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We study structure formation in K-mouflage cosmology whose main feature is the absence of
screening effect on quasilinear scales. We show that the growth of structure at the linear level is
affected by both a new time dependent Newton constant and a friction term which depend on the
background evolution. These combine with the modified background evolution to change the growth
rate by up to ten percent since z ∼ 2. At the one loop level, we find that the nonlinearities of the
K-mouflage models are mostly due to the matter dynamics and that the scalar perturbations can
be treated at tree level. We also study the spherical collapse in K-mouflage models and show that
the critical density contrast deviates from its Λ-CDM value and that, as a result, the halo mass
function is modified for large masses by an order one factor. Finally we consider the deviation of
the matter spectrum from Λ-CDM on nonlinear scales where a halo model is utilized. We find that
the discrepancy peaks around 1 hMpc−1 with a relative difference which can reach fifty percent.
Importantly, these features are still true at larger redshifts, contrary to models of the chameleon-
f(R) and Galileon types.

PACS numbers: 98.80.-k

I. INTRODUCTION

Scalar fields could be crucial in explaining the recent
acceleration of the expansion of the Universe [1]. They
could also modify gravity as described by General Rela-
tivity (GR) [2]. Such scalar fields with low masses could
affect the growth of structures on very large scales in the
Universe. On the other hand, in the Solar System or
the laboratory, modifications of General Relativity are
tightly constrained [3]. The compatibility between the
two behaviors on large and small scales can be ascer-
tained in screened modified gravity where environmental
effects take place in the presence of matter. In this paper,
we study the formation of structure in K-mouflage mod-
els [4, 5]. The background cosmology has been analyzed
in a companion paper [6].

The K-mouflage mechanism is present in scalar field
theories with noncanonical kinetic terms. It is effective
in regions of space where the gravitational acceleration
is larger than a critical value [7]. On large scales where
matter is less dense, deviations from GR can be signif-
icant and affect the growth of structure. In particular,
K-mouflage models do not converge towards GR in the
large distance regime. As a result, K-mouflage models
behave like a linear theory with a time dependent New-
ton constant up to quasilinear scales.

We study the perturbative regime of K-mouflage mod-
els before analyzing the nonlinear regime. Linear pertur-
bation theory differs from Λ-CDM on large scales and is
therefore amenable to clean comparisons with the mea-
surements of the growth factor as forecast by the EU-
CLID mission [8]. It turns out that the linear regime in
the scalar sector gives a good description of the growth
structure up to quasilinear scales owing to the relative
irrelevance of nonlinear corrections in the scalar sector.

In the nonlinear regime, we use the spherical collapse
to deduce the halo mass function and the deviation of
the power spectrum from Λ-CDM. As expected the halo
mass function is significantly affected for large masses
while the power spectrum can see large deviations on
nonlinear scales of order 1 Mpc. This is a feature of
f(R) models too [9] which could be disentangled here
inasmuch as it persists even for moderate redshifts in
the K-mouflage case. In fact, the redshift dependence of
the deviations from GR is also very different in models
with the Vainshtein property such as Galileons [10, 11],
with fewer deviations at moderate redshifts than in the
K-mouflage models. Hence we can expect that the three
screening mechanisms could be disentangled by both an-
alyzing the large-scale features, as chameleonlike models
converge to GR contrary to K-mouflage and Vainshtein
models, and the time evolution of their deviations from
GR, as K-mouflage models show persistent ones up to
z = 2.

In section II, we introduce K-mouflage models, screen-
ing and the background cosmology. In section III, we
analyze the perturbative regime of K-mouflage theories.
In section IV, we focus on large scales and the ISW effect.
In section V, we study the spherical collapse and apply
these results to a halo model which allows us to tackle
the cosmology of nonlinear scales. Finally in section VI,
we calculate the power spectrum including nonlinearities
as defined by a halo model. In section VII, we compare
our results with chameleonlike models and Galileons. We
conclude in section VIII. Two appendices present the per-
turbation theory of K-mouflage models and a comparison
of the power spectrum in K-mouflage models with the one
where the only modification from Λ-CDM is due to the
K-mouflage background cosmology.

http://arxiv.org/abs/1403.5424v2
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II. K-MOUFLAGE

We recall in this section the definition of the K-
mouflage models that we consider and the evolution of
the cosmological background.

A. Definition of the model

We consider scalar field models where the action in the
Einstein frame has the form

S =

∫

d4x
√−g

[

M2
Pl

2
R+ Lϕ(ϕ)

]

+

∫

d4x
√

−g̃Lm(ψ
(i)
m , g̃µν), (1)

where g is the determinant of the metric tensor gµν , and

ψ
(i)
m are various matter fields. The scalar field ϕ is explic-

itly coupled to matter via the Jordan-frame metric g̃µν ,
which is given by the conformal rescaling

g̃µν = A2(ϕ) gµν , (2)

and g̃ is its determinant. We have already considered
various canonical scalar field models in previous works
[9, 12], with Lϕ = −(∂ϕ)2/2 − V (ϕ). In this paper, we
consider models with a nonstandard kinetic term

Lϕ(ϕ) = M4K(χ) with χ = − 1

2M4
∂µϕ∂µϕ. (3)

[We use the signature (−,+,+,+) for the metric.] The
constant M4 is an energy scale of the order of the cur-
rent energy density to retrieve the late-time accelerated
expansion of the Universe. The canonical behavior with
a cosmological constant, ρΛ = M4 [see Eq.(22) below], is
obtained in the weak-χ limit when:

χ→ 0 : K(χ) ≃ −1 + χ+ ..., (4)

where the dots stand for higher-order terms. We have
chosen the minus sign of the constant −1 at χ = 0 using
ρΛ = −M4K(0) > 0 (for the models where the late-time
behavior corresponds to χ→ 0).
The dynamics are determined by the Klein-Gordon

equation which reads now as

1√−g∂µ
[√−g ∂µϕ K ′]− d lnA

dϕ
ρE = 0, (5)

where ρE = −gµνTµν is the Einstein-frame matter den-
sity, and we note with a prime K ′ = dK/dχ.

B. Screening

The suppression of the scalar field effect in dense envi-
ronments due to K-mouflage is significant when the gra-
dient of the scalar field satisfies

|∇ϕ| & M2 (6)

implying that a necessary condition on the Newtonian
potential ΨN for screening in K-mouflage models is

|∇ΨN| &
M2

2βMPl
(7)

where the coupling to matter β = MPl
d lnA
dϕ is a slowly

varying function of ϕ. For the Newtonian potential
around a dense object of mass m, screening occurs in-
side the K-mouflage radius

RK =

(

βm

4πMPlM2

)1/2

. (8)

For quasilinear scales in cosmology, screening appears
when the wave number k = 1/x characterizing a given
structure satisfies

k . 3Ωm0A(ϕ0)β(ϕ0)
H2

0MPl

M2
δ, (9)

where δ = (ρ− ρ̄)/ρ̄ is the matter density contrast. When
M4 ∼ 3ΩΛ0M

2
PlH

2
0 to reproduce the late-time cosmolog-

ical constant, we find that

k

H0
.

√

3

ΩΛ0
Ωm0A(ϕ0)β(ϕ0)δ (10)

which is associated to superhorizon scales. As a result,
all quasilinear objects in the Universe are unscreened in
K-mouflage models.
Therefore, we expect that linear scales are maximally

affected in K-mouflage models. In particular the inte-
grated Sachs-Wolfe effect becomes relevant, where we
have the approximation

∆TISW
TCMB

≈ 2

c2

∫ τ0

τLS

dτ ∂τΨN (11)

between the last scattering and now. Here τ =
∫

dt/a is
the conformal time and we have approximated the visi-
bility function by unity after the last scattering and zero
at earlier times. Using the Poisson equation and defining
by D+ the matter density growing mode of linear per-
turbation theory, we find that on the largest scales the
Integrated Sachs-Wolfe effect behaves like

∆TISW
TCMB

≈ 2

c2
[ΨN(τ0)−ΨN(τLS)]

∝
(

Ā0D+0 −
ĀLSD+LS

aLS

)

. (12)

As a result, in K-mouflage models both the growth of
structure (through D+) and the background cosmology
(through the variation of the function A(ϕ̄) as a function
of the background field ϕ̄) can lead to a significant change
in the ISW effect from Λ-CDM.We will analyze this effect
in more details in Sec. IV.
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C. Specific models

We use the same three models as in the companion
paper [6] where we study the background evolution for

“no-χ∗, K
′ ≥ 1” : K(χ) = −1 + χ+K0 χ

m,

K0 > 0, m ≥ 2, (13)

“with-χ∗, K
′ ≤ 0” : K(χ) = −1 + χ+K0 χ

m,

K0 < 0, m ≥ 2, (14)

and

“with-χ∗, K
′ ≥ 0” : K(χ) = −1+χ−χ2+χ3/4. (15)

The first model (13) corresponds to scenarios where K ′

never comes across a zero (“no-χ∗”) during the back-
ground cosmological evolution and remains positive. The
second and third models correspond to scenarios where
K ′ comes across a zero, χ∗ > 0, at late times (in fact,
at infinite time), from below [Eq.(14)] or from above
[Eq.(15)], as χ rolls down from +∞.
More generally, the first two terms in Eq.(13), (−1+χ),

represent the first-order expansion in χ of a generic func-
tion K(χ), as in Eq.(4), so that we recover a canonical
scalar field with a cosmological constant for small time
and spatial gradients. The third term K0 χ

m represents
the large-χ behavior of the function K(χ), or more pre-
cisely the relevant exponent at the time of interest.
As shown in the companion paper [6], the models (14)

actually show ghost instabilities. In particular, vacuum
decay leads to a large production of photons and observa-
tional constraints on the diffuse gamma ray background
yield an upper bound on the cutoff scale Λ of the theory.
This gives Λ ≤ 1 keV for m = 2 and Λ ≤ 4 eV for m = 3,
hence these models are not very realistic. Nevertheless,
we include them in our study for illustration.
For the coupling function A(ϕ), we again consider the

simple power laws,

n ∈ N, n ≥ 1 : A(ϕ) =

(

1 +
βϕ

nMPl

)n

, (16)

which include the linear case n = 1, and the exponential
limit for n→ +∞,

A(ϕ) = eβϕ/MPl . (17)

Without loss of generality, we normalized the field ϕ (by
the appropriate additive constant) so that A(0) = 1.
The action (1) is invariant with respect to the trans-

formation (ϕ, β) → (−ϕ,−β); therefore, we can choose
β > 0. Thus, in addition to the usual cosmological pa-
rameters, our system is defined by the five parameters

{β, n;K0,m;M4} with β > 0, M4 > 0, n ≥ 1, m ≥ 2,
(18)

except for the model (15) where there are no parameters
{K0,m} as the kinetic function is fixed. The scale M is

not an independent parameter. For a given value of the
set {β, n;K0,m} and of H0, it is fixed by the value of
Ωm0 today. Thus, as in the companion paper [6], in the
numerical computations below, we choose the same set
of cosmological parameters today, given by the Planck
results [13]. Then, for any set {β, n;K0,m}, we tune M
to obtain the observed dark energy density today. As
noticed above, this means that M4 ∼ ρ̄de0.

D. Cosmological background

We focus on the matter era and we only consider non-
relativistic pressureless matter and the scalar field ϕ.
Then, as shown in the companion paper [6], the Fried-
mann equations read

3M2
PlH

2 = ρ̄+ ρ̄effϕ , (19)

−2M2
PlḢ = ρ̄+ ρ̄effϕ + p̄ϕ, (20)

where ρ is the conserved matter density, which is defined
in terms of the Einstein-frame matter density ρE by

ρ = A−1ρE , and ˙̄ρ = −3H ρ̄ hence ρ̄ =
ρ̄0
a3
, (21)

ρϕ and pϕ, are the scalar field energy density and pressure
(in the Einstein frame),

ρ̄ϕ = −M4K̄ + ˙̄ϕ2 K̄ ′, p̄ϕ = M4K̄, (22)

and ρeffϕ is the effective scalar field density, defined by

ρeffϕ = ρϕ + [A(ϕ)− 1]ρ, (23)

which satisfies the standard conservation equation (the
pressure pϕ is not modified)

˙̄ρeffϕ = −3H(ρ̄effϕ + p̄ϕ). (24)

Here and in the following, the overbar denotes back-
ground uniform quantities.
The Klein-Gordon equation (5) reads as

∂t
(

a3 ˙̄ϕK̄ ′) = −dĀ

dϕ̄
ρ̄ a3, (25)

and the relevant cosmological solution is the solution of
the integrated form

t ≥ 0 : a3 ˙̄ϕK̄ ′ = −
∫ t

0

dt′ ρ̄0
dĀ

dϕ̄
(t′), (26)

with the boundary condition ϕ̄→ 0 at t→ 0. This gives
the early-time power law behaviors

t→ 0 : |ϕ̄| ∼ t2(m−1)/(2m−1), | ˙̄ϕ| ∼ t−1/(2m−1),

ρ̄effϕ ∼ ρ̄ϕ ∼ p̄ϕ ∼ t−2m/(2m−1), (27)

and the signs of ϕ̄ and ˙̄ϕ are opposite to the sign of K0,

t→ 0 : K0 ˙̄ϕ < 0, K0ϕ̄ < 0. (28)



4

The solution (26) is an attractor tracker solution. At
early times, we recover the matter era, with ρ̄effϕ ≪ ρ̄,
and at late times we recover a cosmological-constant be-
havior, with ρ̄de = M4 for the models (13) and ρ̄de =
−M4K(χ∗) for the models (14) and (15). More pre-
cisely, for t → ∞, far in the dark energy era, we obtain
the behaviors

“K ′ ≥ 1” : a(t) ∼ eM
2t/(

√
3MPl), ϕ̄→ constant < 0,

(29)

“K ′ ≤ 0” : a(t) ∼ e
√

−K∗/3M2t/MPl , ϕ̄ ≃
√

2χ∗M4t,
(30)

and

“K ′ ≥ 0” : a(t) ∼ e
√

−K∗/3M2t/MPl , ϕ̄ ≃ −
√

2χ∗M4t,
(31)

for the models (13), (14), and (15).
In addition, from Eq.(26) and the fact that ϕ/MPl has

not grown much beyond unity until the current time t0
(because of the BBN constraint, see the companion pa-
per), we have

0 ≤ t ≤ t0 :

∣

∣

∣

∣

βϕ̄

MPl

∣

∣

∣

∣

. 1 and
βϕ̄

MPl
∼ − β2

K̄ ′ . (32)

This sets a condition on the parameters of the model.
In particular, β is typically less than unity, except for
models (13) with a large value of K0 that implies that
K̄ ′ has remained large until today.

III. FORMATION OF LARGE-SCALE
STRUCTURES

A. Equations of motion

To derive the continuity and Euler equations that gov-
ern the matter dynamics on large scales, it is conve-
nient to work in the Einstein frame, where the energy-
momentum tensor obeys

DµT
µν
(m) = −ρE ∂ν lnA. (33)

[This follows from the conservation of the total energy-
momentum tensor T µν

(m) + T µν
(ϕ) of the sum of matter and

scalar field components, using the Klein-Gordon equa-
tion (5) to simplify the part DµT

µν
(ϕ), which gives rise to

the right-hand side in Eq.(33).] Then, considering per-
turbations in the conformal Newtonian gauge,

ds2 = a2[−(1 + 2ΨN)dτ
2 + (1− 2ΨN)dx

2], (34)

where ΨN is Newton’s gravitational potential and τ =
∫

dt/a, Eq.(33) leads to

∂ρE
∂τ

+∇ · (ρEv) + 3HρE = ρE
∂ lnA

∂τ
, (35)

and

∂v

∂τ
+ (v · ∇)v +

(

H +
∂ lnA

∂τ

)

v = −∇ (ΨN + lnA) ,

(36)
where H = (da/dτ)/a = aH is the conformal expan-
sion rate and v = dx/dτ = aẋ is the peculiar velocity.
Here and in the following, we work in the nonrelativistic
(v ≪ c) and weak field (ΨN ≪ c2) limit. The continuity
equation (35) is obtained by contracting Eq.(33) with uν
or from its ν = 0 component. The Euler equation (36) is
obtained from the spatial ν = i components of Eq.(33),
using Eq.(35) to simplify some terms. In these calcula-
tions, as detailed in App. A, we encounter terms of the
form v∇ lnA, which are of order (v2)′ ∼ ∇v3 ∼ v∇ΨN

as seen from the Euler equation (36). Therefore, they
are negligible in the nonrelativistic and weak field limit
and must be dropped (as other terms such as ∇v3 or
v∇ΨN). We omit them in Eqs.(35)-(36) and in the fol-
lowing. In terms of the density ρ = A−1ρE introduced
in Eq.(21), the continuity equation (35) reads, as in the
usual Λ-CDM case, as

∂ρ

∂τ
+∇ · (ρv) + 3Hρ = 0, (37)

[where we used again the fact that v∇ lnA is a higher-
order correction ∼ (v2)′]. Thus, the density ρ is still con-
served by the velocity flow, including peculiar velocities,
and it corresponds to the physical matter density
Next, from the Einstein equations we obtain the Pois-

son equation,

1

a2
∇2ΨN = 4πG(δρE + δρϕ) = 4πG(δρ+ δρeffϕ ), (38)

where δρi = ρi − ρ̄i are the density fluctuations. The
scalar field density ρϕ is still given as in Eq.(22) by

ρϕ = −M4K +

(

∂ϕ

∂t

)2

K ′, (39)

and the effective scalar field density ρeffϕ by Eq.(23).
The dynamics of the scalar field are given by the Klein-

Gordon equation (5), which reads as

1

a3
∂

∂t

(

a3
∂ϕ

∂t
K ′
)

− 1

a2
∇ · (∇ϕK ′) = −dA

dϕ
ρ, (40)

while the argument χ of the kinetic function K reads as

χ =
1

2M4

[

(

∂ϕ

∂t

)2

− 1

a2
(∇ϕ)2

]

, (41)

where we again used the weak field limit ΨN ≪ c2.

B. Small-scale (subhorizon) limit for the scalar
field perturbations

In contrast with most modified-gravity models, such as
chameleon scenarios [9], we cannot use the quasistatic ap-
proximation in its usual form. In such models, the scalar
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field Lagrangian Lϕ also contains a potential V (ϕ) and
the Klein-Gordon equation (40) contains an additional
term, −dV/dϕ, on the right-hand side. Then, the qua-
sistatic approximation assumes that the background field
ϕ̄ follows the minimum ϕ̄∗(t) of the effective potential
Veff(ϕ̄) = V (ϕ̄)+ ρ̄(t)A(ϕ̄). In the same spirit, the Klein-
Gordon equation of the inhomogeneous field ϕ = ϕ̄+ δϕ
is approximated as a−2∇ · (∇ϕK ′) = dV/dϕ+ ρ dA/dϕ.
This quasistatic approximation is valid provided mct ≫
1, wherem2c2 = ∂2Veff/∂ϕ

2, or one considers small scales
kct≫ 1, and various functions such as the coupling func-
tion A or the potential V are smooth enough; see also
the discussion in Sec.II.B.4 in [9]. These conditions are
usually met by these models (e.g., because observational
constraints from the Solar System imply a large m).
In the models studied in this paper, there is no po-

tential V and the background field ϕ̄ cannot be given by
a quasistatic approximation, where time derivatives can
be neglected. In contrast, it is governed by the evolu-
tion equation (26). Nevertheless, we can still consider a
small-scale limit for the fluctuations of the scalar field.
Thus, within a perturbative approach, we write the field
ϕ and the kinetic variable χ as

ϕ = ϕ̄+ δϕ, χ = χ̄+ δχ, (42)

with

χ̄ =
˙̄ϕ2

2M4
and δχ = − (∇δϕ)2

2M4a2
. (43)

This means that we neglect time derivatives of the scalar
field fluctuations, in the small-scale or subhorizon regime

ctk/a≫ 1. (44)

In other words, as we expand the Klein-Gordon equation
(40) in powers of δϕ, for each order in δϕ we only keep
the terms with the highest power of k, that is, with the
highest order of spatial derivatives. Then, terms that
would arise from the product ˙̄ϕ∂δϕ/∂t in δχ will always
be subdominant with respect to those that arise from the
product (∇δϕ)2. Therefore, we can simplify the analy-
sis by removing these subdominant terms from the start,
by only keeping the contribution (∇δϕ)2 in Eq.(43). In
this small-scale approximation, the Klein-Gordon equa-
tion (40) also simplifies as

1

a3
∂

∂t

(

a3 ˙̄ϕK̄ ′)− 1

a2
∇ · (∇δϕK ′) = −dĀ

dϕ̄
(ρ̄+ δρ), (45)

where δρ is the matter density fluctuation. In-
deed, the time-derivative factor gives rise to terms
of the form k2n(δϕ)2n, the spatial-derivative factor to
k2n+2(δϕ)(2n+1), and fluctuations of A to (δϕ)n, where
powers of k count the order of spatial derivatives. Thus,
terms with the highest power of k per δϕ arise from
the spatial term. Therefore, we can remove subdomi-
nant terms by using the background values K̄ ′ in the
first term in Eq.(45) and dĀ/dϕ̄ on the right-hand side.

Subtracting the background solution (25) we obtain the
small-scale Klein-Gordon equation for the fluctuations of
the scalar field

1

a2
∇ · (∇δϕK ′) =

Āβ1
MPl

δρ. (46)

Here we have introduced the dimensionless coefficients

βn(t) =Mn
Pl

dn lnA

dϕn
(ϕ̄). (47)

This equation can be inverted to give the functional
δϕ[δρ] by using a perturbative approach. Thus, we write
the expansion in powers of the nonlinear density fluctu-
ation,

δϕ =
∞
∑

n=1

δϕ(n) with δϕ(n) ∝ (δρ)n, (48)

which reads in Fourier space (which we denote with a
tilde),

δϕ̃(k) =
∞
∑

n=1

∫

dk1 . . . dkn δD(k1 + · · ·+ kn − k)

× hn(k1, . . . ,kn) δρ̃(k1) . . . δρ̃(kn). (49)

Because δχ is quadratic in δϕ, the left-hand side in
Eq.(46) is odd in δϕ while the right-hand side is odd
over δρ. Therefore, we have the symmetry (δϕ, δρ) →
(−δϕ,−δρ) and all even orders in the expansion (49) van-
ish.
One can obtain the same results by keeping all terms

in Eq.(40), including terms such as ∂δϕ/∂t, and looking
for the leading terms in the final expressions for each or-
der δϕ(n). More precisely, from the scalings k2n(δϕ)2n

and k2n+2(δϕ)(2n+1) of the terms that arise from the
time- and space-derivatives of the Klein-Gordon equation
(40), one finds δϕ(2n+1) ∼ k−2n−2 and δϕ(2n) ∼ k−2n−2.
Then, the even orders are subdominant with respect to
the scaling δϕ(n) ∼ k−n−1 satisfied by the odd orders.
This agrees with the result that even orders vanish in
the small-scale approximation (46).
Introducing the coefficients

κn(t) =
dnK

dχn
(χ̄), and hence K̄ ′ = κ1, (50)

we obtain at first order

κ1
a2

∇2δϕ(1) =
Āβ1
MPl

δρ, h1(k) =
−Āβ1a2
κ1MPlk2

. (51)

As explained above, the second order vanishes, h2 = 0.
At third order, we obtain

κ1
a2

∇2 · δϕ(3) =
κ2

2M4a4

{

[

∇ · δϕ(1)
]2

∇2 · δϕ(1)

+2
∂δϕ(1)

∂xi

∂δϕ(1)

∂xj

∂2δϕ(1)

∂xi∂xj

}

, (52)
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hence

h3(k1,k2,k3) =
κ2Ā

3β3
1a

4

2κ41M4M3
Pl

× (k1 · k2)k
2
3 + 2(k1 · k3)(k2 · k3)

k2k21k
2
2k

2
3

. (53)

Thus, even though the background field ϕ̄ follows the dy-
namical equation (25), the fluctuations δϕ are described
by a quasistatic approximation as time derivatives no
longer appear in Eq.(46). This is possible because in the
small-scale regime (44) fluctuations have enough time to
relax, on a local time scale tk ∼ a/(ck) that is much
shorter than the Hubble time.

We can note that the quasistatic Klein-Gordon equa-
tion (46) only defines δϕ up to an additive constant δϕ0,
because it only depends on gradients of δϕ. We set this
constant to zero as we require the scalar field fluctuations
to vanish when the density fluctuations vanish. For a pe-
riodic density field, we can look for a periodic solution δϕ
(thanks to the constraint δρ = 0). This implies that at all
orders n ≥ 2 the symmetrized kernels hsn(k1, ..,kn) van-
ish in the limit where k = k1 + ..+kn goes to zero while
the individual wave numbers {k1, ..,kn} remain finite.
[This is not obvious in Eq.(53) but one can check that
the symmetrized kernel hs3 = 1/6

∑

perm. h3(k1,k2,k3)

verifies hs3(k1,k2,k3) = 0 when k1 + k2 + k3 = 0.]

The results (51) and (53) only apply in the small-scale
limit (44). In particular, the divergences at ki → 0 are
not physical as these expressions are no longer valid for
wave numbers below a/(ct).

C. Perturbation theory

1. Fifth force and Newtonian gravity

We have described in the previous section how the
Klein-Gordon equation (40) can be solved for ϕ[ρ],
through the perturbative expansion (49) in the density
perturbation δρ. In a second step, this allows us to solve
the dynamics of the system in a perturbative manner,
where we now expand in powers of the linear density field
as in the standard Λ-CDM perturbation theory. This ap-
proach is identical to the method used in other modified-
gravity models with a canonical kinetic term, such as
chameleon scenarios, or f(R) models [9]. To recover a
framework that is similar to the standard GR case, we
simply need to express the Newtonian gravitational po-
tential ΨN and the coupling term lnA in Eq.(36) in terms
of the density field. Then, the Euler and continuity equa-
tions (36)-(37) form a closed system in the fields (ρ,v)
that we can solve in a perturbative manner. The differ-
ence with the standard GR case is that the nonlinearity
is no longer quadratic but includes vertices of all orders.

Using Eq.(51), we obtain from the linearized Klein-

Gordon equation

δϕ ∼ Āβ1a
2

MPlκ1k2
δρ. (54)

Then, from the background value (32), we obtain in the
small-scale regime the relative field fluctuation

ctk/a≫ 1 :
δϕ

ϕ̄
∼ a2

c2t2k2
δρ

ρ̄
≪ δρ

ρ̄
. (55)

From the first property (32) we also have Ā ≃ 1, β1 ≃ β,
δA ∼ βδϕ/MPl, and

ctk/a≫ 1 : δ lnA ∼ δA

Ā
∼ β2a2

K̄ ′c2t2k2
δρ

ρ̄
≪ δρ

ρ̄
. (56)

In a similar fashion, the fluctuation δχ scales from
Eq.(43) as

ctk/a≫ 1 :
δχ

χ̄
∼ a2

c2t2k2

(

δρ

ρ̄

)2

≪
(

δρ

ρ̄

)2

. (57)

The Newtonian gravitational potential ΨN is given by
the modified Poisson equation (38). From Eqs.(39) and
(55)-(57), we have δρϕ ≪ δρ in the small-scale regime, for
moderate density fluctuations, and the Poisson equation
(38) simplifies as

ctk/a≫ 1 :
1

a2
∇2ΨN = 4πGĀδρ. (58)

This is similar to the usual Poisson equation, with a linear
dependence on the density field fluctuations, but with a
time dependent effective Newton constant Ā(t)G.
From the coefficients (47), the fifth-force gravitational

potential that enters the Euler equation (36) reads as

ΨA ≡ lnA− ln Ā =

∞
∑

n=1

βn
Mn

Pln!
(δϕ)n. (59)

Substituting the expansion (49), we obtain the expansion
of ΨA in δρ. Together with Eq.(58), this provides the
expression of the total potential, Ψ = ΨN + ΨA, as a
function of the matter density,

Ψ̃(k) = Ψ̃N+Ψ̃A =
∞
∑

n=1

∫

dk1..dkn δD(k1 + ..+ kn − k)

× Hn(k1, ..,kn) δρ̃(k1)..δρ̃(kn). (60)

The first-order term reads as

H1(k) =
−a2Ā
2M2

Plk
2

(

1 +
2β2

1

κ1

)

. (61)

Thus, at linear order the fifth force amplifies the Newto-
nian force by a scale-independent factor, Ā(1 + 2β2

1/κ1).
The second-order term H2 scales as k−4 and as the even-
order terms of the expansion (49) it is subdominant, so
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that H2 = 0 in the small-scale regime. The third-order
term reads as

H3(k1,k2,k3) =
κ2Ā

3β4
1a

4

2κ41M4M4
Pl

× (k1 · k2)k
2
3 + 2(k1 · k3)(k2 · k3)

k2k21k
2
2k

2
3

, (62)

which scales as k−4. The small-scale regime that we con-
sider here, in the expressions (61)-(62) and H2 = 0, ap-
plies to density fluctuations that are not too large. More
precisely, at fixed nonlinear density contrast δρ/ρ, in the
limit k → ∞ all higher-order terms are negligible and
the potential Ψ becomes linear in δρ. Then, at a given
small scale ctk/a ≫ 1, as we let the density contrast go
to infinity the higher-order terms become relevant and as
noticed above odd-order terms first appear while even or-
ders remain negligible, until we further increase δρ. Thus,
the expressions (61)-(62) and H2 = 0 apply in the two
regimes

ctk

a
≫ 1,

δρ

ρ̄
≪ ctk

a
: δϕ ≃ δϕ(1), δΨA ≃ δΨ

(1)
A ,

(63)
and

ctk

a
≫ 1,

ctk

a
.
δρ

ρ̄
≪
(

ctk

a

)2

:

δϕ(3) & δϕ(1), δϕ(2) ≪ δϕ(1),

δΨ
(3)
A & δΨ

(1)
A , δΨ

(2)
A ≪ δΨ

(1)
A . (64)

Thus, in the first regime (63), associated with the small-
scale limit and moderate density fluctuations, the Klein-
Gordon equation can be linearized in ϕ and the fifth force
is actually linear in density fluctuations. It is also scale
independent in the sense that it multiplies the usual New-
tonian force by a scale-independent factor that only de-
pends on time, as seen in Eq.(61). This is the regime that
applies to cosmological perturbation theory, although for
completeness we will include the higher-order correction

δΨ
(3)
A below. More precisely, by including the cubic term

δΨ
(3)
A , we include the first correction that appears as den-

sity fluctuations get large and reach δρ/ρ̄ ∼ ctk/a. As
density fluctuations further increase, we can no longer
truncate the expansions (49) and (60), as odd terms
δϕ(2n+1) become of the same order of magnitude or larger
than δϕ(1). Nevertheless, the even-order terms remain
negligible until δρ/ρ̄ ∼ (ctk/a)2.
In this paper, we focus on cosmological perturbations

with δρ/ρ̄ . 200. This corresponds to the perturbative
regime for density fluctuations and to collapsed halos
down to the virial radius. Then, we are in the regime
(63) where the small-scale limit and the perturbative
expansions (49) and (60) apply. For studies of the So-
lar System (or inner regions of galaxies), we should go
beyond these expansions as density fluctuations become
large enough to generate large scalar field fluctuations.
Then, the nonlinearities of the Klein-Gordon equation

become highly relevant and give rise to the K-mouflage
mechanism, which ensures a convergence back to General
Relativity.
As noticed in Sec.III.B of the companion paper [6],

this high-density quasistatic regime corresponds to the
domain χ < 0 of the kinetic function K(χ), whereas
cosmological perturbations around the background only
probe the domain around χ̄ > 0. Therefore, the analy-
sis of these two classes of phenomena can be treated in
an independent fashion, especially if we allow for gen-
eral nonpolynomial functions K(χ) where the behaviors
at χ → +∞ and χ → −∞ are different (e.g., with dif-
ferent power law exponents). We leave the study of this
nonlinear screening regime to a future paper.

2. Closed system for density and velocity fields

In the single-stream approximation, the formation of
large-scale structures is governed by the continuity and
Euler equations (37) and (36). Using Eq.(56), we can ne-
glect the fluctuations of A in Eq.(36), and the equations
of motion read as

∂δ

∂τ
+∇ · [(1 + δ)v) = 0, (65)

∂v

∂τ
+ (v · ∇)v +

(

H+
d ln Ā

dτ

)

v = −∇Ψ, (66)

where δ = δρ/ρ̄ is the matter density contrast and Ψ
is the total potential defined in Eq.(60). Following the
formalism described in [9], we can now solve the dynamics
in a perturbative approach in powers of the linear density
contrast δL. Introducing the time variable η = ln a and
the two-component vector ψ,

ψ ≡
(

ψ1

ψ2

)

≡
(

δ
−(∇ · v)/ȧ

)

, (67)

Eqs.(65)-(66) read in Fourier space as

∂ψ̃1

∂η
− ψ̃2 =

∫

dk1dk2 δD(k1+k2−k)α̂(k1,k2)

× ψ̃2(k1)ψ̃1(k2), (68)

∂ψ̃2

∂η
+

k2

a2H2
Ψ̃ +

(

1− 3weff
ϕ Ωeff

ϕ

2
+

d ln Ā

dη

)

ψ̃2 =

∫

dk1dk2 δD(k1+k2−k)β̂(k1,k2)ψ̃2(k1)ψ̃2(k2), (69)

with

α̂(k1,k2) =
(k1+k2) · k1

k21
, β̂(k1,k2) =

|k1+k2|2(k1 ·k2)

2k21k
2
2

.

(70)
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In the standard Λ-CDM cosmology, where the Newtonian
gravitational potential is linear in the density field, the
continuity and Euler equations (68)-(69) are quadratic.
In modified gravity models, such as those studied in this
paper, the potential Ψ is nonlinear and contains terms of
all orders in δρ. Therefore, we must introduce vertices
of all orders and we write Eqs.(68)-(69) under the more
concise form

O(x, x′) · ψ̃(x′) =
∞
∑

n=2

Ks
n(x;x1, .., xn) · ψ̃(x1) . . . ψ̃(xn),

(71)
where we have introduced the coordinates x = (k, η, i),
i = 1, 2 is the discrete index of the two-component vector
ψ̃, and repeated coordinates are integrated over. The
matrix O reads as

O(x, x′) = δD(η′−η) δD(k′−k)

×







∂
∂η −1

− 3
2Ωm(1+ǫ1)

∂
∂η+

1−3weff
ϕ Ωeff

ϕ

2 +ǫ2






, (72)

where ǫ1(η) and ǫ2(η) are given by

ǫ1(η) = Ā−1+
2Āβ2

1

κ1
, ǫ2(η) =

d ln Ā

dη
=

β1
MPl

dϕ̄

dη
. (73)

These scale-independent functions of time measure the
deviations of the equations of motion at the linear
level from the case of a Λ-CDM or uniform dark en-
ergy scenario. The function ǫ1(η) is obtained from
the first-order kernel of the potential Ψ as 1 + ǫ1 =
−2M2

Pla
−2k2H1(k, η), using Eq.(61). The vertices Ks

n

are equal-time vertices of the form

Ks
n(x;x1, .., xn) = δD(η1−η)..δD(ηn−η)
× δD(k1+ ..+kn−k) γsi;i1,..,in(k1, ..,kn; η). (74)

The nonzero vertices are the usual Λ-CDM ones,

γs1;1,2(k1,k2) =
α̂(k2,k1)

2
, γs1;2,1(k1,k2) =

α̂(k1,k2)

2
,

γs2;2,2(k1,k2) = β̂(k1,k2), (75)

which are of order n = 2 and do not depend on time,
and the new vertices associated with the modified gravi-
tational potential (60),

n ≥ 2 : γs2;1,..,1(k1, ..,kn; η) = − k2ρ̄n

a2H2n!

×
∑

perm.

Hn(k1, ..,kn; η), (76)

where we sum over all permutations of {k1, ..,kn} to ob-
tain symmetrized kernels γs. The first few vertices are
given by

γs2;1,1(k1,k2) = 0, (77)

γs2;1,1,1(k1,k2,k3) = −9κ2Ā
3β4

1Ω
3
mM

2
PlH

4a2

2κ41M4c2

× (k1 · k2)k
2
3 + 2(k1 · k3)(k2 · k3)

k21k
2
2k

2
3

+ 2perm., (78)

where “2 perm.” stands for two terms obtained by cir-
cular permutations over {k1,k2,k3}.
From the analysis in Sec. III B, we can check that at

all orders the vertices decay as k2 at low k,

n ≥ 2, k → 0 : γs2;1,..,1(k1, ..,kn) ∼ k2, (79)

where the limit is taken by letting the sum k = k1+..+kn

go to zero while the individual wave numbers {k1, ..,kn}
remain finite [31].

3. Linear regime

On large scales, where density fluctuations are small,
we can linearize the equation of motion (71). This gives

O · ψ̃L = 0, where the subscript “L” denotes the linear
solutions. Then, the density contrast linear modesD±(η)
are given by

d2D

dη2
+

(

1− 3weff
ϕ Ωeff

ϕ

2
+ ǫ2

)

dD

dη
− 3

2
Ωm(1 + ǫ1)D = 0.

(80)
In terms of the background quantities, we have

|ǫ1| =
∣

∣

∣

∣

Ā− 1 +
2Āβ2

1

κ1

∣

∣

∣

∣

∼
∣

∣

∣

∣

β2

K̄ ′

∣

∣

∣

∣

, (81)

where we used the property (32), and

ǫ2 =
β1
MPl

dϕ̄

dη
∼ − β2

K̄ ′ . (82)

In Eq.(81) the sign of ǫ1 cannot be determined a priori
(and it can change with time as seen in Fig. 1 below)
because the terms (Ā − 1) ≃ βϕ̄/MPl and 2Āβ2/K̄ ′ are
typically of opposite signs, see Eq.(28), and of the same
order.
As we have already seen, ǫ1 corresponds to a modifica-

tion of Newton’s constant, while ǫ2 appears as a friction
term in the Euler equation (66). They are both of order
β2/K̄ ′. As found in the companion paper [6], this ratio
also describes the deviation of the background from the
Λ-CDM scenario. In particular, it is constrained by both
the BBN upper bound on the variation of particle masses,
see Eq.(32), and the requirement tΛ . t0 that the dark
energy behaves as a cosmological constant in the recent
Universe.
This common dependence on the ratio β2/K̄ ′ could be

expected from the form of the action (1). Indeed, the cou-
pling between the scalar field ϕ and matter only occurs
through the function A(ϕ) that relates the Einstein and
Jordan metrics (2) (which appears as an effective mod-
ification of gravity from the matter point of view). A
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small β means that this coupling function A(ϕ) becomes
independent of ϕ and almost equal to unity, see Eqs.(16)
and (17). Then, the Jordan metric becomes identical to
the Einstein metric and the matter no longer feels the
scalar field, which remains at the origin.
On the other hand, a large K ′ means that the scalar

field is sensitive to the nonlinearities of the kinetic func-
tion K(χ). This gives rise to a large prefactor for time
and spatial derivatives of ϕ, so that the scalar field is
frozen to zero, plays no significant role and General Rel-
ativity is recovered. This is also the basis of the K-
mouflage mechanism. Because the sign of β is irrelevant
as it can be absorbed in a change of sign of ϕ, as no-
ticed in the text above Eq.(18), the combination that sets
the amplitude of the coupling between matter and the
scalar field is the ratio β2/K0, or more generally β2/K̄ ′,
in agreement with Eqs.(81)-(82).
As described in the companion paper [6], unless |K0| ≫

1, we usually have |K̄ ′| ≃ 1 today, and cosmological large-
scale structures are also outside of their K-mouflage ra-
dius. Hence both the background and cosmological struc-
tures feel the deviation from General Relativity. How-
ever, at early times ˙̄ϕ and K̄ ′ become large, so that we
recover the matter-dominated era as in the Λ-CDM sce-
nario.
Thus, observations of the background quantities and of

cosmological density fluctuations are complementary, as
they should be consistent with each other. Density fluc-
tuations may provide a more sensitive probe of the de-
viations from General Relativity when we consider rare
objects, such as clusters of galaxies, which amplify the
sensitivity to the details of the dynamics. We will con-
sider this in Sec. V below.
Because the functions ǫi(η) do not depend on scale, the

linear modesD±(η) only depend on time and not on wave
number, as in the Λ-CDM cosmology. As usual, we have
both a linear growing mode D+(η) and a linear decaying
mode D−(η). Introducing the Wronskian of Eq.(80),

W (η) = e−
∫

η

0
dη′[(1−3weff

ϕ Ωeff
ϕ )/2+ǫ2], (83)

the decaying mode can be written as

D−(η) = D+(η)

∫ ∞

η

dη′
W (η′)

D+(η′)2
. (84)

The growing mode D+(η) can be directly computed from
Eq.(80). As usual, we assume that the decaying mode
has had time to decrease to a negligible amplitude and
we write the linear regime solution as

ψ̃L(k, η) = δ̃L0(k)

(

D+(η)
dD+

dη (η)

)

. (85)

We show the factors ǫ1(z) and ǫ2(z) in Fig. 1, for the
models considered in Sec. II C. At high redshifts both ǫ1
and ǫ2 go to zero, as ϕ̄→ 0 and |K̄ ′| → ∞, but it appears
that the convergence to zero is faster for ǫ1. For the mod-
els (13) with K0 > 0, at late times in the cosmological
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 0.6
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ε 1

z

 K’ ≥ 1
K’ ≤ 0
K’ ≥ 0
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 0.2
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ε 2

z

 K’ ≥ 1
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FIG. 1: Upper panel: factor ǫ1(z) for the models (13) (with
K0 = 1, m = 3, solid line), (14) (with K0 = −5,m = 3,
line with triangles), and (15) (line with crosses). In all cases
we use the exponential coupling function (17) with β = 0.3.
Lower panel: factor ǫ2(z) for the same models.

constant regime, from Eq.(29) we find that ǫ2 shows an

exponential decay to zero, as ǫ2 ∼ e−
√
3M2t/MPl , whereas

ǫ1 goes to a finite value along with ϕ̄ and Ā. For the
models (14) and (15), where ϕ̄ keeps increasing linearly
with time while K̄ ′ goes to zero, |ǫ1| goes to infinity at
an exponential rate while ǫ2 converges to a finite value.
The coefficient ǫ2 is positive, along with ϕ̄, for the models
(14) where K̄ ′ ≤ 0, and negative for the models (13) and
(15) where K̄ ′ ≥ 0.
In agreement with the discussion below Eq.(82), for the

models (13) the deviations from zero of the coefficients
ǫ1 and ǫ2 are of the same order of magnitude as the de-
viations from Λ-CDM of the background quantities, see
also Figs. 1 and 2 of the companion paper [6]. For the
models (14) and (15), the deviations from Λ-CDM are
somewhat amplified, as compared with the background
quantities such as the Hubble expansion rate. This is
because ǫ1 diverges at late time, and ǫ2 involves a time
derivative, whereas H(z) or Ωm(z) remain finite at late
times and are constrained to be equal to the Λ-CDM
reference values today.
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FIG. 2: Relative deviation [D+(z)−D+ΛCDM(z)]/D+ΛCDM(z)
of the linear growing mode from the Λ−CDM reference. Up-

per panel: same models as in Fig. 1. lower panel: the
upper dotted curve corresponds to the model (13) with
{β = 0.3, n = ∞;K0 = 1,m = 3} (solid line in the upper
panel) and the neighboring curves correspond to the same
model where we modify one among these four parameters,
as indicated by the legend (keeping the same sign of K0).
The lower dotted curve corresponds to the model (14) with
{β = 0.3, n = ∞;K0 = −5,m = 3} (triangles in the upper
panel) and the neighboring curves correspond to the same
model where we again modify one among these four parame-
ters, as indicated by the legend.

We show the linear growing mode D+(z) and the lin-
ear growth rate f(z) = d lnD+/d ln a in the upper panels
of Figs. 2 and 3, for the same models as in Fig. 1. The
relative deviations from the Λ−CDM reference are some-
what below those of the factors ǫi at z = 0 because the
linear growing modes depend on the past history of these
factors. As for the background expansion rate H(z), the
sign of K̄ ′ sets the sign of the deviation from the Λ-CDM
reference. Thus, the models (13) with K0 > 0, and (15),
which both have K̄ ′ ≥ 0, yield a smaller H(z) (when
we require a common normalization today) and a larger
linear growing mode D+(z), as well as a larger f(z) at
high redshift, while opposite deviations are obtained for
the model (14) where K̄ ′ ≤ 0. Therefore, a positive K̄ ′

-0.04
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 0.04

 0.06

 0.08

 0.1
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∆f
(z

) 
/ f
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(z
)
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|K0|=100
β=0.2
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FIG. 3: Relative deviation [f(z)−fΛCDM(z)]/fΛCDM(z) of the
linear growth rate f(z) = d lnD+/d ln a. Upper panel: same
models as in the upper panel of Fig. 2. Lower panel: same
models as in the lower panel of Fig. 2.

(resp. a negative K̄ ′) yields a faster (resp. slower) growth
of large-scale structures.
At early times, when the kinetic variable χ̄ is large

and the kinetic function K(χ) is governed by the highest
power law K0χ

m in all three models (13), (14), and (15),
we obtain similar behaviors for background and linear
perturbation statistics, with only a change of sign along
with the coefficient K0. Thus, the high-redshift behavior
is a direct probe of the sign of K̄ ′ and of the large-χ
power law asymptotic. At low redshift, where χ̄ becomes
of order unity we can obtain rather different behaviors,
depending on the model parameters (e.g., sign of K̄ ′ and
whether it goes to zero or to a nonzero value).
We consider the dependence of the linear growing

modes on the model parameters in the lower panels of
Figs. 2 and 3. Taking as reference the models (13)
with {β = 0.3, n = ∞;K0 = 1,m = 3} and (14) with
{β = 0.3, n = ∞;K0 = −5,m = 3}, we show our results
when we modify in turns either one of these four parame-
ters. In agreement with the discussion below Eq.(82), the
relative deviations from the Λ−CDM reference decrease
for larger |K0| and smaller β2. As for background quan-
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tities, the main dependence comes from the parameters
β and K0, which set the amplitude of the coupling be-
tween the scalar field and the matter component [through
the function A(ϕ)] and the normalization of scalar field
gradients [through the function K(χ)]. More precisely,
the combination that sets the amplitude of the coupling
between matter and the scalar field is the ratio β2/K0,
in agreement with Eqs.(81)-(82). Changing the large-ϕ
and large-χ behaviors of the functions A(ϕ) (as n goes
from +∞ to 1) and K(χ) (as m goes from 3 to 2), only
changes the predictions at the quantitative level and by
a modest amount.

4. One-loop power spectrum

As in the standard perturbation theory, to go beyond
linear order over δL we can look for a solution of the
nonlinear equation of motion (71) as a perturbative ex-
pansion in powers of the linear density fluctuation δL,

ψ(x) =

∞
∑

n=1

ψ(n)(x), with ψ(n) ∝ δnL, (86)

and ψ(1) = ψ̃L. Following the general approach described
in [9], to compute the higher orders ψ(n) by recursion
from Eq.(71), we introduce the retarded Green function
RL of the linear operator O (also called the linear prop-
agator or response function), which obeys:

O(x, x′) · RL(x
′, x′′) = δD(x− x′′), (87)

η1 < η2 : RL(x1, x2) = 0, (88)

and reads as

RL(x1, x2) =
Θ(η1 − η2) δD(k1 − k2)

D′
+2D−2 −D+2D′

−2

×




D′
+2D−1−D′

−2D+1 D−2D+1−D+2D−1

D′
+2D

′
−1−D′

−2D
′
+1 D−2D

′
+1−D+2D

′
−1



 (89)

It involves both the linear growing and decaying modes,
D+ and D−, and Θ(η1 − η2) is the Heaviside function,
which ensures causality. Then, from Eq.(71) we obtain
at second and third order

ψ̃(2) = RL ·Ks
2 · ψ̃(1)ψ̃(1), (90)

ψ̃(3) = 2RL ·Ks
2 · ψ̃(2)ψ̃(1) +RL ·Ks

3 · ψ̃(1)ψ̃(1)ψ̃(1). (91)

The last term in Eq.(91) does not appear in the standard
Λ-CDM case. It is due to the vertex γs2;1,1,1 associated

with the term of order (δρ)3 of the nonlinear modified
gravitational potential Ψ. Then, the two-point correla-
tion C2 of the field ψ reads up to order δ4L as

C2(x1, x2) ≡ 〈ψ̃(x1)ψ̃(x2)〉
= 〈ψ̃(1)ψ̃(1)〉+ 〈ψ̃(2)ψ̃(2)〉+ 〈ψ̃(3)ψ̃(1)〉

+〈ψ̃(1)ψ̃(3)〉+ .. (92)

Defining the equal-time matter density power spectrum
as

〈δ̃(k1, η)δ̃(k2, η)〉 = δD(k1 + k2) P (k1, η), (93)

substituting the expressions (85), (90), and (91) into
Eq.(92) and using Wick’s theorem, we obtain up to order
P 2
L,

P (k) = Ptree(k) + P1loop(k). (94)

The “tree” contribution, associated with 〈ψ̃(1)ψ̃(1)〉, is
simply the linear power spectrum,

Ptree = PL(k), (95)

while the “one-loop” contribution corresponds to three
diagrams,

P1loop = P22 + P31 + PΨ
31. (96)

The contribution P22 corresponds to 〈ψ̃(2)ψ̃(2)〉 and P31

to 〈ψ̃(3)ψ̃(1)〉 + 〈ψ̃(1)ψ̃(3)〉 using for ψ̃(3) the first stan-
dard term of Eq.(91). The contribution PΨ

31 arises from
the new second term of Eq.(91). More details and the di-
agrams associated with these one-loop contributions can
be found in Ref.[9]. In particular, we obtain

PΨ
31 = 6

∫

dk1

∫ η

−∞
dη1 RL,12(η, η1)CL,11(k; η, η1)

× CL,11(k1; η1, η1) γ
s
2;1,1,1(k1,−k1,k; η1), (97)

and Eq.(78) gives

∫

dΩk1
γs2;1,1,1(k1,−k1,k) =

30πκ2Ā
3β4

1Ω
3
mM

2
PlH

4a2

κ41M4c2k21
,

(98)
where Ωk1

is the unit vector of direction k1. Therefore,
the angular average (98) of the vertex γs2;1,1,1 no longer
depends on the wave number k. This implies that the
one-loop contribution (97) is proportional to the linear
power spectrum PL0(k). Thus, because the modifica-
tion of gravity that arises from the models studied in
this paper is scale independent (in the small-scale regime
ctk/a ≫ 1 and for density fluctuations that are not too
large, as explained in Secs. III B and III C 1), the ver-
tices hn, Hn, and γn do not show infrared cutoffs of the
form k2/(m2 + k2) with m ∼ 1h/Mpc. Rather, we ob-
tain rational functions of wave numbers that can lead to
nonzero values at low k as in Eq.(98) [i.e., as compared
with f(R) or other scalar field models, the infrared cutoff
vanishes, m = 0]. [The angular average Eq.(98) does not
go to zero at low k, in contrast with Eq.(79), because
here k3 goes to zero along with the sum vector k.] Then,
higher-order contributions generated by the modification
to gravity can lead to a (small) time dependent renormal-
ization of the linear power spectrum, in the sense that
PΨ
31(k) ∝ PL(k) at low k. From Eqs.(97)-(98) we obtain

PΨ
31(k) ∼ PL(k)

σ2
sL
a2

c2t2
κ2β

4

κ41
≪ PL(k) (99)
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FIG. 4: Relative deviation [P (k) − PΛCDM(k)]/PΛCDM(k) of
the linear (dashed lines) and one-loop (solid lines) power spec-
tra from the Λ-CDM reference, at redshift z = 0. Upper panel:

same models as in the upper panel of Fig. 2. Lower panel:

same models as in the lower panel of Fig. 2. We only show
the one-loop power spectra (94).

where σ2
sL

= 〈s2L〉 is the variance of the linear displace-
ment field [denoting x(q, t) = q + sL(q, t) as the trajec-
tory of the particle q in Lagrangian perturbation theory
at linear order]. This shows that in the small-scale regime
(63) the contribution PΨ

31 is negligible, in agreement with
the discussion below Eq.(63).

We show the linear and one-loop power spectra in
Fig. 4. In agreement with the analysis in Sec. III C 3
and the fact that the coefficients ǫi(t) of Eq.(73) do not
depend on scale, the relative deviation of the linear power
spectrum does not depend on wave number (as long as
ctk/a ≫ 1). In agreement with Fig. 2, a positive K0,
or more generally K̄ ′, leads to a speeding-up of the mat-
ter clustering, and hence a greater matter density power
spectrum, while a negative K0, or K̄

′, leads to a slower
matter clustering. This remains true at one-loop order.
The one-loop correction first slightly decreases the devi-
ation from Λ-CDM, at k ∼ 0.1hMpc−1 for z = 0, and
next amplifies the deviation at higher k when density
fluctuations become mildly nonlinear (but one-loop per-

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.5  1  1.5  2  2.5  3  3.5  4

-d
D

Ψ
Ν
/d

z

z

ΛCDM
 K’ ≥ 1
K’ ≤ 0
K’ ≥ 0

-4

-2

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4

(-
dD

Ψ
Ν
/d

z)
 / 

(-
dD

Ψ
Ν

Λ
C

D
M

/d
z)

z

 K’ ≥ 1
K’ ≤ 0
K’ ≥ 0

FIG. 5: Upper panel: the factor (−dDΨN
/dz) of Eq.(102) for

the reference Λ-CDM universe and the scenarios of Fig. 1.
Lower panel: ratio of these factors (−dDΨN

/dz) to the Λ-
CDM reference.

turbation theory does not extend beyond 0.3h/Mpc at
z = 0). We also checked that the one-loop contribution
(97) is negligible, by comparing our results with those
obtained when we set PΨ

31 to zero. Thus, in agreement
with the discussion below Eq.(63), the nonlinearities are
not due to the Klein-Gordon equation, which can be kept
at the linear level, but to the continuity and Euler equa-
tions, more precisely to the usual vertices (75), as in the
standard Λ-CDM scenario.

As for previous quantities, we can see in the lower panel
that deviations from the Λ-CDM predictions decrease for
larger K0 or smaller β. The detailed shape of the cou-
pling function A(ϕ) appears to have a significant impact
on the power spectrum at the quantitative level, as we go
from the exponential form (17) to the linear form (16).
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IV. LARGE-SCALE COSMIC MICROWAVE
ANISOTROPIES

A. Integrated Sachs-Wolfe effect

The Integrated Sachs-Wolfe effect (ISW) arises from
the differential redshift effect that is left as photons climb
in and out of time dependent gravitational potentials [14].
This generates a large-scale fluctuation, ∆TISW, of the
cosmic microwave background (CMB), given by

∆TISW
T̄CMB

= − 2

c2

∫ ∞

0

dz e−κ(z) ∂ΨN

∂z
, (100)

where κ(z) is the optical depth to redshift z. This ef-
fect can be constrained through the autocorrelation func-
tion of the temperature fluctuations of the CMB and also
through the cross-correlation with the large-scale struc-
tures in the recent Universe, as galaxies and clusters
are correlated with the matter density and gravitational
fields [15–18]. During the matter era, on large linear
scales the gravitational potential ΨN does not evolve with
time. This means that the ISW effect is dominated by
low redshifts when dark energy modifies the linear grow-
ing mode and makes |ΨN| decrease. This makes the ISW
effect a probe of dark energy properties and of modified-
gravity theories.
From the modified Poisson equation (58), we obtain

in the linear regime ∇2ΨN = 4πGρ̄0 ĀδL/a, and we can
write the linear mode DΨN

of the gravitational potential
as

DΨN
= Ā

D+

a
, (101)

where D+ is the linear growing mode of the density con-
trast, given by Eq.(80) and displayed in Fig. 2. The ISW
effect (100) involves the derivative of DΨN

with respect
to time, or redshift, and we obtain

− dDΨN

dz
= a2

dDΨN

da
= ĀD+(ǫ2 + f − 1), (102)

where ǫ2(z) = d ln Ā/d ln a was already introduced
in Eq.(73) and shown in Fig. 1, whereas f(z) =
d lnD+/d lna was shown in Fig. 3. In the standard Λ-
CDM cosmology we have Ā = 1 and ǫ2 = 0.
Cross-correlations between the large-scale CMB tem-

perature fluctuations (100) and low-redshift galaxy sur-
veys constrain the time derivative of the gravitational po-
tential at the redshift of the galaxy population, through
the correlation 〈ΨNδg〉. Therefore, we show the factor
(−dDΨN

/dz) as a function of redshift in the upper panel
of Fig. 5.
At high z, we recover the Einstein-de Sitter cosmology

and the derivative dDΨN
/dz goes to zero for all mod-

els. For the modified-gravity models, we still have Ā ≃ 1
and f(z) remains close to the Λ-CDM reference, as seen
in Fig. 3. Then, the main source of deviation from the
Λ-CDM prediction is the new term ǫ2 in Eq.(102). For

scenarios with K̄ ′ > 0, we have seen in Fig. 1 that ǫ2 is
negative, like (f − 1). Then, (−dDΨN

/dz) is negative,
as in the Λ-CDM reference (i.e., linear gravitational po-
tentials decay with time in the dark energy era). For
the models (13), where ǫ2 goes to zero at late times, the
ISW factor (−dDΨN

/dz) always remains close to the Λ-
CDM reference, whereas for the models (15), where ǫ2
converges to a nonzero value, the deviation remains sig-
nificant at low redshift. For scenarios with K̄ ′ < 0, we
have seen in Fig. 1 that ǫ2 is positive and decreases slowly
at high redshift. Then, the term ǫ2 can dominate over
the factor (f − 1) and we can see in Fig. 5 that, for the
model (14) with K0 = −5, (−dDΨN

/dz) becomes pos-
itive at z & 0.4. Therefore, in such scenarios the ISW
effect changes sign at high z as the linear gravitational
potential first slowly grows with time when dark energy
becomes noticeable. At low redshift the term ǫ2 is no
longer dominant and (−dDΨN

/dz) is negative (i.e., linear
gravitational potentials decay with time) as in the stan-
dard Λ-CDM scenario. Thus, cross-correlations between
the ISW effect on the CMB and large-scale structures at
z ∼ 1 would be a useful probe of such models, as the sign
of the correlation itself would discriminate between the
two categories K̄ ′ > 0 and K̄ ′ < 0.
The lower panel in Fig. 5 shows the ratio of

(−dDΨN
/dz) to the Λ-CDM reference. In agreement

with the upper panel and the discussion above, this ratio
remains positive for scenarios with K̄ ′ > 0 and becomes
negative at high redshift for scenarios with K̄ ′ < 0. In
both cases, because of the factor ǫ2, which decays rather
slowly with redshift, (−dDΨN

/dz) decays more slowly
than the Λ-CDM prediction at high z. This yields a ra-
tio to the Λ-CDM reference that grows at high z. How-
ever, in practice it is difficult to probe these high-redshift
behaviors, because most of the signal comes from the low-
redshift range where linear gravitational potentials show
a significant time dependence, as seen in the upper panel.

B. Low-ℓ CMB anisotropies

At low-ℓ multipoles, the CMB anisotropies are gov-
erned by the Sachs-Wolfe (SW) and integrated Sachs-
Wolfe (ISW) effects, and the temperature fluctuation
∆TCMB/T̄CMB in a direction ~γ on the sky reads as

∆TCMB

T̄CMB
≃ 1

3c2
ΨN(τLS) +

2

c2

∫ τ0

τLS

dτ
∂ΨN

∂τ
, (103)

where τ =
∫

dt/a is the conformal time, τLS and τ0 its
value at the last-scattering surface and today. Here we
have used ∆T/T̄ ≃ −2ΨN/(3c

2) at τLS and we have ap-
proximated the opacity as κ = 0 after the last-scattering
surface and κ = +∞ before. The first term in Eq.(103)
is the Sachs-Wolfe effect (due to the initial temperature
fluctuation and gravitational potential) and the second
term is the integrated Sachs-Wolfe effect (100). Expand-
ing as usual the temperature fluctuations on the sky in
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panel of Fig. 2. Lower panel: same models as in the lower
panel of Fig. 2.

spherical harmonics, ∆T (~γ)/T̄ =
∑

ℓ,m aℓ,mY
ℓ
m(~γ), and

defining the multipole power spectrum as 〈aℓ,ma∗ℓ′,m′〉 =
δℓ,ℓ′δm,m′Cℓ, we obtain

Cℓ = (4π)2
∫ ∞

0

dkk2 PΨN,0(k)

{

DΨN
(τLS)

3
jℓ[kc(τ0−τLS)]

+2

∫ τ0

τLS

dτ
dDΨN

dτ
jℓ[kc(τ0 − τ)]

}2

, (104)

where we have defined the gravitational potential lin-
ear power spectrum as 〈ψ̃N(k1, τ1)ψ̃N(k2, τ2)〉 = δD(k1+
k2)DΨN

(τ1)DΨN
(τ2) c

4PΨN,0(k1), and the linear mode
DΨN

was given in Eq.(101). Because we only consider
low multipoles ℓ, and hence large scales and low wave
numbers k, we write the linear power spectrum as

PΨN,0(k) = N kns−4, (105)

and the integration over k yields

Cℓ =
2nsπ3N Γ[ℓ+ ns−1

2 ]

cns−1Γ[2− ns

2 ]

{

DΨN
(τLS)

2(τ0−τLS)1−nsΓ[3−ns]

9 Γ[2− ns

2 ] Γ[ℓ+ 5−ns

2 ]

+4

∫ τ0

τLS

dτ1dτ2
d DΨN

dτ
(τ1)

d DΨN

dτ
(τ2)

× (τ0−τ1)ℓ(τ0−τ2)ℓ 2F1(ℓ+
ns−1

2 , ℓ+ 1; 2ℓ+ 2; y12)

(2τ0−τ1−τ2)2ℓ+ns−1 Γ[ℓ+ 3
2 ]

+
4DΨN

(τLS)

3

∫ τ0

τLS

dτ
d DΨN

dτ
(τ)

(τ0−τ)ℓ(τ0−τLS)ℓ
(2τ0−τ−τLS)2ℓ+ns−1

× 2F1(ℓ +
ns−1

2 , ℓ+ 1; 2ℓ+ 2; y)

Γ[ℓ+ 3
2 ]

}

, (106)

where the arguments of the hypergeometric functions are
y12 = 4(τ0 − τ1)(τ0 − τ2)/(2τ0 − τ1 − τ2)

2 and y = 4(τ0 −
τ)(τ0 − τLS)/(2τ0 − τ − τLS)

2. The first term in Eq.(106)
comes from the Sachs-Wolfe effect, (SW)2, the second
term from the integrated Sachs-Wolfe effect, (ISW)2, and
the third term from the cross-correlation (SW)× (ISW).
We show the CMB power spectrum on large angular

scales, from Eq.(106), in Fig. 6. We compare the modi-
fied gravity-scenarios to the Λ-CDM reference in the up-
per panel, and we consider the sensitivity to other model
parameters in the lower panel. The (SW)2 contribution
is the same in all scenarios, because we recover the Λ-
CDM cosmology and the same initial conditions at early
times.
In agreement with Fig. 5, for the models with K̄ ′ > 0

the ISW effect is greater than the Λ-CDM prediction and
of opposite sign to the SW effect (dDΨN

/dτ is negative).
It happens that the greater value of (ISW)2 more than
compensates the lower value of (SW)×(ISW) (which has
a greater amplitude but is negative) and the full CMB
power spectrum Cℓ is larger than the Λ-CDM prediction.
For the models with K̄ ′ < 0, the ISW effect is smaller

than in the Λ-CDM case and its has a different sign,
because as seen in Fig. 5 the time derivative dDΨN

/dτ
is now positive at high redshifts, z & 0.4. Then, the
(ISW)2 contribution is smaller than the Λ-CDM predic-
tion but the cross-term (SW)×(ISW) is now positive and
this more than compensates the decrease of (ISW)2, and
the full CMB power spectrum Cℓ is again larger than the
Λ-CDM result.
Although low-ℓ measurements have large error bars

due to the cosmic variance, the model (15) shown in
the upper panel of Fig. 6 is already excluded by data
(e.g., WMAP9 [19]). However, as shown in the upper
and lower panels, the exact values of Cℓ depend on the
parameters of the model and low-ℓ measurements of Cℓ

cannot rule out the full class of models. In particular,
it might be possible to choose parameters, or functions
K(χ) and A(ϕ), so that the net effect is to decrease the
CMB power spectrum at the lowest ℓ, which would pro-
vide a better match to data than the Λ-CDM reference.
However, we have not made a detailed search of the pa-
rameter space to find out whether such a result can be
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achieved. On the other hand, the results shown in Fig. 6
suggest that “generic” models typically yield a stronger
growth of the CMB power at low ℓ than for the Λ-CDM
scenario.

V. SPHERICAL COLLAPSE

A. Spherical dynamics

From Eq.(66) the particle trajectories read in physical
coordinates (r, t) as

r̈+
d ln Ā

dt
ṙ−
(

ä

a
+
ȧ

a

d ln Ā

dt

)

r = −∇r(ΨN+lnA), (107)

where ∇r = ∇/a is the gradient operator in physical co-
ordinates. To study the spherical collapse before shell
crossing, it is convenient to label each shell by its La-
grangian radius q or enclosed mass M , and to introduce
its normalized radius y(t) by

y(t) =
r(t)

a(t)q
with q =

(

3M

4πρ̄0

)1/3

, y(t = 0) = 1.

(108)
In particular, the matter density contrast within radius
r(t) reads as

1 + δ(< r) = y(t)−3, (109)

where δ = (ρ − ρ̄)/ρ̄ is the matter density contrast. In
terms of y(t), Eq.(107) also reads as

d2y

dη2
+

(

1− 3weff
ϕ Ωeff

ϕ

2
+
d ln Ā

dη

)

dy

dη
=

− 3Ωm y

8πGρ̄ r
∂

∂r
(ΨN + lnA), (110)

where as in Sec. III C we use η = ln a as the time coordi-
nate.
The Newtonian potential is given by the modified Pois-

son equation (58), which gives in spherically symmetric
configurations the Newtonian force

FN = −∂ΨN

∂r
= −ĀGδM(< r)

r2
. (111)

The Klein-Gordon equation (46) reads in spherically
symmetric configurations as

1

r2
∂

∂r

(

r2
∂ϕ

∂r
K̄ ′
)

=
Āβ1
MPl

δρ, (112)

hence

∂ϕ

∂r
=

Āβ1
4πMPlκ1

δM(< r)

r2
. (113)

In Eqs.(107)-(113) we have assumed the small-scale
regime, ctk/a ≫ 1, where relative fluctuations of A are

negligible as compared with relative density fluctuations,
see Eq.(56). Then, the fifth force reads from Eq.(113) as

FA = −∂ lnA
∂r

≃ − β1
MPl

∂ϕ

∂r
=

2β2
1

κ1
FN. (114)

Thus, it is proportional to the Newtonian force (111)
with a time dependent prefactor. Moreover, this pref-
actor is again of the form β2/K̄ ′, as for the deviations
from Λ-CDM of the background and of particle masses,
see the companion paper and Eq.(32) here, and of mat-
ter clustering in the perturbative regime, see Sec. III C 2
and Eqs.(81)-(82). This is not surprising because these
are different probes of the same underlying model. Then,
the equation of motion (110) of the mass shell M reads
as

d2y

dη2
+

(

1− 3weff
ϕ Ωeff

ϕ

2
+ ǫ2

)

dy

dη

+
Ωm

2
(y−3 − 1)y(1 + ǫ1) = 0, (115)

where the factors ǫ1 and ǫ2 were defined in Eq.(73). The
usual Λ-CDM dynamics are recovered when the factors
ǫi are set to zero, and the background terms weff

ϕ Ωeff
ϕ and

Ωm follow the Λ-CDM evolution. Moreover, we can see
that the nonlinear spherical dynamics (115) involve the
same factors as the evolution equation (80) of the linear
modes. This is made possible by the small-scale and
moderate-density regime (63), which we used to derive
Eq.(115). In particular, this has allowed us to write the
linearized Klein-Gordon equation (112). It is clear that
if higher orders in Eq.(112) had been relevant, which is
the case in the regime (64) and at higher densities, they
would have given rise to new factors beyond the terms ǫ1
and ǫ2.

Thanks to the scale independence of the modification
of gravity brought by the model studied here, in the
small-scale regime (63), we preserve a key property of
the spherical Λ-CDM dynamics: the motions of differ-
ent mass shells are decoupled before shell crossing. This
greatly simplifies the analysis of the spherical collapse.
This property is not satisfied by other models of mod-
ified gravity, such as f(R) theories or dilaton models,
where the fifth force shows an explicit scale dependence
that couples the motions of different shells. This feature
only applies to the regime (63), which is sufficient for our
purposes as we consider density contrast δ . 200. If we
considered higher-density regions, such as inner galaxy
cores or the Solar System, there would be a departure
from the expression (114). In that case, nonlinearities of
the Klein-Gordon equation become important and give
rise to the K-mouflage mechanism that eventually leads
to a recovery of General Relativity. We do not consider
this regime in this paper.
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FIG. 7: Linear density contrast threshold δL(Λ)(z). Upper

panel: same models as in the upper panel of Fig. 2. Lower

panel: same models as in the lower panel of Fig. 2.

B. Linear density contrast threshold

By solving the equation of motion (115) we can nu-
merically compute the linear density contrast threshold
δL(M, z) that corresponds to a nonlinear density con-
trast of 200. (We choose a nonlinear overdensity of 200
to define virialized halos. This allows us to compare with
previous works and to use the same rescaled halo mass
function.) Because the modification of gravity is scale
independent in the regime (63), the mass M no longer
appears in the equation of motion (115). Therefore, the
linear threshold δL(M, z) is actually independent of the
halo mass M , as in the Λ-CDM scenario.
In practice, rather than the linear threshold δL we con-

sider the linear threshold δL(Λ) associated with the ini-
tial conditions. Indeed, if we wish to estimate the impact
of the modification of gravity on nonlinear matter clus-
tering and on the halo mass function, we are not really
interested in the linear density contrast today, δL, asso-
ciated with a nonlinear density contrast δ = 200, as δL
cannot be directly observed. Rather, we are interested
in the initial (or early-time) linear threshold δLi, at a

high redshift zi, which is required to produce at a later
time (e..g, today) a nonlinear density contrast δ. Indeed,
from δLi we can estimate from the initial Gaussian den-
sity field δLi(x) whether this threshold corresponds to
a rare or common density fluctuation. In the usual Λ-
CDM scenario, one usually “translates” both the initial
linear threshold δLi and the initial density field δLi(x),
or the root mean square density fluctuation σLi, to the
present time by multiplying them by the common linear
growth factor D+(z0)/D+(zi). This avoids introducing
the “initial” redshift zi as initial conditions are expressed
in terms of the current linear density field.

However, because we compare different cosmological
scenarios, with slightly different linear growing modes
but with the same high-redshift linear power spectrum,
we must go back to the high redshift zi. More precisely,
to compare the efficiency of the matter clustering process
between these cosmological scenarios, we wish to com-
pare the probabilities associated with a given nonlinear
threshold δ = 200 today. This means that we wish to
compare the initial linear thresholds δLi required in each
scenario to reach the same δ today (because the initial
Gaussian conditions are taken to be the same, far in the
matter era). Nevertheless, to avoid introducing an ex-
plicit arbitrary high redshift zi, and to follow the usual
practice, we translate all initial thresholds δLi to the cur-
rent time (or to the redshift z of interest), by multiply-
ing all of them by the same Λ-CDM linear growth factor
D+ΛCDM(z0)/D+ΛCDM(zi). [In contrast, the “true” lin-
ear threshold δL in each cosmology is obtained by multi-
plying by its own linear growth factor D+(z0)/D+(zi)].

In this fashion, the comparison between the various
δL(Λ) gives a direct hint of the various probabilities to
reach δ = 200 and of how far the nonlinear matter clus-
tering is advanced between the various models, starting
from the same linear power spectra at high z. In con-
trast, if we consider the “true” linear thresholds δL the
comparison is biased by the fact that in different cosmolo-
gies the same δL actually corresponds to different initial
conditions at a given high z. (Going back to the initial
redshift zi, as we implicitly do here, is also more con-
venient in more general modified-gravity models where
the linear growing modes become scale dependent at late
times.)

We show our results in Fig. 7. In agreement with the
results of Sec. III C, where we have found that for models
with K̄ ′ > 0 the scalar field accelerates the clustering of
matter as it leads to greater linear growing modes and
one-loop power spectra, we find that a smaller linear den-
sity contrast δL(Λ)(z) is required to reach the same non-
linear overdensity of 200 than in the Λ-CDM scenario.
Conversely, models with K̄ ′ < 0 lead to a greater linear
threshold δL(Λ). In all cases, we recover the Λ-CDM ref-
erence value at high redshift. The departure from the
Λ-CDM reference grows faster at low z for the models
(14) and (15) where K̄ ′ → 0 at late times, in agreement
with Figs. 1 and 2, and the greater amplitude of the char-
acteristic ratio β2/K̄ ′.
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FIG. 8: Relative deviation [n(M) − nΛCDM(M)]/nΛCDM(M)
of the halo mass function from the Λ-CDM reference, at z = 0.
Upper panel: same models as in the upper panel of Fig. 2.
Lower panel: same models as in the lower panel of Fig. 2.

Again, the lower panel shows that a higher value of
|K0|, or more generally |K̄ ′|, and a smaller β, lead to a
smaller deviation from the Λ-CDM reference. The char-
acteristic exponents n and M of the coupling function
A(ϕ) and of the kinetic function K(χ) do not have a
great quantitative impact.

C. Halo mass function

As usual, we write the comoving halo mass function
n(M)dM/M as

n(M)
dM

M
=
ρ̄0
M
f(ν)

dν

ν
, with ν =

δL(Λ)

σ(Λ)(M)
. (116)

Here σ(Λ)(M) is the root mean square of the linear den-
sity contrast at scale M and δL(Λ) is the linear density
contrast associated with the nonlinear density thresh-
old of 200 that defines the virialized halos, both be-
ing translated from the initial conditions by the Λ-CDM

growth factor D+ΛCDM(z0)/D+ΛCDM(zi) as explained in
Sec. VB. Thus, the scaling variable ν directly measures
the probability of density fluctuations in the Gaussian
initial conditions. Then, we take for the scaling function
f(ν) the fit to Λ-CDM simulations obtained in [20], which

obeys the exponential tail f(ν) ∼ e−ν2/2 at large ν. This
means that the mass function (116) shows the correct
large-mass tail, which is set by the Gaussian initial condi-
tions and the relationship between the current nonlinear
density contrast δ and the associated initial linear density
contrast δLi [or equivalently δL(Λ)], which was obtained
in Sec. VB. The deviation from the Λ-CDM reference at
low mass is not meant to be accurately reproduced by
this model (e.g., we neglect any dependence on modified
gravity of the exponent of the low-mass power law tail).
However, the low-mass range is not very important for
our purposes and it is constrained by the normalization
condition

∫

(M/ρ0)n(M)dM/M = 1, which is automati-
cally satisfied by our simple approximation.
We show our results in Fig. 8. As usual, the devi-

ation from the Λ-CDM reference is most important at

high mass because the Gaussian cutoff e−ν2/2 amplifies
the sensitivity of rare events to the collapse dynamics.
In agreement with the results obtained in the previous
sections, models with K0 > 0, or more generally K̄ ′ > 0,
lead to a faster matter clustering and to a greater num-
ber of rare massive halos, while K̄ ′ < 0 leads to fewer
massive halos. (The normalization constraint to unity
implies that the deviation from the Λ-CDM mass func-
tion changes sign between the high-mass and low-mass
tails.) Again, a higher |K0| or a lower |β| implies smaller
deviations from the Λ-CDM reference and the results are
mostly sensitive to the parameters K0 and β.

VI. NONLINEAR MATTER POWER
SPECTRUM

Following the method built in [21] for the Λ-CDM
scenario, and applied to several modified-gravity mod-
els in [9], we combine the one-loop perturbation theory
obtained in Sec. III C with a halo model to obtain the
nonlinear matter density power spectrum from small to
large wave numbers. By construction, this power spec-
trum agrees with Eq.(94) when it is expanding up to or-
der P 2

L0. In the halo model that governs its high-k limit,
we take into account the impact of the modified gravity
on the nonlinear dynamics through the halo mass func-
tion (116) (i.e., through the acceleration or slowing down
of the spherical collapse), but we neglect the impact of
the modified gravity on the halo profiles (i.e., we keep
the NFW profile from [22] and the mass-concentration
relation from [21]).
We show our results in Figs. 9 and 10. At low k

we recover the one-loop power spectra shown in Fig. 4,
with an almost k-independent relative deviation from
the Λ-CDM reference, because of the scale indepen-
dence of our modified-gravity models in the regime (63).
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FIG. 9: Relative deviation [P (k) − PΛCDM(k)]/PΛCDM(k) of
the nonlinear matter density power spectrum from the Λ-
CDM reference, at redshift z = 0. Upper panel: same models
as in the upper panel of Fig. 2. Lower panel: same models as
in the lower panel of Fig. 2.

The deviations are amplified on mildly nonlinear scales,
k ∼ 1hMpc−1 at z = 0, as they become sensitive to
later stages of the nonlinear dynamics and to the large-
mass tail of the halo mass function (see for instance
[23]). At higher k the relative deviations decrease be-
cause the power spectrum is governed by the low-mass
tail of the halo mass function and the inner halo density
profiles. However, we may underestimate the signal at
k & 10hMpc−1 because we neglected the impact of the
modification of gravity on these halo profiles.

Again, the sign of the deviation from the Λ-CDM ref-
erence depends on the sign of K0, or K̄

′, and the results
are mostly sensitive to K0 and β2.
The deviation from the Λ-CDM prediction decreases

at high redshift, because we normalize the linear power
spectra to the same initial value at early times, far in
the matter era. However, we can see in Fig. 10 that this
decrease is rather slow and that significant deviations are
already present at z = 2 in the matter power spectrum.
The comparison with the background results obtained
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FIG. 10: Same as in the upper panel of Fig. 9, but at redshifts
z = 1 (upper panel) and z = 2 (lower panel).

in the companion paper [6] shows that the relative devi-
ations are significantly greater, by about a factor 10, for
P (k) than for background quantities such as the Hubble
expansion rate H(z). Therefore, large-scale structures
provide a useful probe of such modified-gravity scenar-
ios. In particular, it is possible to keep a background
evolution that is very close the the Λ-CDM cosmology,
at the percent level, while obtaining significant depar-
tures in terms of the matter clustering, at the 10% level
[in terms of P (k), higher-order statistics such as the bis-
pectrum, or the high-mass tail of the halo mass function,
can show even greater deviations].

VII. COMPARISON WITH OTHER MODELS

In this section, we compare our results with the ones of
the chameleon-f(R) models [24, 25], the dilatons [26], the
symmetrons [27], the DGP model [28] and the Galileon
theories [10, 11] when the N-body simulations are avail-
able.
Let us start with the chameleons, dilatons and sym-

metrons. For all these models, the background follows
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the one of Λ-CDM. At the perturbative level, and first in
the linear theories, deviations from GR occur on scales
lower than the Compton wavelength of the scalar field
[29]. As Solar System tests and the screening of the Milky
Way imply that the cosmological range of the scalar must
be less than 1 Mpc [30], the effects of these models on
linear scales are suppressed and only in the quasilinear
to mildly nonlinear regimes one can expect to see signif-
icant deviations. Symmetrons and dilatons screen grav-
ity in a stronger way in the local environment imply-
ing that constraints on these models are less severe than
on chameleon-f(R) theories. This implies that the ef-
fects of the symmetron and to a lesser extent of the dila-
ton on large-scale structures are enhanced compared to
chameleon-f(R) models. Typically, one expects to see a
peak in the deviations from GR on the scales correspond-
ing to the range of the scalar field, especially in the power
spectrum of density fluctuations [9]. On small and large
scales, the models converge towards GR. On small scales,
this is due to the screening effect and on large scales this
is also the screening property outside the Compton ra-
dius.

For the DGP model on the self-accelerated branch [28],
the background is modified compared to Λ-CDM with an
increase of H compared to Λ-CDM. At the perturbative
level, the DGP model leads to a scale-independent de-
crease of Newton’s constant on large and linear scales.
On nonlinear scales, the Vainshtein mechanism reduces
the negative deviations from GR and applies on scale
as large as 0.1hMpc−1. Moreover, the overall deviation
from GR is significantly reduced, even on large scales, at
redshifts z = 1 and z = 2. This comes from the fact
that the deviation of the background from Λ-CDM is a
late-time effect.

The cubic and quartic Galileon models [10, 11] have
been simulated with differences between the two models.
In both cases, the background evolution follows a tracker
solution where ϕ̇ goes like 1/H , i.e. the field varies more
with time in the recent past implying a stronger effect
on the growth of structure on large scales in the linear
regime. In both the cubic and quartic scales, the effective
Newton constant is larger than in GR in sparse regions
of the Universe. The Vainshtein mechanism operates
on very mildly quasilinear scales as soon as 0.03hMpc−1

where nonlinear effects cannot be neglected. Moreover, in
the densest regions the effective Newton constant changes
sign in the quartic case and becomes smaller than in GR.
As in the DGP case, the deviations from GR decrease
significantly from z = 0 to z = 1 and beyond z = 1 the
nonlinear effects of the Galileon models can be neglected
and the models behave like linear theories with a time
dependent but scale-independent Newton constant.

The K-mouflage models also have a modified back-
ground evolution which becomes prominent in the re-
cent past of the Universe and deviations from Λ-CDM
are significant from a redshift z ∼ 5 with maximal ex-
tension between z = 1 and z = 2. At the perturbative
level, linear effects depend on a time dependent Newton

constant and a new friction term implying that the grow-
ing mode and the growth rate are enhanced for K0 > 0
and depleted when K0 < 0 compared to Λ-CDM. As the
K-mouflage models do not screen the quasilinear struc-
tures of the Universe, we find that linear features persist
beyond the linear regime. We find that the one loop con-
tribution to perturbation theory is negligible and that, in
fact, the K-mouflage models behave like a linear model
in the scalar sector. Nonlinearities are only present as
usual in the matter sector. These nonlinearities imply
that the deviation from Λ-CDM of the power spectrum
have a peak at the onset of the nonlinear regime around
1 hMpc−1 for z = 0. In the nonlinear regime, the critical
linear density contrast is smaller than the Λ-CDM one
for K0 > 0 in a scale-independent way, leading to an in-
crease in the number of large-mass clusters for K0 > 0.
We have also studied the evolution of the deviations from
Λ-CDM with the redshift and shown that they increase
in the recent past corresponding to the maximal devi-
ations of the background from Λ-CDM between z = 1
and z = 2. Moreover, when subtracting the power spec-
trum calculated with the modified background (QCDM,
see App. B), we find that the influence of the new friction
term and the modified Newton constant on linear scales
and their extension to the nonlinear regime are not negli-
gible and vary very little from z = 0 to z = 2, apart from
a shift in the peak of the power spectrum due to the
change of the onset of nonlinearities with the redshift.
Hence we can draw general conclusions about the dif-

ferences between the three types of screening mechanisms
at the cosmological level. Models with the Vainshtein
and K-mouflage properties have a modified background
cosmology when chameleonlike models follow Λ-CDM.
The deviations from Λ-CDM are more pronounced for K-
mouflage models at redshifts of a few than for Vainshtein-
like models. Structures grow differently too. On linear
scales, chameleons converge to GR while models of the
K-mouflage and Vainshtein types show deviations there.
K-mouflage models do not screen quasilinear structures
whereas chameleonlike and Vainshtein models do. More-
over, K-mouflage models have deviations from Λ-CDM
which persist up to redshifts of a few when for the other
types of screening the effects become less significant.
These features are sufficiently different to hope to dis-
tinguish these models if modified gravity effects were to
be detected by future surveys.

VIII. SUMMARY AND CONCLUSION

A. Summary

Before we conclude this paper, let us briefly summarize
the main properties of the K-mouflage models studied
here and our results:
- K-mouflage models involve an additional scalar

field, ϕ, with a nonstandard nonlinear kinetic term,
M4K[−(∂ϕ)2/2M4], where M4 is of the order of the
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critical density now. Here we consider models where
the field ϕ is also conformally coupled to matter fields
through the Jordan metric g̃µν = A2(ϕ)gµν .

- The nonlinearity of the Lagrangian, which gives rise
to terms K̄ ′(∂δϕ)2 for the fluctuations with respect to the
cosmological background, provides a “screening mecha-
nism” as the large prefactor K̄ ′ freezes the fluctuations
and suppresses the fifth force in the high-density and
small-scale regimes. This provides a convergence to GR
on small astrophysical scales (studied in an upcoming
paper) and at high redshift [6]. On the other hand,
in contrast with some other modified-gravity scenarios
(e.g., chameleon and Galileon models), linear cosmolog-
ical structures are unscreened and show deviations from
Λ-CDM up to the Hubble scale. Moreover, the dark en-
ergy background evolution of K-mouflage models only
behaves as a cosmological constant at low redshifts.

- The equations of motion obtained for matter on cos-
mological scales are the usual continuity equation, a mod-
ified Euler equation (with an additional friction term and
an additional fifth-force potential term), and a modified
Poisson equation (with a time dependent effective New-
ton constant). The scalar field fluctuations obey a time
dependent Klein-Gordon equation, as the background
field evolves with time.

- Even though this background does not follow a qua-
sistatic evolution, on small scales (far below the horizon)
the scalar field fluctuations obey a quasistatic regime (be-
cause spatial gradients dominate over time derivatives)
and are “slaved” to the same-time density fluctuations
(i.e., the Klein-Gordon equation takes the form of a non-
linear Poisson equation).

- For cosmological structures, from the cosmic web
down to clusters of galaxies, which show moderate den-
sity contrasts (δ . 200), this quasistatic Klein-Gordon
equation can be linearized. Therefore, these models pro-
vide an explicit nonlinear example where the scalar field
sector can be linearized on cosmological scales (while the
nonlinearity appears on smaller astrophysical scale and
ensures the convergence back to GR).

- Quasilinear scales can be studied using cosmological
perturbation theory as in the standard Λ-CDM scenario,
taking into account the new linear friction and fifth-force
terms in the Euler equation. In particular, the nonlin-
earities are due to the usual transport terms that are
identical to those found in the Λ-CDM case.

- The linear regime growth factors differ from the Λ-
CDM predictions through time dependent terms, but in
contrast with some other modified-gravity models, they
do not show an additional scale dependence (because
large scales remain unscreened up to the horizon). The
sign of the deviation from Λ-CDM is set by the sign of
the derivative K̄ ′, as for background quantities [6]. For
instance, models with K ′ > 0 yield a smaller Hubble ex-
pansion rate H(z) (with a common normalization today)
and larger linear growth rates D+(z) and f(z). More
precisely, the quantity that governs the deviations from
the Λ-CDM predictions, both for the background and the

perturbations, is the ratio β2/K̄ ′, where β is the coupling
constant to the matter. As for small-scale screening,
these deviations are suppressed in models with a large
nonlinear factor K̄ ′.
- Because large linear scales deviate from the Λ-CDM

predictions, large-scale CMB anisotropies also show a sig-
nificant deviation through the ISW effect. In particular,
the cross-correlation between the large-scale CMB tem-
perature fluctuations and low-redshift galaxy surveys can
change sign for models withK ′ < 0, and the amplitude of
the relative deviation from Λ-CDM grows with redshift.
This also gives rise to a deviation for the low-ℓ CMB mul-
tipoles Cℓ, but this generically yields more power than
the Λ-CDM prediction over ℓ ≤ 10 whatever the sign of
K̄ ′.
- To go beyond the perturbative regime, we have also

studied the spherical collapse dynamics. For the same
reason as the absence of scale dependence in the linear
regime, the spherical collapse is only modified by time de-
pendent but scale-independent factors. This also means
that, as in GR or Newtonian gravity, different mass shells
remain uncoupled until shell crossing. This simplifies the
analysis and it leads to a time dependent linear density
contrast threshold δL(z) for the collapse of virialized ha-
los. This yields in turn a deviation for the large-mass tail
of the halo mass function, that again depends on the sign
of K̄ ′.
- Combining perturbation theory and the spherical col-

lapse dynamics, we have estimated the matter power
spectrum up to mildly nonlinear scales k . 10hMpc−1.
We recover a constant relative deviation from Λ-CDM
on linear scales and a peak on weakly nonlinear scales,
k ∼ 1hMpc−1, due to the amplification associated with
the nonlinear matter dynamics and the large-mass tail of
the halo mass function. Therefore, large-scale structures
provide a useful probe of such models as the deviations
from Λ-CDM for P (k), or the halo mass function, can
be greater by a factor of 10 than those of background
quantities, such as H(z).
- These deviations decrease rather slowly at higher

redshift and remain non-negligible at z = 2 (as com-
pared to z = 0). This is due to the fact that the dark
energy component only slowly becomes subdominant at
high z, because its energy density actually grows (but
at a smaller rate than the matter density). This feature
is rather different from the behavior obtained in some
other modified-gravity models [e.g., f(R) theories or dila-
ton models] where the background is almost identical to
Λ-CDM and the deviations for matter perturbations are
only significant at low z.

B. Conclusions

In conclusion, K-mouflage is an alternative to the
screening by the chameleon or the Vainshtein mecha-
nisms with striking features on the growth of large-scale
structures. The most significant one is certainly the ab-
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sence of screening of large astrophysical objects on cos-
mological scales, such as galaxy clusters. In this regime,
the scalar theory behaves like a linear field theory lead-
ing to a time dependent modification of Newton’s con-
stant and an increase/decrease of the growth of struc-
ture compared to Λ-CDM depending on the ratio β2/K̄ ′

corresponding to the square of the effective coupling to
matter when the bare coupling β is rescaled by the wave
function normalization of the field |K̄ ′|1/2. For models
where deviations from the Λ-CDM behavior at the back-
ground level are at the percent level, the deviations of
the power spectrum of the density contrast on mildly
nonlinear scales is enhanced compared to the linear part
of the spectrum and can reach ten percent. Moreover, the
convergence to the Einstein- de Sitter behavior of pertur-
bations in the past is rather slow due to the properties
of the background cosmology. Indeed, at the background
level, the Hubble rate converges to the Einstein- de Sitter
case in the distant past due to the screening of the scalar
field in the high-density environment of the early Uni-
verse while it converges to a Λ-CDM behavior in the very
recent past. In the intermediate regime around redshifts
of 1 . z . 2, the Hubble rate can differ significantly from
its Λ-CDM counterpart. This translates into a relative
persistence of the deviations from Λ-CDM which differs
from other screening mechanisms, up to redshifts of a
few. We leave a more detailed analysis of cosmological
observational constraints to future works. K-mouflage
could also have different features on smaller scales where
the density contrast is larger than in galaxy clusters. In
this regime, the nonlinearities of the models reappear and
cannot be neglected, especially on scales of the order of
the K-mouflage radius. This is left for future work.
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Appendix A: Perturbations

In this appendix we derive the perturbation equations
used in the text. First of all, the energy-momentum ten-
sor of a CDM fluid is

T µν = ρEu
µuν (A1)

where ρE is the energy density in the Einstein frame and
uµ is the velocity 4-vector normalized such that uµuµ =
−1, where indices are raised or lowered using the Einstein
metric gµν . Notice that we have the identification uµ =

dxµ

dT where T is the proper time and dT 2 = −gµνdxµdxν .
In terms of perturbations in the conformal Newton gauge,
where

ds2 = a2[−(1 + 2ΨN)dτ
2 + (1− 2ΨN)dx

2], (A2)

we have uµ = a−1(1 − ΨN + vjv
j/2, vi) where vi is

the velocity vector of CDM particles identified to lead-

ing order as vi = dxi

dτ and we also have to leading or-

der dT = adτ
√

1 + ΨN − vivi/2. Here and throughout
this paper, the particles are nonrelativistic and Newton’s
potential is small, and we only keep terms up to first
order over ΨN and v2 (within virialized halos we have
v2 ∼ ΨN). The Bianchi identity and the Klein-Gordon
equations imply that matter is not conserved but

DµT
µν
(m) = −ρE ∂ν(lnA). (A3)

This follows directly from Gµν = 8πG[T µν
(m) + T µν

(ϕ)] and

DµG
µν = 0, leading to DµT

µν
(m) = −DµT

µν
(ϕ) where T

µν
(ϕ) =

K ′∂µϕ∂νϕ+ gµνM4K. The Klein-Gordon equation is

Dµ(∂
µϕK ′) = −β T

MPl
, (A4)

where

β =MPl
d lnA

dϕ
. (A5)

Using this we easily get (A3) with T = −ρE. This gives
explicitly

ρ̇Eu
ν + 3hρEu

ν + ρEu
µDµu

ν = −ρE ∂ν(lnA) (A6)

where we have introduced ρ̇E = uµDµρE and the local
Hubble rate 3h = Dµu

µ.
Contracting with uν and using u2 = −1, we get

ρ̇E + 3hρE =
Ȧ

A
ρE . (A7)

It is easy to see that in perturbations ρ̇E =
a−1

(

ρ′E + vi∂iρE
)

, whereas 3h = 3H + θ
a , where

′ =

∂/∂τ and H = a′/a2, and we have defined θ = ∂iv
i. Here

and in the following, we neglect terms of order ΨN or v2

as compared with unity, as well as their time derivatives
Ψ′

N or vjv′j , and we only keep the first-order spatial gra-

dients such as ∂iΨN or vj∂jv
i (because we consider large-

scale structures that evolve on the Hubble time scale but
are much smaller than the horizon). Therefore this is
explicitly

ρ′E + vi∂iρE + (3H+ θ)ρE = (lnA)′ρE + vi∂i(lnA)ρE ,
(A8)

using H = a′/a. Let us use (A7), and defining

ρE = Aρ, (A9)

we get

ρ̇+ 3hρ = 0, (A10)
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FIG. 11: Relative deviation [D+(z) −
D+ΛCDM(z)]/D+ΛCDM(z) of the linear growing mode
from the Λ−CDM reference. Solid lines: same models as in
the upper panel of Fig. 2. Dashed lines: same models but
without the factors ǫi in Eq.(80).

which is nothing but the usual conservation equation for
ρ. This can be done also explicitly in (A8) which becomes
after a few trivial steps

ρ′ + ∂i(ρv
i) + 3Hρ = 0, (A11)

as one expects.
The nonconservation equation (A6) can now be dras-

tically simplified and leads to

uνDνu
µ = − Ȧ

A
uµ − ∂µ(lnA). (A12)

This is the generalized geodesic equation. Specializing to
µ = i, we get

∂τv
i+Hvi+vj∂jvi = −

(

A′

A
+ vj∂j lnA

)

vi−∂i(ΨN+lnA)

(A13)
as expected for Newton’s law and its relativistic correc-
tions. Notice that there is a term in vivj∂j lnA which
is small or of order v2 ≪ 1 in the nonrelativistic limit
compared to ∂i lnA, and can be safely dropped.

Appendix B: Modified background and dynamics

1. Effect of the factors ǫ1 and ǫ2

The linear growing modes D+(η) obtained from
Eq.(80) deviate from the Λ-CDM reference because of
two effects: (a) the background evolution is different from
Λ-CDM (the factors weff

ϕ Ωeff
ϕ and Ωm show a different

redshift dependence), and (b) there are two new terms
ǫ1 and ǫ2 in the evolution equation, due to the coupling
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FIG. 12: Upper panel: linear density contrast threshold
δL(Λ)(z), for the same models as in the upper panel of Fig. 7,
taking into account the factors ǫi in Eq.(115) (solid lines) or
setting them to zero (dashed lines). Lower panel: relative
deviation [n(M) − nΛCDM(M)]/nΛCDM(M) of the halo mass
function from the Λ-CDM reference, for the same cases.

between the matter density and velocity fluctuations and
the scalar field ϕ.

To disentangle these two effects, we compare in Fig. 11
the results we obtain from the full Eq.(80)), also shown
in Fig. 2, with those we obtain when we set the factors ǫ1
and ǫ2 to zero in Eq.(80)) (while keeping the modified-
gravity background). We can see that a significant part of
the deviation from the Λ-CDM reference is merely due to
the change of background evolution, especially at z ≥ 1.
However, the importance of the factors ǫi depends some-
what on the values of the parameters of the model and
they cannot be discarded. In particular, for the model
(15) the effect of the factors ǫi is quite large.

In a similar fashion, the nonlinear spherical dynam-
ics involve both the modified background factors weff

ϕ Ωeff
ϕ

and Ωm, and the new terms ǫ1 and ǫ2, see Eq.(115). We
compare in Fig. 12 the linear density threshold δL(Λ) and
the halo mass function n(M) obtained when we include
the factors ǫi or not. The deviation from the Λ-CDM
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FIG. 13: Relative deviation [P (k) − PΛCDM(k)]/PΛCDM(k)
of the nonlinear matter density power spectrum from the Λ-
CDM reference, at redshift z = 0, for the same models as in
Fig. 9, where we keep the factors ǫi (solid lines) or set them
to zero (dashed lines).

reference keeps the same sign whether we include these
factors or not, as for the linear modes shown in Fig. 11,
but the quantitative impact of the factors ǫi is greater

and they cannot be neglected.

We also compare the matter density power spectra ob-
tained by keeping the factors ǫi or setting them to zero
in Fig. 13. The difference between these cases agrees
with the results found in Figs. 11 and 12. Neglecting
the factors ǫi would significantly distort the shape of the
deviation from the Λ-CDM power spectrum and under-
estimate this deviation, especially on mildly nonlinear
scales.

2. Comparison with the QCDM reference

Finally, we have studied the effect of the parame-
ters ǫ1,2 by subtracting the power spectrum and halo
mass function calculated with the modified background
(QCDM). In agreement with the results above, the de-
viations from GR are not entirely due to the modified
background and one can clearly see in Figs. 14 and 15
that the modified perturbation dynamics play a signifi-
cant role. The order of magnitude of the deviation does
not change much from z = 0 to z = 2, a key feature of
the K-mouflage models, except for the model (15) where
there is a strong evolution at z . 2 and a slower evolution
at higher redshifts than for models (13) and (14).
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