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Abstract: The von Neumann entropy S(D̂) generates in the space of quantum density
matrices D̂ the Riemannian metric ds2 = −d2S(D̂), which is physically founded and
which characterises the amount of quantum information lost by mixing D̂ and D̂ + dD̂.
A rich geometric structure is thereby implemented in quantum mechanics. It includes a
canonical mapping between the spaces of states and of observables, which involves the
Legendre transform of S(D̂). The Kubo scalar product is recovered within the space of
observables. Applications are given to equilibrium and non equilibrium quantum statistical
mechanics. There the formalism is specialised to the relevant space of observables and to
the associated reduced states issued from the maximum entropy criterion, which result from
the exact states through an orthogonal projection. Von Neumann’s entropy specialises into
a relevant entropy. Comparison is made with other metrics. The Riemannian properties of
the metric ds2 = −d2S(D̂) are derived. The curvature arises from the non-Abelian nature
of quantum mechanics; its general expression and its explicit form for q-bits are given.
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1. A physical metric for quantum states.

Quantum physical quantities pertaining to a given system, termed as “observables” Ô, behave as
non-commutative random variables and are elements of a C*-algebra. We will consider below systems
for which these observables can be represented by n-dimensional Hermitean matrices in a finite Hilbert
space H. In quantum (statistical) mechanics, the “state” of such a system encompasses the expectation
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values of all its observables [1]. It is represented by a density matrix D̂, which plays the rôle of a
probability distribution, and from which one can derive the expectation value of Ô in the form

< Ô >= Tr D̂Ô = (D̂; Ô) . (1)

Density matrices should be Hermitean (< Ô > is real for Ô = Ô†), normalised (the expectation value
of the unit observable is Tr D̂ = 1) and non-negative (variances < Ô2 > − < Ô >2 are non-negative).
They depend on n2−1 real parameters. If we keep aside the multiplicative structure of the set of operators
and focus on their linear vector space structure, Eq. (1) appears as a linear mapping of the space of
observables onto real numbers. We can therefore regard the observables and the density operators D̂ as
elements of two dual vector spaces, and expectation values (1) appear as scalar products.

It is of interest to define a metric in the space of states. For instance, the distance between an exact
state D̂ and an approximation D̂app would then characterise the quality of this approximation. However,
all physical quantities come out in the form (1) which lies astride the two dual spaces of observables
and states. In order to build a metric having physical relevance, we need to rely on another meaningful
quantity which pertains only to the space of states.

We note at this point that quantum states are probabilistic objects that gather information about the
considered system. Then, the amount of missing information is measured by von Neumann’s entropy

S(D̂) ≡ −Tr D̂ ln D̂ . (2)

Introduced in the context of quantum measurements, this quantity is identified with the thermodynamic
entropy when D̂ is an equilibrium state. In non-equilibrium statistical mechanics, it encompasses, in the
form of “relevant entropy” (see Sec. 5 below), various entropies defined through the maximum entropy
criterion. It is also introduced in quantum computation. Alternative entropies have been introduced in
the literature, but they do not present all the distinctive and natural features of von Neumann’s entropy,
such as additivity and concavity.

As S(D̂) is a concave function, and as it is the sole physically meaningful quantity apart from
expectation values, it is natural to rely on it for our purpose. We thus define [2] the distance ds between
two neighbouring density matrices D̂ and D̂ + dD̂ as the square root of

ds2 = −d2S(D̂) = Tr dD̂d ln D̂ . (3)

This Riemannian metric is of the Hessian form since the metric tensor is generated by taking second
derivatives of the function S(D̂) with respect to the n2 − 1 coordinates of D̂. We may take for such
coordinates the real and imaginary parts of the matrix elements, or equivalently (Sec. 6) some linear
transform of these (keeping aside the norm Tr D̂ = 1).

2. Interpretation in the context of quantum information.

The simplest example, related to quantum information theory, is that of a q-bit (two-level system or
spin 1

2
) for which n = 2. Its states, represented by 2 × 2 Hermitean normalised density matrices, can

conveniently be parameterised by the components rµ = D12+D21, i(D12−D21), D11−D22 (µ = 1, 2, 3)
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of a 3-dimensional vector r lying within the unit Poincaré–Bloch sphere (r ≤ 1). From the corresponding
entropy

S =
1 + r

2
ln

2

1 + r
+

1− r

2
ln

2

1− r
, (4)

we derive the metric

ds2 =
1

1− r2

(
r · dr

r

)2

+
1

2r
ln

1 + r

1− r

(
r× dr

r

)2

, (5)

which is a natural Riemannian metric for q-bits, or more generally for positive 2× 2 matrices.
Identifying von Neumann’s entropy to a measure of missing information, we can give a simple

interpretation to the distance between two states. Indeed, the concavity of entropy expresses that some
information is lost when two statistical ensembles described by different density operators merge. By
mixing two equal size populations described by the neighbouring distributions D̂ and D̂′ = D̂ + dD̂

separated by a distance ds, we lose an amount of information given by

∆S ≡ S

(
D̂ + D̂′

2

)
− S(D̂) + S(D̂′)

2
∼ ds2

8
, (6)

and thereby directly related to the distance ds defined by (3).
Such a loss is very large when D̂ and D̂′ lie in the vicinity of a pure state (for which S = 0), due

to the singularity of the entropy (2) and of the metric (3) at the edge of the domain of D̂; this entails
a divergence exemplified for n = 2 by the expression (5) when r → 1. In particular, if D̂ and D̂′ are
pure, the above loss of information ∆S behaves as α | ln α |, where α = 1/8 Tr(dD̂)2, whereas it is
of order α if they have no vanishing eigenvalue. At the other extreme, around the most disordered state
D̂ = Î/n, in the region ‖ nD̂ − Î ‖� 1, the metric becomes Euclidean since ds2 ∼ n Tr(dD̂)2 (for
n = 2, ds2 = dr2). For a given shift dD̂, the qualitative change of a state D̂, as measured by the distance
ds, gets larger and larger as the state D̂ becomes purer and purer, that is, when the information contents
of D̂ increases.

3. Geometry of quantum statistical mechanics.

A rich geometric structure is generated for both states and observables by von Neumann’s entropy
through introduction of the metric ds2 = −d2S. Now, this metric (3) supplements the algebraic structure
of the set of observables and the above duality between the vector spaces of states and of observables,
with scalar product (1). Accordingly, we can define naturally within the space of states scalar products,
geodesics, angles, curvatures.

We can also regard the coordinates of dD̂ and d ln D̂ as covariant and contravariant components of
the same infinitesimal vector (Sec. 6). To this aim, let us introduce the mapping

D̂ ≡ eX̂

Tr eX̂
(7)

between D̂ in the space of states and X̂ in the space of observables. The operator X̂ appears as a
parameterisation of D̂. (The normalisation of D̂ entails that X̂ , defined within an arbitrary additive
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constant operator X0 Î , also depends on n2 − 1 independent real parameters.) The metric (3) can then
be re-expressed in terms of X̂ in the form

ds2 = Tr dD̂dX̂ = Tr

∫ 1

0

dξD̂e−ξX̂dX̂eξX̂dX̂ − (Tr D̂dX̂)2 = d2 ln Tr eX̂ = d2F , (8)

where we introduced the function
F (X̂) ≡ ln Tr eX̂ (9)

of the observable X̂ . (The addition of X0Î to X̂ results in the addition of the irrelevant constant X0 to
F .) This mapping provides us with a natural metric in the space of observables, from which we recover
the scalar product between dX̂1 and dX̂2 in the form of a Kubo correlation in the state D̂. The metric
(8) has been quoted in the literature under the names of Bogoliubov–Kubo–Mori.

4. Covariance and Legendre transformation.

We can recover the above geometric mapping (7) between D̂ and X̂ , or between the covariant and
contravariant coordinates of dD̂, as the outcome of a Legendre transformation, by considering the
function F (X̂). Taking its differential dF = Tr eX̂dX̂/ Tr eX̂ , we identify the partial derivatives of
F (X̂) with the coordinates of the state D̂ = eX̂/ Tr eX̂ , so that D̂ appears as conjugate to X̂ in the
sense of Legendre transformations. Expressing then X̂ as function of D̂ and inserting into F − Tr D̂X̂ ,
we recognise that the Legendre transform of F (X̂) is von Neumann’s entropy F − Tr D̂X̂ = S(D̂) =

−Tr D̂ ln D̂. The conjugation between D̂ and X̂ is embedded in the equations

dF = Tr D̂dX̂ ; dS = −Tr X̂dD̂ . (10)

Legendre transformations are currently used in equilibrium thermodynamics. Let us show that they
come out in this context directly as a special case of the present general formalism. The entropy of
thermodynamics is a function of the extensive variables, energy, volume, particle numbers, etc. Let us
focus for illustration on the energy U , keeping the other extensive variables fixed. The thermodynamic
entropy S(U), a function of the single variable U , generates the inverse temperature as β = ∂S/∂U .
Its Legendre transform is the Massieu potential F (β) = S − βU . In order to compare these properties
with the present formalism, we recall how thermodynamics comes out in the framework of statistical
mechanics. The thermodynamic entropy S(U) is identified with the von Neumann entropy (2) of the
Boltzmann–Gibbs canonical equilibrium state D̂, and the internal energy with U = Tr D̂Ĥ . In the
relation (7), the operator X̂ reads X̂ = −βĤ (within an irrelevant additive constant). By letting U or β

vary, we select within the spaces of states and of observables a one-dimensional subset. In these restricted
subsets, D̂ is parameterised by the single coordinate U , and the corresponding X̂ by the coordinate
−β. By specialising the general relations (10) to these subsets, we recover the thermodynamic relations
dF = −Udβ and dS = βdU . We also recover, by restricting the metric (3) or (8) to these subsets, the
current thermodynamic metric ds2 =−(∂2S/∂U2)dU2 =−dUdβ.

More generally, we can consider the Boltzmann–Gibbs states of equilibrium statistical mechanics as
the points of a manifold embedded in the full space of states. The thermodynamic extensive variables,
which parameterise these states, are the expectation values of the conserved macroscopic observables,
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that is, they are a subset of the expectation values (1) which parameterise arbitrary density operators.
Then the standard geometric structure of thermodynamics simply results from the restriction of the
general metric (3) to this manifold of Boltzmann–Gibbs states. The commutation of the conserved
observables simplifies the reduced thermodynamic metric, which presents the same features as a Fisher
metric (see Sec. 6).

5. Relevant entropy and geometry of the projection method.

The above ideas also extend to non-equilibrium quantum statistical mechanics [2,3]. When
introducing the metric (3), we indicated that it may be used to estimate the quality of an approximation.
Let us illustrate this point with the Nakajima–Zwanzig–Mori–Robertson projection method, best
introduced through maximum entropy. Consider some set {Âk} of “relevant observables”, whose
time-dependent expectation values ak ≡ < Âk > = Tr D̂Âk we wish to follow, discarding all
other variables. The exact state D̂ encodes the variables {ak} that we are interested in, but also the
expectation values (1) of the other observables that we wish to eliminate. This elimination is performed
by associating at each time with D̂ a “reduced state” D̂R which is equivalent to D̂ as regards the set
ak = Tr D̂RÂk, but which provides no more information than the values{ak}. The former condition
provides the constraints < Âk > = ak, and the latter condition is implemented by means of the
maximum entropy criterion: One expresses that, within the set of density matrices compatible with
these constraints, D̂R is the one which maximises von Neumann’s entropy (2), that is, which contains
solely the information about the relevant variables ak. The least biased state D̂R thus defined has the
form D̂R = eX̂R/ Tr eX̂R , where X̂R ≡

∑
k λkÂk involves the time-dependent Lagrange multipliers λk,

which are related to the set ak through Tr D̂RÂk = ak.
The von Neumann entropy S(D̂R) ≡ SR{ak} of this reduced state D̂R is called the “relevant entropy”

associated with the considered relevant observables Âk. It measures the amount of missing information,
when only the values {ak} of the relevant variables are given. During its evolution, D̂ keeps track of the
initial information about all the variables < Ô > and its entropy S(D̂) remains constant in time. It is
therefore smaller than the relevant entropy S(D̂R) which accounts for the loss of information about the
irrelevant variables. Depending on the choice of relevant observables {Âk}, the corresponding relevant
entropies SR{ak} encompass various current entropies, such as the non-equilibrium thermodynamic
entropy or Boltzmann’s H-entropy.

The same structure as the one introduced above for the full spaces of observables and states is
recovered in this context. Here, for arbitrary values of the parameters λk, the exponents X̂R =

∑
k λkÂk

constitute a subspace of the full vector space of observables, and the parameters {λk} appear as the
coordinates of X̂R on the basis {Âk}. The corresponding states D̂R, parameterised by the set {ak},
constitute a subset of the space of states, the manifold R of “reduced states”. (Note that this manifold is
not a hyperplane, contrary to the space of relevant observables; it is embedded in the full vector space of
states, but does not constitute a subspace.) By regarding SR{ak} as a function of the coordinates {ak},
we can define a metric ds2 = −d2SR{ak} on the manifold R, which is the restriction of the metric
(3). Its alternative expression ds2 =

∑
k dakdλk = d2FR{λk}, where FR{λk} ≡ ln Tr exp

∑
k λkÂk,
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is a restriction of (8). The correspondence between the two parameterisations {ak} and {λk} is again
implemented by the Legendre transformation which relates SR{ak} and FR{λk}.

The projection method relies on the mapping D̂ 7→ D̂R from D̂ to D̂R. It consists in replacing the
Liouville–von Neumann equation of motion for D̂ by the corresponding dynamical equation for D̂R on
the manifoldR, or equivalently for the coordinates {ak} or for the coordinates{λk}, a programme that is
in practice achieved through some approximations. This mapping is obviously a projection in the sense
that D̂ 7→ D̂R 7→ D̂R, but moreover the introduction of the metric (3) shows that the vector D̂ − D̂R in
the space of states is perpendicular to the manifold R at the point D̂R. This property is readily shown
by writing, in this metric, the scalar product Tr dD̂dX̂ ′ of the vector dD̂ = D̂ − D̂R by an arbitrary
vector dD̂′ in the tangent plane of R. The latter is conjugate to any combination dX̂ ′ of observables
Âk, and this scalar product vanishes because Tr D̂Âk = Tr D̂RÂk. Thus the mapping D̂ 7→ D̂R appears
as an orthogonal projection, so that the relevant state D̂R associated with D̂ may be regarded as its best
possible approximation on the manifold R.

6. Properties of the metric.

The metric tensor can be evaluated explicitly in a basis where the matrix D̂ is diagonal. Denoting by
Di its eigenvalues and by dDij the matrix elements of its variations, we obtain from (3)

ds2 = Tr

∫ ∞

0

dξ

(
dD̂

D̂ + ξ

)2

=
∑
ij

ln Di − ln Dj

Di −Dj

dDijdDji . (11)

In the same basis, the form (8) of the metric reads

ds2 =
1

Z

∑
ij

eXi − eXj

Xi −Xj

dXijdXji −
(∑

i e
XidXii

Z

)2

, (12)

with Z =
∑

i e
Xi . The singularity of the metric (11) in the vicinity of vanishing eigenvalues of D̂, in

particular near pure states (end of Sec.2), is not apparent in the representation (12) of this metric, because
the mapping from D̂ to X̂ sends the eignevalue Xi to −∞ when Di tends to zero.

Let us compare the expression (11) with the corresponding classical metric, which is obtained by
starting from Shannon’s entropy instead of von Neumann’s entropy. For discrete probabilities pi, we
have then S{pi} = −

∑
i pi ln pi and hence ds2 =

∑
i dp2

i /pi, which is the Fisher information metric.
The present metric thus appears as the extension to quantum statistical mechanics of the Fisher metric.
In fact, in the terms of (11) which involve the diagonal elements i = j of dD̂, the ratio reduces to 1/Di.
This result was expected since density matrices behave as probability distributions if both D̂ and dD̂ are
diagonal. Another matrix extension of the Fisher information metric, the Bures metric

ds2 =
∑
ij

2

Di + Dj

dDijdDji , (13)

was introduced long ago [4], without physical justification. The elements of its metric tensor approximate
the corresponding ones in (11) when | Di −Dj |� Di + Dj .

In order to express the properties of the Riemannian metric (3) in a general form, which will exhibit
the tensor structure, we use a Liouville representation. There, the observables Ô = OµΩ̂µ, regarded
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as elements of a vector space, are represented by their coordinates Oµ on a complete basis Ω̂µ of n2

observables. The space of states is spanned by the dual basis Σ̂µ, such that Tr Ω̂νΣ̂µ = δν
µ, and the

states D̂ = DµΣ̂µ are represented by their coordinates Dµ. Thus, the expectation value (1) is the scalar
product DµOµ. In the matrix representation which appears as a special case, µ denotes a pair of indices
i, j, Ω̂µ stands for | j >< i |, Σ̂µ for | i >< j |, Oµ denotes the matrix element Oji and Dµ the
element Dij . For the q-bit (n = 2) considered in Sec. 2, we have chosen the Pauli operators σ̂µ as
basis Ω̂µ for observables, and 1/2σ̂µ as dual basis Σ̂µ for states, so that the coordinates Dµ = Tr D̂Ω̂µ

of D̂ = 1/2(Î + rµσ̂µ) are the components rµ of the vector r. (The unit operator Î is kept aside since
D̂ is normalised and since constants added to X̂ are irrelevant.) The function F{X} = ln Tr eX̂ of the
coordinates Xµ of the observable X̂ , and the von Neumann entropy S{D} as function of the coordinates
Dµ of the state D̂, are related by the Legendre transformation F = S +DµXµ, and the relations (10) are
expressed by Dµ = ∂F/∂Xµ, Xµ = −∂S/∂Dµ. The metric tensor is given by

gµν =
∂2F

∂Xµ∂Xν

, gµν = − ∂2S

∂Dµ∂Dν
, (14)

and the correspondence issued from (7) between covariant and contravariant infinitesimal variations of
X̂ and D̂ is implemented as dDµ = gµνdXν , dXµ = gµνdDν .

The Hessian property of the metric tensor simplifies the expression of the Christoffel symbol, which
reduces to

Γµνρ = −1

2

∂3S

∂Dµ∂Dν∂Dρ
. (15)

Then, the Riemann curvature tensor comes out as

Rµρ νσ = gξζ(ΓµσξΓνρζ − ΓµνξΓρσζ) , (16)

the Ricci tensor and the scalar curvature as

Rµν = gρσRµρ νσ, R = gµνRµν . (17)

We have noted that the classical equivalent of the metric ds2 = −d2S is the Fisher metric
∑

i dp2
i /pi,

which as regards the curvature is equivalent to a Euclidean metric. While the space of classical
probabilities is thus flat, the above equations show that the space of quantum states is curved. This
curvature arises from the non-commutation of the observables, it vanishes for the completely disordered
state D̂ = Î/n. Curvature can thus be used as a measure of the degree of classicality of a state.

In the illustrative example of a q-bit, the operator X̂ = χµσ̂
µ associated with D̂ is parameterised by

the 3 components of the vector χµ (µ = 1, 2, 3), related to r by χ = tanh−1 r and χµ/χ = rµ/r. The
metric tensor given by (5) is expressed as

gµν = Krµrν +
χ

r
δµν , K ≡ 1

r

d

dr

χ

r
=

1

r2

(
1

1− r2
− χ

r

)
, (18)

gµν = (1− r2)pµν +
r

χ
qµν .

(We have introduced the projectors rµrν/r2 ≡ pµν ≡ δµν − qµν in the Euclidean 3-dimensional space so
as to simplify the subsequent calculations.) We determine from (15) and (18) the explicit form

Γµνρ =
K

2
(rµδνρ + rνδµρ + rρδµν) +

1

2
r
dK

dr
rµrνrρ (19)
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of the Christoffel symbol, then from (16) the Riemann curvature

Rµ
ρ νσ =

K

4

[
(r2 +

r

χ
− 1)(qµ

σqνρ − qµ
νqρσ) + (r2 − r

χ
+ 1)(pµ

σqνρ − pµ
νqρσ) (20)

+
r

χ

1

1− r2
(r2 − r

χ
+ 1)(qµ

σpνρ − qµ
νpρσ)

]
.

Contracting with gρσ the indices as in (17), we finally derive the Ricci curvature

Rµ
ν = −Kr

2χ

(
r2δµ

ν +
χ− r

χ
pµ

ν

)
, (21)

and the scalar curvature

R = −Kr

2χ

(
3r2 +

χ− r

χ

)
. (22)

Both are negative in the whole Poincaré sphere. In the limit r → 0, the curvature R vanishes as R ∼
−10

9
r2, as expected from the general argument of Sec. 2: a weakly polarised spin behaves classically. At

the other extreme r → 1, R behaves as R ∼ −2 [(1− r) | ln(1− r) |]−1; it diverges, again as expected:
pure states have the largest quantum nature.

The metric ds2 = −d2S, introduced above in the context of quantum statistical mechanics, might
more generally be useful to characterise distances in spaces of positive matrices.

References

Given the tutorial scope of this text, we refer to the articles below for extensive bibliographies.
[1] W. Thirring, A course of mathematical physics, vol. 4, Quantum mechanics of large systems

(Springler Verlag, 1983)
[2] The metric ds2 = −d2S and most results reviewed here were introduced in R. Balian, Y. Alhassid

and H. Reinhardt, Dissipation in many-body systems: a geometric approach based on information
theory, Phys. Reports 131 (1986) 1-146.

[3] Simple introductions can be found in R. Balian, Incomplete descriptions and relevant entropies, Am.
J. Phys. 67 (1989) 1078-1090 and Information in statistical physics, Stud. Hist. Phil. Mod. Phys. 36
(2005) 323-353

[4] D. Bures, An extension of Kakutani’s theorem, Trans. Am. Math. Soc. 135 (1969) 199-212

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	A physical metric for quantum states.
	Interpretation in the context of quantum information.
	Geometry of quantum statistical mechanics.
	Covariance and Legendre transformation.
	Relevant entropy and geometry of the projection method.
	Properties of the metric.

