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Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

sissa, Via Bonomea 265, I-34136 Trieste, Italy

b
Department of Physics, lepp, Cornell University, Ithaca, ny 14853, usa

Abstract

We present an e↵ective non-relativistic theory of self-interacting dark matter. We clas-
sify the long range interactions and discuss how they can be generated from quantum field
theories. Generic dark sectors can generate singular potentials. We show how to consistently
renormalize such potentials and apply this to the calculation of the Sommerfeld enhance-
ment of dark matter interactions. We explore further applications of this enhancement to
astrophysical probes of dark matter including the core vs. cusp problem.

1 Introduction

Less than a quarter of the matter density of the universe is composed of ordinary baryons. The
remaining component is called dark matter (dm) and has only been probed through its gravitational
interactions at cosmological and astrophysical scales. One appealing class of dm candidates are
weakly-interacting massive particles (wimps). These are

• stable or long-lived compared to the age of universe

• non-relativistic upon freeze out from thermal equilibrium in the early universe

• electrically neutral and weakly interacting, i.e. with annihilation cross sections in the pb
range, so that ⌦DMh

2 ⇡ 0.1 pb/h�vi.
These features hint at a possible link between the cosmological properties of dm and the mechanism
for electroweak symmetry breaking.

In principle, wimp annihilations should still occur today in dense regions of our galaxy. The
potential for this type of indirect detection has gained attention recently due to possible anomalies
in the positron fluxes measured by pamela [1], Fermi [2] and ams-02 [3], and the gamma ray
spectrum measured by Fermi [4–8]. Such signals, however, require the total wimp annihilation
cross section to be well in excess of the thermal value. Nevertheless, there are mechanisms to boost
the annihilation rate to the level of experimental sensitivity without spoiling the relic abundance.
One possibility is that dm has long range self-interactions mediated by a light force carrier. If
this exchange of particles produces an attractive self-interaction, it can e↵ectively increase the
annihilation cross section because of Sommerfeld enhancement or resonance scattering [9–15]. The
annihilation cross section is thus enhanced by a boost factor, S�

0

, with S � 1, where �

0

is the
short-range annihilation cross section.
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More recently, self-interacting [16, 17] dm has also recently been proposed as a viable solution
to possible discrepancies between observations of small scale structures and the predictions from
N -body simulations based on collisionless cold dm. In particular, dwarf galaxies show flat dm
density profiles in halo cores [18, 19], whereas collisionless cold dm predicts cusp-like profiles. In
addition to this “core vs. cusp problem”, there is the “missing satellites problem” and the “too big
to fail problem,” see e.g. [20] and references therein. While it is possible that these problems could
be addressed by including baryonic physics to collisionless dm simulations [21], self-interacting
dm o↵ers a viable and motivated alternative scenario that is rich of interesting observational
consequences [18, 19, 22].

The standard approach to self-interactions and Sommerfeld enhancement is to assume an ultra-
light elementary scalar or vector � in the dark sector which mediates a force between the dm
particles [20, 23, 24]. In this paper we take a more agnostic approach; we construct an e↵ective
theory that only assumes rotationally invariant self-interactions in the dark sector. One can classify
the possible potentials in terms of the dm mass m

�

, spin s, transferred momentum q, and relative
velocity v. We work at the leading order in the exchanged momentum and velocity which is an
excellent approximation for cold dm. For example, we show in Section 2.2 that the most general
long-range P - and T - symmetric potential between two dm particles of arbitrary spin, is

V

P,T

e↵

=
1

4⇡r


eg
1

(r) + eg
2

(r)(s
1

· s
2

) +
eg
3

(r)

⇤2

r

2

(3s
1

· r̂ s2 · r̂ � s
1

· s
2

) +
eg
7,8

(r)

⇤r
(s

1

± s
2

)(r̂ ⇥ v)

�

(1.1)

where eg
i

(r) are arbitrary functions that depend only on the the dm separation, and ⇤ is the
characteristic interaction scale of the dark sector that we take much larger than the mediator
mass. At scales where the mediator mass can be neglected and the theory is weakly coupled, the
couplings eg

i

freeze to constants, eg
i

(r) ! g

i

.
Strongly interacting mediators in the dark sector can generate singular potentials through non-

standard propagators, see e.g. [25, 26]. Notice, however, that even weakly coupled models can
generate potentials that are more singular than the 1/r2 centrifugal barrier at short distances.
For example, dark matter interactions mediated by a light pseudo-scalar produce a g

3

term in the
potential (1.1) which goes like 1/r3. This can be generated, for example, by Goldstone bosons [27].
Another example is dm with dipole interactions generated by charged states. These produce a g

3

term in the potential. Models based on these magnetic dipole interactions were recently proposed
[28] as a way to resolve discrepancies between tentative signals in direct detection experiments.
More exotic potentials can be generated by the loop-level exchange of composite operators made
of light fields [29–32]. Table 1 shows examples of weakly coupled models, preserving P and T , that
generate the various g

i

in (1.1).
Such singular potentials must be regularized at short distances and then renormalized by re-

quiring that low-energy observables are cuto↵ independent. We carry out this renormalization
program making possible to extract physical predictions from singular potentials generated by dm
self-interactions. In particular, we calculate the Sommerfeld enhancement from a 1/r3 potential,
extending the analysis in [33] by including wavefunction renormalization1. We plot the elastic
scattering cross section as a function of the velocity and the mass near the resonance region where
the boost factor is large. Astrophysical systems at various scales, from clusters to dwarf galaxies

1 We note that wavefunction renormalization is essential for Sommerfeld enhancement to be cuto↵ independent.
The numerical results in Section 4 match [33] within an order of magnitude for a specific choice of renormalization
conditions.
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Interaction g

1

g

2

g

3

g

7

g

8

�̄�' X X X X X
�̄�

5

�' X X X X X
i�̄�

µ

�

5

�@

µ

' X X X X X
�̄�

µ

�A

µ

X X X X X
i�̄�

5

�

µ

�A

µ

X X X X X
i�̄�

µ⌫

�F

µ⌫

X X X X X

Table 1: Leading order P - and T -preserving long-range static potentials in (1.1) from massless
real scalar ', vector gauge boson A

µ

, or field strength F

µ⌫

= @

[µ

A

⌫]

mediators. Observe that g
2

is not generated in the massless limit. g

8

is not generated because of the spin conservation in
CP -symmetric theories of spin-1

2

dm. See Table 2 and 3 for more details.

with velocity ranging from v ⇠ 10�3 and v ⇠ 10�5, provide constraints on the dm self-interactions
and hence the Sommerfeld enhancement [20,23,24]. While we leave an investigation of how these
bounds may be adapted to singular potentials for future work, we point out that the formalism
presented here may be useful to avoid these constraints because of the velocity dependence of the
elastic cross section.

Even though Sommerfeld enhancement is typically relevant only for s-wave annihilations due to
the centrifugal barrier, the self-interacting dm potential (1.1) does not generically conserve orbital
angular momentum L2. Interaction channels with di↵erent orbital angular momenta, `, can be
coupled. This explains why the g

3

term in (1.1), which would be averaged to zero because of
isotropy of ` = 0 states, can still be relevant for Sommerfeld enhancement in �` = 2 transitions
[33]. Moreover, spin-spin interactions with g

3

6= 0 in (1.1) may generate macroscopic long range
interactions when the dm spins are polarized (in average) [32], a condition that on galaxy scales
may be plausible for these L-violating interactions.

This paper is organized as follows. In Section 2 we derive an e↵ective long-range, non-relativistic
potential for self-interacting dark matter at leading order in wimp velocity. In Section 3 we present
a procedure to renormalize singular potentials and apply this to the calculation of the physical,
cuto↵-independent Sommerfeld enhancement. In Sections 4 and 5 we present numerical results
for a 1/r3 potential and discuss the types of astrophysical bounds that such an analysis may be
applied to. We conclude in Section 6 and include appendices reviewing the standard procedure
for calculating Sommerfeld enhancement for non-singular potentials and a convenient square well
approximation for singular potentials.

2 E↵ective long-range potential

The elastic scattering amplitude M from rotationally invariant dm self-interactions is a scalar
function of the spins s

i

, exchanged momentum q, and relative velocity v. It is often convenient to
use the Hermitian operators iq and the velocity transverse to the momentum transfer,

v? = v � q(q · v)
q2

= v + q/m
�

(2.1)

where the last equality follows from the four-momentum conservation.
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In the center of mass frame, the elastic scattering amplitude is

M =
�1

q2 +m

2

�

X

i

g

i

(q2

/⇤2

,v2

?)Oi

(s
j

· iq/⇤, s
j

· v?, s1 · s2) (2.2)

where ⇤ is the heavy scale of the dark sector, e.g. the dm mass m

�

, and O
i

are the spin matrix
elements. We explicitly pull out a factor associated with the propagator for the light force carrier
with mass m

2

�

⌧ q2 ⌧ ⇤2 which acts as an infrared (ir) regulator at large distances. Further,
we only consider the leading term in the exchanged momentum q/⇤ and dm velocities, which we
assume to be small v , v? ⌧ 1. This is a good approximation for cold dm in the phenomenologically
interesting regime from dwarf galaxy scales v ⇠ 10�5 to freeze out v ⇠ 0.3. This type of non-
relativistic e↵ective theory was recently applied to the direct detection of dark matter in [34, 35].
In order to conserve dm energy (and the total angular momentum) we assume that mediator
bremsstrahlung is kinematically suppressed, m

�

v2 ⌧ m

�

. In other words, we work in the regime

v4 ⌧ m

2

�

m

2

�

⌧ q2

m

2

�

⇠ v2

. (2.3)

We assume mediators with spin less than 2 since the longitudinal components of massive particles
with higher spins spoil the derivative expansion at scales comparable with their mass, q ⇠ m

�

.

2.1 Rotationally invariant non-relativistic operators

Under parity and time reversal velocities, spins and momentum, transform as

P : iq ! �iq , s ! +s , v? ! �v? , (2.4)

T : iq ! +iq , s ! �s , v? ! �v? . (2.5)

In turn, one can build the following invariant parity-even operators

O
1

= 1 (2.6)

O
2

= s
1

· s
2

(2.7)

O
3

=� 1

⇤2

(s
1

· q)(s
2

· q) (2.8)

O
4

= (s
1

· v?)(s2 · v?) (2.9)

O
5,6

=� i

⇤
[(s

1

· q)(s
2

· v?)± (s
1

· v?)(s2 · q)] (2.10)

O
7,8

=� i

⇤
[(s

1

± s
2

) · (q⇥ v)] , (2.11)

where spin wavefunctions are suppressed for simplicity. Operators O
5,6

respect parity but break
time reversal. In the following we discard O

4

because it is only generated by spin-2 mediators [35].
Relaxing parity invariance introduces eight additional operators [32]: four of those respect time
reversal or, equivalently, CP

O
9

= � 1

⇤
(s

1

⇥ s
2

) · iq , (2.12)

O
10,11

= (s
1

± s
2

) · v? , (2.13)

O
12

= � i

⇤
[s

1

· (q⇥ v)](s
2

· v?) +
i

⇤
[s

2

· (q⇥ v)](s
1

· v?) , (2.14)
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while other four break both P and CP

O
13,14

= � 1

⇤
(s

1

± s
2

) · iq , (2.15)

O
15

= (s
1

⇥ s
2

) · v? , (2.16)

O
16

= � 1

⇤2

(s
2

· q)[s
1

· (q⇥ v)] +
1

⇤2

(s
1

· q)[s
2

· (q⇥ v)] . (2.17)

Observe that self-conjugate dm is symmetric under the exchange 1 $ 2. This is equivalent to
invariance under (q,v, s

1

) $ (�q,�v, s
2

), which forbids O
6,8,10,12,13,16

.

2.2 The general e↵ective potential

A more general approach is to replace the free propagator with a general two point function in
(2.2). This may include arbitrary negative powers of q2 from non-local interactions mediated by
light states that have been integrated out. In an integral representation, the amplitude is

M = �
Z 1

0

dµ

2

⇢(µ2)

q2 + µ

2

X

i

g

i

(q2

/⇤2

,v2

?)Oi

(v
j

· iq/⇤, s
i

· v?, s1 · s2) (2.18)

where ⇢(µ2) is the spectral density of the theory which provides a common language to describe
weakly and strongly coupled models. The standard propagator is recovered when ⇢(µ2) = �(µ2 �
m

2

�

).
Since the couplings always appear with the mediator’s propagator, we can make the replace-

ment g
i

(q2

/⇤2

,v2

?) = g

i

(�µ

2

/⇤2

,v2

?) after neglecting short-range interactions such as �-functions.
Moreover, for light mediators, the spectral density only has support for µ2 ⌧ m

2

�

,⇤2 so that we
may further write g

i

(q2

/⇤2

,v2

?) ' g

i

(0, 0) ⌘ g

i

unless this order vanishes. In such a case one

should go to the first non-vanishing order, g
i

! (�µ

2

/⇤2)ng(n)
i

/n!. We have also dropped the
velocity dependence because it does not provide the leading contribution unless one fine tunes the
coe�cients of the uv operators to cancel the velocity-independent contributions [34, 35].

Taking the Fourier transform of the scattering amplitude with respect to q , one obtains the
long-range e↵ective potential as a function of the relative distance r and velocity v. For example,
P - and T -symmetric interactions result in an e↵ective long-range potential

V

P,T

e↵

=
1

4⇡r

⇢
eg
1

(r) + eg
2

(r)(s
1

· s
2

) +
eg
3

(r)

⇤2

r

2

[3s
1

· r̂ s2 · r̂ � s
1

· s
2

] +
eg
7,8

(r)

⇤r
(s

1

± s
2

)(r̂ ⇥ v)

�

(2.19)

where eg
i

(r) are integrals of the Yukawa factor over the spectral density

eg
1

(r) =

Z 1

0

dµ

2

⇢(µ2)e�µr

✓
g

1

� g

(1)

1

µ

2

⇤2

◆
(2.20)

eg
2

(r) =

Z 1

0

dµ

2

⇢(µ2)e�µr


g

2

+
⇣
g

3

3
� g

(1)

2

⌘
µ

2

⇤2

�
(2.21)

eg
3

(r) = g

3

Z 1

0

dµ

2

⇢(µ2)e�µr


1 + µr +

1

3
(µr)2

�
(2.22)

eg
7,8

(r) = g

7,8

Z 1

0

dµ

2

⇢(µ2)e�µr (1 + µr) (2.23)
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It is understood that working at the leading non-vanishing order, g
3,7,8

and g

(1)

1,2

should always be
dropped unless the O(q0) terms like g

1,2

are vanishing or suppressed. For weakly coupled dark
sectors, eg

1,2

are the usual exponential factors while eg
3,7,8

carry additional polynomial corrections in
the mediator mass. In general these functions have an arbitrary r dependence, as expected when
the mediator is a composite operator. A simple example is a four-fermi operator between spin- 1

2

dm particles � and a massless neutrino-like species ⌫, that is L =
p
↵[⌫̄�

µ

(1��

5

)⌫][�̄�
µ

(a�b�

5

)�].
The mediator is a composite operator made of two light fermions. It generates a singular potential
at the loop level [30], eg

i=1,2

/ 1/r4 and eg
3

/ ⇤2

/r

2. Note that the spin structure of the potential
is fixed by the quantum numbers of the light mediator.

Note that for spin-1
2

dm the particle–antiparticle potential must have g
8

= 0 since CP corresponds

to a factor (�)S+1 and thus implies the conservation of total spin S2 = (s
1

+ s
2

)2 which can only
take values 0 and 1. In this case, it is convenient to express the potential in the following form

V

(si=1/2) =
1

4⇡r

⇢✓
eg
1

(r)� 3

4
eg
2

(r)

◆
+

1

2
eg
2

(r)S 2 +
eg
3

(r)

2⇤2

r

2

⇥
3(S · r̂)2 � S 2

⇤
+

2eg
7

(r)

m

�

⇤ r

2

S · L
�
,

(2.24)

where L = r ⇥ p is the orbital angular momentum and p = m

�

v/2 is the conjugate momentum,
[ri,pj] = i�

ij.
At large distances, but smaller than the mediator Compton wavelength, ⇤�1 ⌧ r ⌧ µ

�1, the
functions eg

i

(r) become constants and the potential simplifies even further:

V

P,T

e↵

=
1

4⇡r

h
g

1

+ g

2

(s
1

· s
2

) +
g

3

⇤2

r

2

(3s
1

· r̂ s2 · r̂ � s
1

· s
2

) +
g

7,8

⇤r
(s

1

± s
2

)(r̂ ⇥ v)
i
. (2.25)

This is the regime where Sommerfeld enhancement may be e↵ective because the interaction is still
long-range compared to the short distance annihilation processes that take place at r ⇠ ⇤�1.

The expressions for the potentials that break P but respect T are presented in Appendix A.

2.3 Weakly coupled examples

As an example, consider a dark sector with a weakly coupled, light scalar or vector mediator �

with interactions �OQFT in Table 2. These generate a static potential

X

i

�

i

OQFT

i

�! V

P

s

=
h
g

1

+ g

2

(s
1

· s
2

) +
g

3

⇤2

r

2

h(m
�

, r) [3 (s
1

· r̂) (s2 · r̂)� s
1

· s
2

]
i
e

�m�r

4⇡r
, (2.26)

where h encodes the dependence on the mediator mass,

h(m
�

, r) =

✓
1 +m

�

r +
m

2

�

r

2

3

◆
. (2.27)

Table 2 gives the contributions to each of the coe�cients on the right-hand side of (2.26) coming
from the corresponding types of qft interactions.

Note that the Dirac dm mass m
�

breaks axial symmetry so that the limit of a massless axial
gauge boson mediator is consistent at finite m

�

only when chiral symmetry is broken spontaneously
at a scale f so that m

A

= �

a

f . In this case the transverse components decouple, �
a

= m

A

/f ! 0,
and only the longitudinal modes contribute to the amplitude with coupling 1/f , matching the
result from Goldstone boson exchange.

6



mediator interaction
1

r

1

r

(s
1

· s
2

)
1

r

3

[3 (s
1

· r̂) (s2 · r̂)� s
1

· s
2

]

scalar �

s

�̄�' ��

2

s

0 0

pseudoscalar i�

p

�̄�

5

�' 0
�

2

p

m

2

'

3m2

�

�

2

p

m

2

�

h(m
'

, r)

Goldstone
1

f

�̄�

µ

�

5

�@

µ

' 0
4m2

'

3f 2

4

f

2

h(m
'

, r)

vector �

v

�̄�

µ

�A

µ

±�

2

v

✓
1 +

m

2

A

4m2

�

◆
±2�2

v

m

2

A

3m2

�

⌥ �

2

v

m

2

�

h(m
A

, r)

axial vector �

a

�̄�

5

�

µ

�A

µ

0 �8�2

a

3

✓
1� m

2

A

8m2

�

◆
�

2

a

✓
1

m

2

�

+
4

m

2

A

◆
h(m

A

, r)

field strength
i

2⇤
�̄�

µ⌫

�F

µ⌫

0 ⌥2m2

A

3⇤2

± 1

⇤2

h(m
A

, r)

Table 2: Parity-preserving particle–(anti-)particle (upper/lower sign) long-range, static potentials
from scalar ', gauge boson A

µ

, and field strength F

µ⌫

= @

[µ

A

⌫]

mediators. Here �

µ⌫ = i

4

[�µ

, �

⌫ ]
and h is defined in (2.27). Each term implicitly carries a Yukawa factor e�m�r

/4⇡. Observe that
the long-range s

1

· s
2

is always suppressed by the mediator mass since �

a

= m

A

/f .

mediator interaction
1

4⇡r
[v2 + r̂(r̂ · v)v] 1

4⇡r2
(r̂ ⇥ v) · (s

1

+ s
2

)

scalar �

s

�̄�' ��

2

s

8

�

2

s

4m
�

vector �

v

�̄�

µ

�A

µ

±�

2

v

8
⌥ 3�2

s

4m
�

Table 3: Parity-preserving particle–(anti-)particle (upper/lower sign) long-range, non-static poten-
tials from massless scalars ' and gauge bosons A

µ

. Long-range contributions from pseudo-scalars,
axial vectors and field strength vanish for massless mediators.

Table 3 gives the long-range, non-static potential contributions from massless scalars and
gauge bosons. The v2

? contribution generates a ⇠ 1/r(v2 + r̂(r̂ · v)v) in position space which
can be neglected because it is always subleading. Pseudo-scalar, axial-vector and field strength
mediators, give vanishing non-static, long-range potentials at this order. Note that these poten-
tials generically need to be complemented by the relativistic corrections to the kinetic energies,
p2

/m

2

�

�
1� p2

/(4m2

�

) + . . .

�
. In the following sections we neglect these corrections to the kinetic

energy since we checked that their contribution is very small.
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3 Renormalization of singular potentials and Sommerfeld

enhancement

The potential V

P,T

e↵

in (2.19) represents the most general long-range interactions between dm
particles that preserve parity and time reversal. A standard method for calculating the Sommerfeld
enhancement for the non-singular Coulomb and Yukawa potentials is presented in [9] and reviewed
in Appendix B. In practice, one determines the boost factor by solving a Schrödinger-like equation
with the proper boundary conditions. However, since the terms in V

P,T

e↵

are typically very singular,
the usual calculations for the boost factor will generically fail. In this section we show how
to overcome these problems by renormalizing the Schrödinger equation. Since a full numerical
solution can be computationally intensive for singular potentials, we also provide an algebraic
algorithm to estimate the Sommerfeld enhancement for general potentials in Appendix C.

3.1 Wilsonian treatment of divergences

Potentials that go to infinity faster than 1/r2 at the origin are called singular [36] and generically
arise in dark sectors with spinning dm and/or with some strong dynamics. The occurrence of
unphysical behavior originating from the infinitely large energies of such potentials are analogous
to the infinities of quantum field theory (qft). These inconsistencies arise when one extrapolates
a long-range potential to arbitrarily short distances where ultraviolet physics should be taken
into account. In fact, the Schrödinger equation can be renormalized by adopting the Wilsonian
renormalization group (rg) methods of qft [37]: the singular potential is regulated at a short
distance a and augmented with a series of local operators that parametrize the unknown uv
physics,

V (r) �! V (r)✓(r � a) + c

0

(a)�3(r) + c

2

(a)a2r2

�

3(r) + . . . (3.1)

The short-distance part of this e↵ective potential is a derivative expansion that can be truncated to
the desired order as long as the typical momenta q are much smaller than the cuto↵ scale ⇤ = a

�1.
This given order in q determines the finite set of coupling constants c

i

(a) which can be determined
by low-energy data.

3.2 Renormalized potential

Singular potentials diverge at the origin so that further care is required to impose boundary
conditions. The Schrödinger equation for an `-wave state is conveniently expressed using the di-
mensionless coordinate x = pr, the product of the dark matter relative momentum and separation:

��00
p,`

(x) +

✓
V(x) + `(`+ 1)

x

2

� 1

◆
�

p,`

(x) = 0, (3.2)

where the dimensionless potential is rescaled by the momentum p and reduced mass M = m

�

/2,

V(x) = 2M

p

2

V

✓
x

p

◆
. (3.3)

We regulate the potential at x
cut

= ap with a square well of height V
0

encoding the uv data of the
relativistic completion,

V
reg

(x) = V(x) ✓(x� x

cut

) +
1

x

2

cut

V
0

✓(x
cut

� x). (3.4)
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In practice, we simulate the local counter-terms with a short-distance square well potential which
makes the calculations much easier [38]. We stress, however, that any other choice or deformation
of the counter-terms is allowed and physically equivalent as long as it changes only the UV behavior
of the interactions [37].

Observe that the centrifugal barrier is left uncut since it is non-singular and unrelated to the
uv physics. Once V

0

is known, one may integrate the Schrödinger equation subject to the usual
boundary condition at zero

lim
x!0

�
p,`

(x) = x

`+1

, (3.5)

and then extract the Sommerfeld enhancement from the asymptotic solution. In the regulated
region x < x

cut

, the Schrödinger equation can be solved explicitly in the approximation x

cut

⌧ 1,

�
p,`

(x < x

cut

) = �

✓
`+

3

2

◆ 
2x

cut

V1/2

0

!
`+1/2

x

1/2

J

`+1/2

✓
V1/2

0

x

x

cut

◆
. (3.6)

The value V
0

that appears in the Schrödinger equation is determined by requiring that a low
energy observable is independent of the particular choice of the cuto↵, x

cut

. It is thus meaningful
to define V

0

(x
cut

) with respect to the value of a physical observable, which can be conveniently
chosen to be the scattering phase �

`

of the elastic dark matter scattering process that generates
this enhancement.

For the region x > x

cut

, recall that the general solution to the Schrödinger equation is a linear
combination of two independent solutions,

�
p,`

(x > x

cut

) = Af(x) + Bg(x). (3.7)

Asymptotically far from the origin, these independent solutions are combinations of sines and
cosines. The scattering phase is related to the shift in the argument when the asymptotic solution
is written as a pure sine. Thus the �

`

has a one-to-one relation to the ratio A/B. In this way A/B

contains the uv data that can be measured in a low energy observable, the scattering phase shift.
In order to determine V

0

(x
cut

) subject to a fixed scattering phase, we may match the logarithmic
derivatives of the two piecewise solutions at x

cut

. Comparing (3.6) with (3.7),

� `

x

cut

+
V1/2

0

(x
cut

)

x

cut

J

`�1/2

⇣
V1/2

0

(x
cut

)
⌘

J

`+1/2

⇣
V1/2

0

(x
cut

)
⌘ =

A

B

f

0(x
cut

) + g

0(x
cut

)
A

B

f(x
cut

) + g(x
cut

)
. (3.8)

Observe that matching the logarithmic derivative gives an expression that depends on A/B which
is cuto↵ independent and directly related to our low-energy observable [38]. Once V

0

(x
cut

) is
determined, (3.4) is the correct non-singular low-energy potential for the problem with the given
cuto↵.

Due to the oscillatory nature of the Bessel function, there can be multiple solutions to the tran-
scendental equation (3.8). These solutions are physically equivalent. To simplify our calculations
we choose the first quadrant so that V

0

(x
cut

) can take values in the range (�1,V
max

) where V
max

is given by the first positive solution of

J

`+1/2

�V1/2

max

�
= 0 (3.9)

For ` = 0, V
max

= ⇡

2.
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Figure 1: Cuto↵-dependence of s-wave Sommerfeld enhancement using the procedure described
in the text. Low energy data is encoded by the ratio A/B in (3.7). We take relative velocity
v = 10�3. Deviations from flatness reflect a breakdown of the x

cut

⌧ 1 approximation. left:
Coulomb potential with ↵/v = e

2

/4⇡v = 10. The unique phase (A/B = 0) given by a qed-like
uv completion is indicated by the black line. right: r

�3 potential with e↵ = 2M2

v↵/f

2 = 10�3,
for ↵ defined in (4.6).

3.3 Wavefunction renormalization

Since V
reg

in (3.4) is manifestly non-singular, one may proceed to solve the Schrödinger equation
(3.2) subject to (3.5) following the procedure outlined in Appendix B. The resulting Sommerfeld
enhancement, S(0), appears to depend on the choice of x

cut

. This residual cuto↵ dependence is not
physical and is removed by including wavefunction renormalization, Z

`

:

S

`

= Z

`

S

(0)

`

(3.10)

Z

`

is fixed by using the observation that at relativistic speeds the Sommerfeld enhancement factor
should go to one,

Z

`

=
1

S

(0)

`

(v ! 1)
. (3.11)

3.4 Comparison to Coulomb potential

We now verify that the above procedure matches the usual result for the non-singular Coulomb
potential, V (r) = �↵/r. The wavefunction in the region x > x

cut

is

�
p,`

(x > x

cut

) = Ax

1/2

J

2`+1

✓
2

r
x↵

v

◆
+Bx

1/2

Y

2`+1

✓
2

r
x↵

v

◆
. (3.12)

One can check that the Sommerfeld enhancement is indeed independent of the choice x
cut

. For dif-
ferent choices of A/B, one can obtain di↵erent Sommerfeld enhancements, as seen by the di↵erent
lines on the left plot of Fig. 1. Of these, one line (black) corresponds to the analytical formulae
found in the literature [9]; this corresponds to picking a scattering phase that is consistent with
a relativistic completion that includes a massless boson. In other words, this is the choice that is

10



consistent with a theory where the non-relativistic Coulomb potential is completed by a relativistic
field theory resembling qed. Other choices correspond to theories whose non-relativistic limit is
Coulomb but whose local interactions di↵er from pure qed.

4 Numerical results

The general dm potential considered here does not generally conserve orbital angular momentum
L2 so that a coupled channel analysis between di↵erent `-wave annihilation modes is required.
This implies that the g

3

contribution in (1.1) can still be relevant for Sommerfeld enhancement via
�` = 2 transitions even though it averages to zero for ` = 0 states [33]. This is contrary to the
common belief that Sommerfeld enhancement is relevant only for s-wave annihilations due to the
centrifugal barrier. For some states L2 is a well-defined quantum number once the total angular
momentum J , the total spin S and parity P = ± are specified. In these cases the calculation
of the boost factor reduces to a standard single-channel Schrödinger problem as discussed above.
Table 4 shows the quantum numbers for fermionic dm for low total angular momenta. Among the
` = 0 states, (J = 0, S = 0, P = �) gives a single channel problem with arbitrary potential V

0

(r),
whereas (J = 1, S = 1, P = �) requires a coupled channel analysis between ` = 0 and ` = 2.

J S P `

0 0 � 0
0 1 + 1
1 0 + 1
1 1 + 1
1 1 � 0, 2

Table 4: Low total angular momentum, J , dm scattering states labelled by spin, S, parity, P , and
orbital angular momentum `. J , S, and P are conserved by the Hamiltonian and are used to label
states.

Assuming parity conservation, the e↵ective potential V
e↵

= hout|V (r)|ini+ `(`+1)/(2Mr

2) for
each channel is obtained by sandwiching (2.24) with the centrifugal term between the appropriate
| J S P i states,

| 0 0 �i ! V

e↵

=

✓
eg
1

(r)� 3

4
eg
2

(r)

◆
1

4⇡r
(4.1)

| 0 1 +i ! V

e↵

=
1

Mr

2

+

✓
eg
1

(r) +
1

4
eg
2

(r)� eg
3

(r)

2⇤2

r

2

� 2eg
7

(r)

M⇤r2

◆
1

4⇡r
(4.2)

| 1 0 +i ! V

e↵

=
1

Mr

2

+

✓
eg
1

(r)� 3

4
eg
2

(r)

◆
1

4⇡r
(4.3)

| 1 1 +i ! V

e↵

=
1

Mr

2

+

✓
eg
1

(r) +
1

4
eg
2

(r) +
eg
3

(r)

4⇤2

r

2

� eg
7

(r)

M⇤r2

◆
1

4⇡r
(4.4)

| 1 1 �i ! V

e↵

=
1

Mr

2

✓
0 0
0 3

◆
+

 
eg
1

(r) + eg2(r)
4

eg3(r)
2

p
2⇤

2
r

2

eg3(r)
2

p
2⇤

2
r

2 eg
1

(r) + eg2(r)
4

� eg3(r)
4⇤

2
r

2 � 3eg7(r)
M⇤r

2

!
1

4⇡r
(4.5)

where the ` = 0 and ` = 2 channels are coupled in (4.5). If the eg
i

are constant, then at leading
order these channels are e↵ectively non-singular and Coulomb-like. However, if eg

1

+ eg
2

/4 = 0,
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Figure 2: Sommerfeld enhancement for a singular r

�3 potential and orbital angular momentum
` = 0 (left) and ` = 1 (right) for relative velocity v = 10�3 and various values of e↵ = 2M2

v↵/f

2,
with ↵ defined in (4.6).

such as for pseudo-scalar exchange, then some of these channels are dominated by the singular
V ⇠ 1/r3 term. Moreover, one can also consider scenarios—for example, the exchange of multiple
light particles [29–32]—in which eg

1,2

⇠ 1/r3 so that even the eg
1

and eg
2

terms are singular with
` = 0. Thus one may in principle generate a singular potential for any partial wave. For simplicity,
we shall consider a simple 1/r3 potential for both ` = 0 and ` = 1. The coupled channel in (4.5),
however, requires a more careful analysis that we leave for future work.

In Fig. 2 we plot the Sommerfeld enhancement for a potential

V (r) = � ↵

f

2

r

3

(4.6)

as a function of the ir observable cot � for ` = 0, 1. When comparing these, note that the ` = 1
cross section has an additional factor of v2 relative to ` = 0. The resonance is located at cot � = 0
because this is where the cross section is maximal. These plots can be used to give an upper bound
on Sommerfeld enhancement for various couplings. Note that while it is true that the resonance
is larger for smaller couplings, it requires more tuning from the uv to reach the resonance for a
smaller coupling. Moreover, while cot � contains data about uv physics, it also depends on the ir
coupling in such a way that reducing the coupling would not increase the Sommerfeld unless one
simultaneously increases the height of the square well potential V

0

.
Fig. 3 presents an exploration of these resonances as a function of the dark matter reduced

mass. As described in the procedure above, the physical Sommerfeld enhancement for a singular
potential requires information from an ir observable such as the scattering phase �. As a reasonable
estimate for natural uvmodels, we regulate the theory at a length scale r

0

where the non-relativistic
description breaks down, V (r

0

) = M . We then fix the height of the cuto↵ by continuity with the
singular long-range part, V

0

= V (r
0

) = M . Notice that for a V (r) = �↵/(f 2

r

3) potential with
f = 1 TeV, the dark matter mass necessary to reach a significant enhancement is about 1 TeV.
If the dark matter mass is su�ciently large one may also need to consider the ` = 1 contribution.
This appears to contradict the common belief that ` > 0 enhancement is too velocity suppressed
to be relevant.
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Figure 3: Resonances in Sommerfeld enhancement for a singular r�3 potential and orbital angular
momentum ` = 0 (left) and ` = 1 (right) for a range of relative velocities and ↵/f

2 = TeV�2

with ↵ defined in (4.6). The large enhancements can be understood from the box approximation,
see the Appendix C. For simplicity the height of the regulated potential is fixed by continuity with
the long range piece.

5 Phenomenology

While the collisionless cold dm paradigm successfully accounts for the large scale structure of the
universe, it faces tension at smaller scales where N -body simulations present some discrepancies
with observations. In particular, dwarf galaxies show flat core dm densities profiles in the cen-
tral part of the halos, whereas collisionless cold dm predicts cusp-like profiles [39–42]. While this
discrepancy may be due to unaccounted baryonic physics [43–45], it may alternately be taken as
a motivation for dark matter self-interactions [18, 19, 46]. A related astrophysical motivation for
self interactions is the “too big to fail problem,” in which the brightest observed dwarf spheroidal
satellites in the Milky Way appear to be incompatible with the central densities of subhalos pre-
dicted by collisionless dm [47–49]. A third suggestion for self interactions is the “missing satellites
problem”; collisionless dm predictions for the number the satellite galaxies expected in the Milky
Way appears to disagree with observations [50, 51]. See, e.g. [20, 23] and references therein for
critical discussions.

To solve the core vs. cusp problem, the dark matter self interaction must have a su�ciently large
cross section, �/m

�

⇠ 0.1�10 cm2

/g, for velocities typical of dwarf galaxies, v ⇠ 10�5, while having
a smaller cross section for galaxy cluster velocities, v ⇠ 10�3, where collisionless dm results are in
good agreement. There are additional upper bounds on the cross section coming from astrophysical
observations sensitive to the velocities characteristic of galaxy clusters [23, 24]. One of the most
stringent bounds, for example, comes from the ellipticity of galaxy clusters [24, 52, 53]. The most
recent simulations have softened this bound to �/m

�

= 0.1 cm2

/g [18, 19]. Further, the cosmic
microwave background (cmb) sets an upper bound on Sommerfeld enhancement from the e↵ect of
dm annihilation after recombination [54–56]. Though a constant cross section �/m

�

. 0.5 cm2

/g
may account for these e↵ects, this velocity dependence is also suggestive of a Sommerfeld enhanced
cross section [57]. We leave a more thorough investigation of the astrophysical and cosmological
bounds on the enhancement of singular potentials for future work.

As an example for how to apply Sommerfeld enhancement to address the dwarf galaxy scale
astrophysical puzzles while simultaneously avoiding the bounds from galaxy cluster scale observa-
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Figure 4: Core vs. cusp problem. left: Sommerfeld enhancement (upper) and scattering cross
section (lower) as a function of relative velocity for a range of low energy parameters A/B as
discussed below (3.7) and 2↵M2

/f

2 = 1. right: Total dark matter cross section as a function
of velocity. Red: velocity dependent with 2↵M2

/f

2 = 34, M = 5.8 TeV, A/B = �10�3, and an
additional short distance interaction, M2

�

short

= 500. Blue: velocity independent cross section
with no new short range interaction and M = TeV, 2↵M2

/f

2 = 0.1, A/B = �6⇥ 10�4.

tions, we consider dark matter self interactions mediated by a light force carrier that generates a
singular potential,

V (r) =
�↵

f

2

1

r

3

. (5.1)

The left side of Fig. 4 shows the Sommerfeld enhancement (upper) and the total cross section
(lower) from such a model with a choice of parameters near the resonance. Observe that even for
very small A/B, that is small cot � or large scattering phase, the cross section is saturated between
the characteristic galaxy cluster velocities v ⇠ 10�5 and dwarf galaxy velocities v ⇠ 10�3. For
A/B ⇠ 10�5, as indicated by the red line in the lower figure, this saturates to �/m

�

⇠ 10�2 cm2

/g
for m

�

⇠ TeV. This saturation occurs over the range of velocities where we would like a stronger
velocity-dependence to avoid cluster scale bounds. In order to do this, we assume the existence of
a short range interaction that contributes to the elastic scattering process with cross section �

(0)

short

.
The long range mediators Sommerfeld enhance this cross section by the factor shown in the upper
plot; observe that this enhancement decreases exponentially as one increases from dwarf galaxy
velocities to galaxy cluster velocities. The total cross section is roughly (ignoring cross terms for
simplicity),

�

tot

(v) ⇠ �

elast

(v) + S(v)�(0)

short

. (5.2)

Since the enhancement factors can be fairly large, the additional short range interaction can be
weakly coupled, e.g. �(0)

short

M

2 ⇠ 104 so that �
0

⇠ 106 pb for a TeV scale dark matter particle. The
right side of Fig. 4 compares the velocity-dependence of this type of solution to another solution
without enhanced short range physics. Fig. 5 shows contours of Sommerfeld enhancement as a
function of velocity and elastic cross section, combining the data from the left-hand side of Fig. 4.

Finally, we remark on the use of Sommerfeld enhancement for generating indirect signals of
dark matter through positrons and gamma rays [12, 13]. The excess of cosmic positrons observed

14



10-5 10-4 10-3 10-2 10-1
102

104

106

108

1010

velocity

s
M
2

Sommerfeld Enhancement Contours

S=107

S=106

S=105

S=104

S=103

S=102

S=10

Figure 5: Contours of Sommerfeld enhancement from the singular potential (5.1) with 2↵M2

/f

2 =
1 as a function of the dm velocity and elastic cross section �.

by pamela [1] and later confirmed by Fermi [2] and ams-02 [3] is a potential signal for dark
matter annihilation. Since the cross section required to produce these signals is much larger than
the required cross section for thermal relics, dm models that realize the positron excess typically
require large Sommerfeld enhancements [58]. A study for non-singular dark sectors with Yukawa
interactions was performed in [24, 59]; an investigation of how these bounds change for singular
potentials is left for future work.

A recent speculative signal of indirect dm detection is the 135 GeV line in the Fermi gamma
ray spectrum [4–8]. Indeed, gamma ray signatures were the original motivation for investigating
Sommerfeld enhancement in dark matter [12]. The cross section required for the line is about
10�27 cm3

/s which generically points toward a large boost factor, S ⇡ 104. It is possible to
get such a large enhancement with a singular potential V (r) = �↵/(fr3), but since the dark
matter mass must be 135 GeV this requires a low scale f ⇡ 100 GeV to avoid tuning in the uv.
Dark matter models can generate such a feature, though these typically generate an unobserved
continuum contribution to the spectrum [60]. Ways around di�culty were explored in [61–65].

6 Conclusion

We have presented the e↵ective non-relativistic theory of self-interacting dark matter parameterized
to leading order in the relative velocity, v, and the exchanged momentum, q/⇤. The resulting
potentials generically include singular terms which must be regulated and renormalized so that
the resulting predictions are cuto↵ independent. We have shown how this e↵ective theory can be
applied to calculate the Sommerfeld enhancement generated by singular potentials.

Using a simple toy model with a 1/r3 potential, we have found that on resonance one can
generate enhancements as large as S ⇠ 106 at velocities on the order of v ⇠ 10�3. This opens
up promising directions for the astrophysical phenomenology of general self-interacting dark mat-
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ter models. For example, extant astrophysical puzzles such as the core vs. cusp problem can be
addressed with this velocity-dependent enhancement. A more thorough investigation and implica-
tions for specific uv models of these bounds is left for future work.
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A CP -preserving potential

In Section 2, we presented a list of P - and T -preserving operators in the non-relativistic potential
for dm self-interactions. In this appendix we present the additional terms in the e↵ective potential
that are generated when parity invariance is relaxed. In addition to O

1,2,3,4,7,8

, the four operators
O

9,10,11,12

in (2.12)–(2.14) preserve CP but break parity. For simplicity we consider only the case
of self-conjugate dm so that O

10,12

are forbidden.
The O

9

term contains no v? factors and the corresponding potential is

V

9

=
eg
9

(r)

4⇡r3⇤
(s

1

⇥ s
2

)r (A.1)

where eg
9

(r) is defined analogously to (2.23).
In order to determine V

11

we need the Fourier transform of the propagator along the direction
tranverse to the exchanged momentum

Z
d

3q

(2⇡)3
e

iq·r

�

ij � q
i

q
j

q2

�
1

(q2 + µ

2)
=

e

�µr

4⇡r


2

3
�

ij +
1

µ

2

r

2

�
3r̂ir̂j � �

ij

�✓
e

µr � 1� µr � µ

2

r

2

3

◆�
.

Contracting this expression with (s
1

�s
2

)i and vj gives V
11

. Since the final result is quite involved,
we focus on two interesting limits. At distances smaller than the mediator Compton wavelength,
⇤�1 ⌧ r ⌧ µ

�1, the expression greatly simplifies because

lim
µ!0

Z
d

3q

(2⇡)3
e

iq·r

�

ij � q
i

q
j

q2

�
1

(q2 + µ

2)
=

1

8⇡r
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�

ij + r̂

i

r̂

j

�
, (A.2)

and hence

V

11

=
1

8⇡r
[(s1 � s

2

) · v + (s1 � s
2

) · r̂(r̂ · v)] . (A.3)

On the other hand, at scales where the mediator mass is important, r � µ

�1, we have

V

11

=
1

4⇡r3m2

[3(s1 � s
2

) · r̂ (r̂ · v)� (s1 � s
2

) · v] . (A.4)
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where m

2 =
R
dµ

2

⇢(µ2)/µ2.
We stress that the ordering of the various operators in the non-static part of the potential is

generically important since p = m

�

v/2 is the conjugate coordinate associated with the relative
distance, [ri,pj] = i�

ij.

B Sommerfeld enhancement for non-singular potentials

Let us first briefly review the general method to obtain the Sommerfled enhancement [9,10]. Con-
sider two particles of mass m

�

and center-of-mass momentum p. The `-wave amplitude A

`

(p) for
the annihilation of these two particles under an attractive central potential V (r) can be expressed
as a function of a bare amplitude A

0,`

(q) = a

0,`

q

` and a wavefunction �p(r),

A

`

(p) =

Z
dr�⇤

p(r)

Z
dq e

iq·r
A

0,l

(q). (B.1)

The wavefunction �p(r) satisfies the Schrödinger equation,

✓
� 1

2M
@

2 + V (r)� p

2

2M

◆
�p(r) = 0, (B.2)

where M = m

�

/2 is the reduced mass and p = Mv is the non-relativistic momentum. In general,
the potential V (r) can be matrix valued in the space of partial waves, in which case the Schrödinger
equation is then a system of coupled di↵erential equations. To solve this equation we decompose
the wavefunction �p(r) in partial waves

�p(r) =
(2⇡)3/2

4⇡p

X

`

(2`+ 1)ei�`R
p,`

(r)P
`

(p̂ · r̂) (B.3)

such that the radial part, R
p,`

(r), satisfies
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with the completeness relation
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Plugging the partial wave decomposition (B.3) into (B.1) along with �

0

p(r) = e

ip·r gives
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From the free solution R

0

p,`

we know that

d

`

dr

`

R

0
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Applying the completeness relation (B.6) gives
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such that the Sommerfeld enhancement for a the `

th partial wave is

S

l

=

����

r
⇡

2

(2`+ 1)!!

`!

1

p

`+1

d

`

dr

`

R

p,`

(r = 0)

����
2

(B.9)

We thus see that the Sommerfeld enhancement is given by the solution of the Schrödinger equation
at the origin.

B.1 Numerical algorithm

Refs. [9,10] provide a method to numerically evaluate the enhancement factor S. The completeness
relation (B.5) is valid at long distances,

R

p,`

(r)|
r!1 !

r
2

⇡

sin(pr � `⇡/2 + �

`

)

r

. (B.10)

For simplicity, let us work with the dimensionless variable x = pr and the rescaled wavefunction
�

p,`

(x) = xRp,`(x)

Np

where N is an arbitrary normalization. Using these variables, the Schrödinger
equation takes the form
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p,`

(x)00 +
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V(x) + `(`+ 1)

x

2

� 1

◆
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where V(x) = 2M

p

2 V (x/p) and we impose the initial conditions

lim
x!0

�
p,`

(x) = x

`+1

. (B.12)

From (B.11) and the fact that lim
x!1 V(x) = 0, it is clear that in the asymptotically far away

region,

�
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(x)|
x!1 ! C sin(x� `⇡/2 + �
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) (B.13)

Moreover, to satisfy the asymptotic normalization of R
p,`

(r), we need to fix the normalization

N =
q

2

⇡

1

C

. We can then use R
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= Np�
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/x in (B.9) along with the initial condition to obtain
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so that the Sommerfeld factor is

S =

✓
(2`+ 1)!!

C

◆
2

(B.15)

We thus reduce the calculation of the Sommerfeld enhancement S to the determination of C. This
is obtained by numerically solving (B.11) with the initial condition (B.12) and

C

2 =
�
�

l

(x)2 + �
l

(x� ⇡/2)2
� |

x!1 . (B.16)
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Figure 6: Numerical evaluation of the Sommerfeld enhancement factor as a function of the dark
matter reduced mass M for a range of relative velocities. The mediator mass is fixed to 90 GeV
and ↵ = 1/30.

B.2 Coulomb and Yukawa example

For the Coulomb potential V (r) = �↵/r, one can obtain an analytic expression for the Sommerfeld
enhancement [9, 10],

S
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where the approximation holds for large ↵/v. There exists no simple analytical expression for the
enhancement from a Yukawa potential V (r) = �↵e

�µr

/r, but one can easily evaluate it numerically
using the method presented, see Fig. (6). The presence of resonances can be explained by bound
states [14].

C Box approximation

We have shown that bound state resonances can generate large Sommerfeld enhancements. In
this appendix we adapt the procedure used in [14] to quantitatively understand these resonances.
In [14], it was shown that the a reasonable approximation for the Yukawa potential is a flat potential
well whose width is determined by the characteristic length scale of the interaction, r

0

= 1/m
'

,

V

box

(r) = �U

0

⇥(r
0

� r). (C.1)
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The depth of the rectangular well U
0

is fixed by requiring that the box approximation matches the
Yukawa potential at r = r

0

,

V

box

(r) = �↵m

e

⇥

✓
1

m

� r

◆
. (C.2)

This approximate is constructed to capture only the qualitative behavior of the full potential and
is not a detailed matching to an e↵ective theory. Observe that this analysis agrees with the fact
that the Coulomb limit (m

'

! 0) does not have resonances: this potential has no natural length
scale for constructing the rectangular well.

C.1 Application to V ⇠ r

�3

We adapt this procedure to the singular 1/r3 potential,

V (r) =
�↵

f

2

1

r

3

. (C.3)

The natural length scale of the problem is the dimensionful scale of the coupling, r
0

=
p
↵/f .

In principle there is also a scale set from the exponential term e

�m'r, but for uv models with
m

'

⌧ f this contribution is negligible. This reflects the fact that the resonant behavior of singular
potentials in this limit do not depend strongly on the specific value of the mediator mass m

'

.
This simple box potential approximation provides an estimate for the upper bound of Som-

merfeld enhancement coming from resonances in a singular potential. The solution to the ` = 0
Schrödinger equation inside the box (r < r

0

) is

�(pr < pr
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, (C.4)

where p =
p
p

2 + 2U
0

M . Outside the box, r > r

0

, there is e↵ective no potential so that

�(pr > pr
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= C sin(pr + �). (C.5)

C is determined by requiring continuity at r
0

so that the enhancement is
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where we use the non-relativistic approximation p

2 ⌧ U

0

M . Observe that the prefactor of the sine
term is small so that S becomes large when the cosine vanishes. In other words, this expression
maximized when r

0

p
2U

0

M = (2n+ 1)⇡/2 with

S
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. (C.7)

This peak is exactly the resonance when the pair of dark matter particles forms a bound state.
Note that this approximation is independent of the depth of the rectangular well, U

0

.
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It is straightforward to generalize these expressions for an arbitrary orbital angular momenta,
`, by including the angular barrier to the box potential and applying the appropriate boundary
conditions. One obtains
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where `

0 = ` + 1

2

and e2 = 2MU

0

/p

2. The qualitative scaling behavior of the resonance can be
seen by setting cot(�) = 0, and assuming that pr

0

⌧ 1 so that
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C.2 Dimensional analysis

To estimate the Sommerfeld enhancement o↵ resonance one must estimate U

0

. We use the as-
sumption that the uv physics encoded in U

0

does not significantly change the ir potential so that
the height of the square well U

0

is well approximated by the value of the singular potential at the
cuto↵ scale,
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⇠ f
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⇠ 1

r

0

, (C.10)

so that for ` = 0, the Sommerfeld enhancement is approximately
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An estimate for the parameters required to hit a resonance without tuning is thus

M

res

⇠ 1

r

0

⇠ f

↵

1/2

, (C.12)

which, for most cases, lies at the boundary of the range of the theory’s validity.
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