varying the wounding radius o in Eq. (18),
while A is kept constant.
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FIG. 8. (Color online) Same as Fig. 7 but for the case where
wounded nucleons coming only from one nucleus are taken
into account.
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FIG. 9. (Color online) Same as Fig. 7 but for the case where
nuclear distributions of Ref. [78] with NN repulsion are used.

note that at the SPS, RHIC, and LHC energies, the sec-
ondary correlations are negligible.

Finally, we study the combined effects of the twin cor-
relations and nuclear correlations [78]. Results are pre-
sented in Fig. 9. As already shown in Ref. [63], repul-
sive correlations result in a sizable decrease of fluctua-
tion observables, which is at the level of 20% for large
oluel. Let us analyze the origin of this result. Much of
the discussion of Sec. IVA can be carried over to the
nucleus-nucleus collisions. For large o129}, the twin cor-
relations are negligible, and the only correlations among
sources are those already present in the colliding nuclei.

We therefore write
F2ay) = (V@)D (1- Gdle D). (2

where the factor 1/2 accounts for the fact that only pairs
of sources from the same nucleus are correlated (neglect-



ing 1/n corrections). In writing Eq. (32), we neglect the
small change of normalization induced by the repulsive
correlation, i.e., we assume

Lffwfyﬂ”@&ﬂ”wMUwfyD<l- (33)

Inserting Eq. (32) into Eq. (A9), and ignoring small cor-
rections of order 1/n, one obtains

g(ay) = 1= d(le ). (34)

Inserting this equation into Eq. (5) yields

2

where in the second line we have used the fact that the
range of the nucleon-nucleon correlation is much shorter
than the nuclear radius, such that p(x) ~ p(y). Note
that Eq. (35) does not satisfy the normalization condi-
tion Eq. (4): the integral of S(x,y) should be 0. A more
careful calculation (enforcing the proper normalization
in Eq. (32) and restoring terms of order 1/n in Eq. (34))
shows that S(x,y) has an additional disconnected term
of the form ¢{p(x)){p(y)). This disconnected term, how-
ever, does not contribute to the ¢, fluctuations for sym-
metry reasons, as already noted at the end of Sec. IIC.
Inserting Eq. (35) into Egs. (12) and (15) results in

1 [ {p())r?'da
2 T(p(@) i
To get numerical estimates we take a rough approxima-
tion where (p(x)) is a projection of a uniform sphere of

radius R4 on a plane, (p(x)) = 6n\/R% — 22/(47R3)).
Then

R(g) = /d(s)dzs. (36)

_ 3nBoil(l+5/2)
VTRAT(1+3)

which yields for n = 416 the values R(g2) ~ 0.71 and
R(e3) ~ 0.74, in approximate agreement (at the level of
10%) with the detailed simulation shown in Fig. 9.

As in the case of the proton-nucleus collisions
(Eq. (27)), the effect of nuclear correlations is enhanced
by a factor n. Our results show that a repulsive short-
range correlation always reduces the e, fluctuations.
It has been found numerically [48] that when realistic
two- and three-body correlations are implemented, the
rms anisotropy barely changes, which suggests that the
short-range repulsive NN correlation is compensated by
a intermediate-range attractive NN correlation.

R(g) ~ 1 (37)

VI. CONCLUSIONS

We have shown that quantities characterizing fluctu-
ations in the early phase of relativistic heavy-ion and
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proton-nucleus collisions — specifically, the size and ec-
centricity fluctuations — can be generally expressed in
terms of the density-density correlation. We have an-
alyzed the structure of this density-density correlation
within the Monte Carlo Glauber model. It can be writ-
ten as the sum of an autocorrelation part, which is the
contribution of fluctuations, and a part involving genuine
two-body correlations.

We have investigated in detail the effect of these gen-
uine correlations on selected observables. We have shown
that effects of the nucleon-nucleon correlations inside col-
liding nuclei are parametrically enhanced by a factor n,
where n is the number of participants, yet they are ex-
pected to be small with realistic interactions [48]. For
nucleus-nucleus collisions, we have identified a new type
of correlations, due to the collision mechanism itself,
which we have dubbed twin correlations; they increase
fluctuations. At the RHIC and LHC energies, however,
the nucleon-nucleon cross section is so large that essen-
tially all nucleons in the interaction region are wounded.
As a result, the twin correlations are small and localized
near the boundary of the fireball.

All sources of correlations studied in this paper —
namely, the autocorrelation, nuclear correlations, and the
twin correlations — involve scales much shorter than the
nuclear radius. The eccentricity and size fluctuations in
the Glauber model appear then to be created by uncor-
related, small-scale fluctuations in the transverse plane.
Subnucleonic fluctuations, which are not incorporated in
the Glauber model, are also intrinsically small-scale phe-
nomena. They typically increase the magnitude of the lo-
cal fluctuations, but do not give rise to any large-distance
correlation. To a good approximation, the Monte-Carlo
Glauber model provides a picture of energy deposition
for the RHIC at LHC energies in terms of independent
sources, that seems to capture the main features of these
fluctuations and their correlations.
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Appendix A: Distributions of sources

The sources are defined by their locations {x;} in the
transverse plane and by their number n. The positions
{x;} and the number n are random variables that fluc-
tuate from event to event. For a given n, we denote
by fn(x1, ..., ;) the probability distribution that sources
are localized at @1, ..., ¢,,. By definition, f,, is completely



symmetric. The k-body distribution is defined by inte-
grating over n — k positions:

£ (@, ) = /dek+1...d2:cn Fu@r, ). (A1)

In particular, the one-body density can be obtained by
integrating the 2-body density:

P (1) :/d2$2 f3 (21, 22). (A2)

Note that in general the k-body distribution thus defined
depends on the total number of sources n. Note also that

[ &2z £ (@) = 1.
The average value of the density p(x) (Eq.(1)) is

(p(z)) = </ Py Pz, folxy, ..., ) Z 5z — x;))
= (nf{D (@),

where we have allowed the multiplicity n to fluctuate
for sake of generality, and the angular brackets in the
right-hand side of Eq. (A3) denote an average over the
distribution of n. Similarly,

(p(@)p(y)) =
</ d*xy..d*x,, f.(z1, ...,az,L)Zé(m—a:i)d(y—xj))

4,3

= (nf{D(@))0(z —y) + (n(n — 1) [P (2, y)).

Equations (A3,A4) yield the following generic decompo-
sition of the density-density correlation function (3):

S(a,y) = (nfiP (@))d(x — y) (A5)
+ (n(n = 1) f (@.y)) — (nfiP (@) (nf D (y)).

The first term is commonly referred to as an autocorrela-
tion, the second term is the inclusive distribution of pairs,
and the last term is the disconnected part, composed of
the product of the inclusive single-particle distributions.
Note that the autocorrelation term follows from the re-
arrangement of the sums in the definition Eq. (A4). Tt
represents a major contribution to the correlation func-
tion and is by all means physical. Using Eq. (A3), one
can rewrite Eq. (Ab) as

S(z,y) = (p(x))d(x — y)
+ (n(n — 1) P (x,y)) = (p(x)){p(y)). (A6)

The pair distribution function is defined by

(n(n — 1) (2,y))
(@) (p(y))

Inserting into Eq. (A6), one obtains Eq. (5). Occasion-
ally, we also use a differently normalized pair correlation
function

(A3)

(A4)

9(x,y) = (A7)

(A8)

11

which asymptotes to unity in the absence of correlations.

In this paper, we carry out simulations where n is fixed.
In this case, one can drop the subscript n and Eq. (A7)
simplifies to:

1) f3(z,y) (A9)

) fO(@) fO(y)
When no correlations are present, the n-particle distri-

bution function is a product of the single-particle distri-
butions. In particular,

fO(z,y) = fO () D (y),

and g(x,y) takes the form displayed in Eq. (6), while
P(x,y) = 1.

g(w’ y) = (1
(A10)

Appendix B: Superposition models

In Eq. (1), we assume that the strength of each source
is the same. This restriction is lifted in superposition
models, where the strength of the source is allowed to
fluctuate. In this case, one introduces an additional ran-
dom variable w; that measures the strength of the source
i, and writes the density p(x) as

p(x) = Z wid(@ — ), (B1)

with the weights w; generated according to some suitable
statistical distribution.

One generally assumes for simplicity that the weight
of a source, w;, is uncorrelated with its location ;. One
also assumes that weights of different sources are not
correlated with one another or with the multiplicity n.
Then, Eqgs. (A3) and (5) are replaced respectively by

(p(@)) = (w) (nf (). (B2)
and
S(a,y) = <<:‘fu >> (0(@))5( — )
@)ool y) 1, (B3)

while the pair distribution function remains given by
Eq. (A7). Comparison of Eq. (B3) with Eq. (5) shows
that fluctuations of the weight w enhance the relative
contribution of the autocorrelation term.

Appendix C: Smearing

In a more realistic situation, the sources may be at-
tributed a finite width. This can be implemented by
smearing the point-like source with a finite-width func-
tion, s: One replaces Eq. (B1) by

plx) = Zwis(cc —x;). (C1)



Then, Egs. (B2) and (A4) are replaced by

(o(@)) = (w) / Py s(z — 21)infO(@), (C2)
and

(p(x)p(y)) =
(w?) / Py s(z) — 2)s(@r — ) (@) +

<w>2/d2m1d2m25(m1 —x)s(zy — ) (nf P (z1, x2)).
(C3)

Note that the autocorrelation term is no longer singular.
A typical choice for the smearing function in practical
applications is a Gaussian of a width of a fraction of a
fermi [42, 81, 82].

Appendix D: Correlations from recentering

For completeness, we also discuss the long-range cor-
relations present in the Monte Carlo simulations due to
recentering, i.e., the condition that the center of mass
of each nucleus is fixed at a given location in each
event. Recentering is implemented in calculating initial
anisotropies: they are evaluated in a coordinate system
where the fireball is centered [11].

In each event, the two-dimensional transverse coordi-
nates a1, --- ,x, are independent. We denote their dis-
tribution by f(x;). Without loss of generality we may
assume (x;) = [ @;f(x;)dz; = 0. The recentered coordi-
nate is defined by

, T+ +x, n—1< 932+~~+:cn)
T, =1 — = rxr - —

n n—1
n—1
= (¢ —T), (D1)
n
where we have introduced the auxiliary variable
A I (D2)
n—1

In the limit n > 1, the distribution of T is Gaussian
according to the central limit theorem. Its normalized
distribution is P,_1(T"), where

k ET?
R =pzon(-Gz). 03)

with 02 = (z2) assumed to be identical for all i. Fur-

thermore, ;1 and T are independent variables, such that
the distribution of @} as defined in Eq. (D1) is

V() = / F(@1)d*@1 Py (T)d2T
) (.7;'1 g, —T))

n
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_n ne) o
_n_l/f<n_1+T>Pn_1(T)d T.

(D4)
Then we find easily
(1)s = (1) (= 0),
Var,(x}) = (1 - ;) o?, (D5)

Hence the recentered distributions are shrunk by a term
of the order 1/n?.

Carrying out a similar calculation for the case of the
two-particle distributions we arrive at

(2, 2h) = / f(x1)d?x f(axn)d*xo Py _o(T)d*T x

-2
§<m'1m1+x1+m2+n T)x
n

n
-2
6(w,2_m2+x1+w2+" T>7
n n
(D6)
which yields
2 2
cov(z!, xh) = —%. (D7)

Thus the correlations from recentering are small if the
number of sources n is large.

Appendix E: Distribution of participants in p-A
collisions

Transverse positions of nucleons within the target
nucleus at the time of impact are random variables.
The probability distribution that the A nucleons in
the nucleus are in a configuration (x1,...,x4) is pro-
jected on the transverse plane, yielding the distribu-
tion T(s1,...,84), where s; denotes the position of
the ith nucleon in the transverse plane. By construc-
tion, [ds;i...dsaT(s1,...,84) = 1. In the absence of
correlations, the function T'(sy,...,84) is of the form
T(s1,...,84) = To(s1)...To(s4). In order to take into
account the short range two-body correlations in the nu-
cleus wave function (Sec. III), we use the simple ansatz

A
;84) = To(s1) ... To(sa) [ (1 —dlls: = s51),

i,j=1
1<j

T(Sl, .

(E1)
where c is a normalization constant.

The probability that the proton, incident at an impact
parameter b, interacts inelastically with n selected par-
ticipants in a given configuration, and does not interact
with the remaining A — n nucleons (called spectators),
also in a given configuration, is proportional to

O(b—s1)...0(b—s,) x
(1-6(b—38p41))...(1—=0(b—54))T(s1,..

(E2)

L) 'SA)7



where 6(s) is the wounding profile, Eq. (18). By integrat-
ing over the coordinates of the spectators, one obtains
the probability p,(s1,...s,;b) to find n participants at
positions {s1,+-,Sn}.

We now derive Eq. (19). For a given number of par-
ticipants n, the two-body distribution of participants is
obtained by integrating Eq. (E2) over s3,--+,84. The
terms which do not depend on s3,---,s4 are

0(1) — 81)0(1) — SQ)T()(b — Sl)To(b — 82)(1 — d(|81 — SQD.

(E3)
The remaining terms depend on s; and s, only through
nuclear correlations. In order to estimate the magnitude
of these terms, we use the fact that d is small, as can be
seen, for instance, in Fig. 2, where numerically we have
d(p) < 0.15. Expanding to first order in d(|s; — s;]), one
rewrites the correlation term in Eq. (E1) as

A
[T —d(si — ;) = (1 —d(|s1 — s2))
x(1=> " d(|sy — i) = Y _d(|s2 — sil))

i>3 i>3
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bS

x ] (= dllsi — s50))- (E4)

.
&,
I

"

Upon integration over 83, - - , S 4, the terms in the second
line of the right-hand side can be written in the form
k(1 — €e(s1) — €e(s2)) ~ k(1 — €(s1))(1 — e(s2)), where
€(s1,2) is a first-order correction proportional to d, and
k is independent of s; and s5. To first order, the effect
of interactions is therefore to slightly change the factors
depending on s; and so in Eq. (E3). This modification
can be neglected in a first approximation.

Since the range of nucleon-nucleon collisions, ¢, in
Eq. (18), is much smaller than the nuclear radius, one
can further neglect the variation of the thickness func-
tion To(s) in Eq. (E3), which then reduces to Eq. (19).
This is a very good approximation for central collisions
(b = 0) considered in Sec. IV, where Ty(s) is close to its
maximum 75(0).
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