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Abstract: We describe a new class of BPS objects called magnetubes: their supersym-

metry is determined by their magnetic charges, while their electric charges can oscillate

freely between different species. We show how to incorporate these objects into microstate

geometries and create BPS solutions in which the charge densities rotate through different

U(1) species as one moves around a circle within the microstate geometry. Our solutions

have the same “time-like” supersymmetry as five-dimensional, three-charge black holes but,

in various parts of the solution, the supersymmetry takes the “null” form that is normally

associated with magnetic charges. It is this property that enables the species oscillation

of magnetubes to be compatible with supersymmetry. We give an example in which the

species oscillate non-trivially around a circle within a microstate geometry, and yet the

energy-momentum tensor and metric are completely independent of this circle: only the

amplitude of the oscillation influences the metric.
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1 Introduction

Microstate geometries play a double role in the study of solutions in supergravity. First,

microstate geometries involve a mechanism that supports time-independent, smooth, soli-

tonic, horizonless solutions within massless supergravity theories and so such solutions can

potentially represent completely new classes of end-states for stars. The second role is that

there are vast classes of such solutions and these classes come with extremely large moduli

spaces. As a result, the fluctuations of microstate geometries can capture a significant

portion of the microstate structure of the black hole that possesses the same asymptotic

structure at infinity. To understand the extent to which such classical solutions can capture

microstate details it is important to understand and classify the moduli spaces of solutions

and find all the ways in which such solutions can fluctuate. This has been the focus of much

recent work and in this paper we will exhibit a new and broader class of BPS fluctuations

that we call species oscillation.

The key building block of solutions with species oscillations is a new object of string

theory, which we will call the magnetube. The magnetube has M5 and momentum charges

(which are magnetic in five dimensions), as well as several electric M2 charge densities that

can oscillate between positive and negative values along the M5-P common direction. The

original motivation for studying this object, and species oscillation in general, was the idea

that it can be used to create microstate geometries for Schwarzschild (electrically neutral)

black holes [1]. The specific magnetube considered in [1] involved a KK-monopole with

(NS5, D5) charge specified by a vector at each point along a line in the KKM worldvolume.

This charge vector rotates in the (NS5, D5) charge space as one goes around this line so

that the resulting configuration has no overall (NS5, D5) charge. At each point on the

line the configuration looks like a piece of a BPS supertube, but at different locations

the D5 charge of this object can have opposite signs, and so it does not preserve any

supersymmetry associated with these charges.

Our first result is to show that the object found in [1], as well as the class of M5-P

magnetubes that we construct in this paper, are secretly supersymmetric. Normally one

does not expect this, because the negative and positive M2 (or D5) charge densities at two

different locations will attract and will generically want to collapse into each other. How-

ever, the story is much richer: because of the presence of extra species one can arrange the

M2-brane densities so that, at each point along the direction in which the charge densities

vary, the Killing spinors are those of the (magnetic) M5 branes and momentum, and are

not affected at all by the presence of (electric) M2 branes. Hence, the physics of the magne-

tube is the mirror of the physics of normal supertubes [2]: for the magnetube the magnetic

(M5 and P) charges control the supersymmetry, and the contributions of the fluctuating

– 2 –



J
H
E
P
0
9
(
2
0
1
4
)
1
1
3

electric charges to the Killing spinor equations cancel; for normal supertubes the (electric)

M2 branes control the supersymmetry and the (magnetic) M5 and momentum charges can

fluctuate arbitrarily, as their contribution to the Killing spinor equations cancel each other.

The original spirit of [1] was to try to bend the infinite magnetube with oscillating

species (whose solution they constructed) into a round magnetube, which would be neutral

and hence give microstate geometries for the Schwarzschild black hole. It is clear that this

would break the supersymmetry of the infinite magnetube, as the resulting configuration

will have mass and no charge. However there is also an indirect and more useful way

to see how supersymmetry is broken: bending an infinite tube in R3 × S1 into a round

one in R4 can be realized by adding a Taub-NUT center to the solution and bringing this

center close to the tube (in the vicinity of the Taub-NUT center the metric is R4). For

normal supertubes this procedure is supersymmetric [3–5], because the Killing spinors of

the Taub-NUT space are compatible with the M2-brane Killing spinors of the supertube.

However, the magnetube has M5 and P Killing spinors, and those are not compatible with

the Taub-NUT ones,1 and hence trying to create a neutral configuration results necessarily

in the breaking of the supersymmetry preserved by the infinite magnetube solution.

Our second result is to find a way to embed M5-P magnetubes into some of the known

supersymmetric solutions and to obtain new classes of BPS solutions with species oscilla-

tion. Using magnetubes and species oscillation to create more BPS solutions may appear

contrary to the original spirit of [1], which proposed these objects as building blocks for

non-extremal microstate geometries. However, this is not so: our result strengthens the ev-

idence for the existence of magnetubes, and proves that there is no obstruction to bending

them, and hence to using them in principle for the purpose originally intended in [1].

Embedding a magnetube into a supersymmetric solution that has M2 Killing spinors

may, at first, seem impossible because the magnetic Killing spinors of the magnetube are not

compatible with the electric M2 Killing spinors preserved by the background. Specifically,

given a Killing spinor, ε, one can define the vector Kµ = ε̄γµε and this is always a Killing

vector that represents the “time”-translation generated by the anti-commutator of two

supersymmetries. In electric BPS solutions this Killing vector is time-like and in magnetic

BPS solutions this Killing vector is null: we therefore use the terminology “time-like” or

“null” supersymmetry to refer to these two distinct and apparently incompatible classes.

One can also verify that the supersymmetry projectors associated with the underlying

magnetic and electric charges are also incompatible because the projectors do not commute

with one another.

On the other hand, when lifted to six dimensions all supersymmetric solutions give rise

to null Killing isometries and so, from this perspective, there should be some possibility

of interpolation between such supersymmetries. Indeed, even in five dimensions there is a

crucial loop-hole in the structure of the electric BPS supersymmetries: the four-dimensional

spatial bases are allowed to be ambi-polar, which implies that while the Killing vector

associated with the supersymmetry is time-like almost everywhere (and particularly at

1One can see this easily by compactifying to type IIA string theory, where the Taub-NUT space becomes

a D6 brane, and the M5 and P become D4 and D0 branes respectively.
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infinity), there are critical surfaces, where the signature of the base space changes from

(+,+,+,+) to (−,−,−,−), and where the Killing vector becomes null. We will show that

the usual time-like supersymmetries of electric charges actually get infinitely boosted and

become magnetic or “null” supersymmetries on the critical surfaces. It is therefore possible

to introduce species oscillation on magnetubes localized right on top of a critical surface,

where the Killing spinors of the background become magnetic and are therefore compatible

to those of the magnetubes, preserving supersymmetry globally.

Besides establishing the existence of magnetubes as fundamental building blocks of

black hole microstates, the new families of supersymmetric solutions that we construct are

interesting in their own right. For example, in four dimensions the uniqueness theorems

are very stringent but in five and six dimensions there are huge families of microstate

geometries with the same asymptotic charges. It is thus interesting to explore the range of

possibilities and our new classes of solution will have electric fields that fluctuate and yet

the metric either does not fluctuate at all, or the fluctuation response is locally suppressed

due to coherent combinations of fluctuating charge densities. This class of solutions is, in

this sense, similar to Q-balls [6, 7]. The latter solutions are supported by time-dependent

matter fluctuations arranged so that the energy-momentum tensor and hence the metric

are both time-independent. The solutions we construct here are not time-dependent but

the fields fluctuate as a function of some S1-coordinate, ψ, and yet the energy-momentum

tensor and metric can be arranged to remain invariant along ψ. More generally, one can

arrange the fields to fluctuate in such a way that the leading-order perturbations to the

energy-momentum tensor near the source remain ψ-independent with the fluctuations only

becoming visible at sub-leading orders.

We will formulate species oscillation in five-dimensions using a T 6 compactification

of M-theory that is essentially described in [8]. There will be one spectator M2 brane

wrapping a fixed T 2 and the species oscillation will take place between four classes of M2-

branes that wrap the remaining T 4 in different ways. One can also reduce this to IIA by

compactifying on an S1 inside the T 2 of the spectator M2, converting it to an F1 string

while the oscillating M2’s become oscillating D2’s. If one T-dualizes on the circle wrapped

by the F1, one obtains a IIB compactification in which the F1 has become momentum

charge and the oscillating species are simply three sets of D3-branes that intersect along

a common circle while wrapping the T 4 in exactly the same manner as the original M2’s.

The importance of the IIB frame is that it is only in this frame that our solutions will

be completely smooth microstate geometries. Our formulation also has the advantage of

having all the oscillating species originating from the same type of branes. It is also possible

to relate some of our magnetube solutions to the smooth IIB frame magnetubes obtained

in [1], by a duality sequence that we will discuss in section 4.2.

In section 2 we discuss the two classes, time-like and null, of supersymmetry and their

relation to electric and magnetic BPS solutions in M-theory. We also show how both types

of supersymmetry can be present in BPS solutions with ambi-polar base metrics. In sec-

tion 3 we discuss the relevant five-dimensional N =2 supergravity theories and their origins

in M-theory. In section 4 we discuss the six-dimensional uplifts and their relation to IIB

supergravity. We also discuss the regularity conditions that make supertubes into smooth
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microstate geometries in six dimensions. Section 5 contains a “template” microstate geom-

etry which is a standard, non-oscillating microstate geometry with two Gibbons-Hawking

(GH) geometric charges and a “supertube” on the critical surface between the GH charges.

In reality this “supertube” is actually a magnetube because it preserves a null supersymme-

try. Indeed, the constructions of supertubes and magnetubes are mathematically parallel

and, following the logic of section 2, one can think of magnetubes as infinitely-boosted

supertubes. In section 5 we also check the regularity and asymptotic structure of this

magnetube solution. In section 6 we introduce species oscillation into the template mag-

netube and give an example in which the metric does not oscillate. We also see that the

metrics of the oscillating solutions are almost identical to those of the template solutions

and are therefore regular. In section 7 we give details of the Green’s functions and explicit

mode functions that are the essential, though technical, part of our solutions with species

oscillation. While our examples involve only very simple microstate geometries, they will

nevertheless provide a good local model of what we expect from species oscillation in a

generic bubbling solution. Finally we make some concluding remarks in section 8.

2 Merging the two types of supersymmetry

In this section we illustrate one of the key ingredients of species oscillation: the fact that

one can mix both time-like and null supersymmetric components within a single, five-

dimensional solution. We will assume some familiarity with the five-dimensional microstate

geometries that have been constructed over the last few years. One can find discussions of

this in, for example, [18–21]. In section 3 we will discuss the general form of five-dimensional

N = 2 supergravity coupled to an arbitrary number of vector multiplets and this can

also serve as something of a review of the relevant supergravity structure but in greater

generality than is needed to understand the merging of the two types of supersymmetry.

Since the latter idea is something rather new, we have chosen to show how it works here

first before diving more deeply into the technicalities of the more complicated supergravity

theories that are needed to implement species oscillation. For newcomers to the microstate

geometry program it might be useful to review section 3 first.

2.1 Time-like and null supersymmetry of M2 and M5 branes

In both eleven-dimensional and five-dimensional supergravity there are two distinct classes

of supersymmetry, which are classified by whether the associated “time” translation invari-

ance is actually time-like or null. More precisely, if ε is the residual supersymmetry then

the vector

ζa ≡ ε̄Γaε , (2.1)

is necessarily a Killing vector, and it can either be time-like or null [9, 10]. It is relatively

easy to see that the vector is dominated by its time component because, in frame indices,

one has ζ0 = ε†ε. To investigate the other components one needs to know a little more

about the structure of the supersymmetry.

One the simplest descriptions of BPS three-charge black holes in five dimensions is

obtained by compactifying eleven-dimensional supergravity on a six-torus, T 6. The charges
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are then carried by three sets of mutually BPS M2-branes and thus the supersymmetries

obey the projection conditions

Γ056 ε = Γ078 ε = Γ09 10 ε = ε , (2.2)

where the five-dimensional space-time is coordinatized by (t = x0, x1, x2, x3, x4) and the

T 6 is coordinatized by (x5, . . . , x10). The microstate geometries corresponding to such

black holes are, by definition, required to have the same supersymmetries, in that they also

satisfy (2.2). One should also note that because Γ01...9 10 = 1, the conditions (2.2) also imply

Γ1234 ε = ε , (2.3)

which constrains the holonomy of the spatial base.

One can now insert the Γ0cd into (2.1) and commute through the Γa. The fact that Γa,

for a 6= 0, anti-commutes with at least one of the Γ0cd means that ζa = 0 for a 6= 0 and so the

Killing vector for such black holes and their microstate geometries is necessarily time-like.

The BPS three-charge black holes and their microstate geometries are dominated by their

electric charge structure but can carry non-zero, “dipolar” magnetic charge distributions

whose fields fall off too fast to give any net charge at infinity.

There is a simple magnetic dual of this picture in which the M2 branes are replaced

by M5 branes. We will take the M5 branes to have a common direction, ψ = x4, which,

for the present, will be flat and either infinite or a trivially fibered S1. The M5-brane

supersymmetries obey the projection conditions

Γ0ψ5678 ε = Γ0ψ569 10 ε = Γ0ψ789 10 ε = ε , (2.4)

and these also imply the ψ-momentum projection condition:

Γ0ψ ε = ε . (2.5)

Again one can insert the Γ0ψ into (2.1) and commute through the Γa and conclude that

ζa = 0 for a 6= 0, ψ. Moreover (2.5) implies ζ0 = ζψ and so the Killing vector is necessarily

null. Thus these systems of M2 branes and M5 branes are exemplars of the two classes of

supersymmetric systems in five and eleven dimensions.

For our purposes, it is important to note that, just as the BPS three-charge black holes

and microstate geometries can be given non-zero, “dipolar” magnetic charge distributions

whose fields fall off too fast to give any net charge at infinity, the M5 brane system can be

given non-zero, “dipolar” electric charge distributions whose fields fall off too fast to give

any net charge at infinity. In this way one can make BPS magnetubes that have no net elec-

tric charge and this observation will lie at the heart of supersymmetric species oscillation.

2.2 The “classic” solutions with time-like supersymmetry

So far we have considered rather simple classes of BPS configurations and, as we will see,

more complex BPS backgrounds can lead to mixtures of both types of supersymmetry.
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Specifically we want to consider backgrounds that have become the standard fare for the

construction of microstate geometries.2 The eleven-dimensional metric has the form:

ds211 = −(Z0Z1Z2)
− 2

3 (dt+ k)2 + (Z0Z1Z2)
1
3 ds24 + (Z0Z2Z

−2
1 )

1
3 (dx25 + dx26)

+ (Z0Z1Z
−2
2 )

1
3 (dx27 + dx28) + (Z1Z2Z

−2
0 )

1
3 (dx29 + dx210) , (2.6)

where the four-dimensional space-time metric has the standard Gibbons-Hawking (GH)

form:

ds24 = V −1 (dψ +A)2 + V d~y · d~y , (2.7)

with
~∇× ~A = ~∇V . (2.8)

The eleven-dimensional Maxwell three-form potential is given by

C(3) = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 + A(0) ∧ dx9 ∧ dx10 , (2.9)

with the five-dimensional Maxwell fields, A(I), given by:

A(I) = −Z−1I (dt+ k) +

(
KI

V

)
(dψ +A) + ~ξ(I) · d~y , (2.10)

with ~∇× ~ξ(I) = −~∇KI .

The whole solution is then specified by eight harmonic functions, V , KI , LI and M ,

on R3, and these are typically taken to have the form:

V = ε0 +
N∑
j=1

qj
rj
, KI = kI0 +

N∑
j=1

kIj
rj
, (2.11)

LI = `I0 +
N∑
j=1

`Ij
rj
, M = m0 +

N∑
j=1

mj

rj
, (2.12)

where rj ≡ |~y − ~y(j)|.
The electrostatic potentials and warp factor functions, ZI , are given by

ZI =
1

2
CIJK V

−1KJKK + LI , (2.13)

where CIJK ≡ |εIJK |. The angular-momentum vector, k, decomposes into:

k = µ (dψ +A) + ω , (2.14)

where:

µ =
1

6V 2
CIJK K

IKJKK +
1

2V
KILI + M . (2.15)

and where ω is the solution to:

~∇× ~ω = V ~∇M − M~∇V +
1

2
(KI ~∇LI − LI ~∇KI) . (2.16)

2For later convenience we are going to label the species of M2 branes and the corresponding fields by

0, 1, 2 and not use the more usual labeling, 1, 2, 3. We have therefore taken the standard description and

replaced the label 3 by 0 everywhere.
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2.3 Merging the two classes of supersymmetry

One can uplift the five-dimensional supergravity solutions to six dimensions by using one of

the vector fields to make a KK fiber. We will discuss this extensively in section 5 but here

we simply want to note that in the six-dimensional uplift there is only one kind of supersym-

metry [22, 23]: the null supersymmetry with ζµζµ = 0. The two types of supersymmetry

in five dimensions must therefore emerge from the details of the compactification to five

dimensions. In this sense one might naturally expect to unify the two classes of supersym-

metry, and we will now elucidate how this can be seen directly from the five-dimensional

perspective.

As have been extensively noted elsewhere [17–21] the metric on the four-dimensional

base is allowed to be ambi-polar, that is, it is allowed to change signature from (+,+,+,+)

to (−,−,−,−). In spite of this, the five-dimensional and eleven-dimensional metrics are

smooth and Lorentzian. In particular, this means that V is allowed to change sign and

the surfaces where V = 0 are called critical surfaces. One can make a careful examination

of the metric (2.6) and Maxwell fields (2.10) and show that the apparently singular terms

involving negative powers of V actually cancel out on critical surfaces, leaving a smooth

background. It is also important to note that the functions ZIV must satisfy

ZI V > 0 (2.17)

everywhere in order for the metric (2.6) to be real and Lorentizian.

This is not to say that nothing is happening at the critical surfaces. Observe the the

norm of the Killing vector, ζ = ∂
∂t , is simply

ζµ ζµ = −(Z0Z1Z2)
− 2

3 = −((Z0V )(Z1V )(Z2V ))−
2
3 V 2 . (2.18)

Since the ZIV are globally positive, this means that Kµ is time-like except on critical

surfaces, where it becomes null. Thus the supersymmetries are time-like almost everywhere,

except on critical surfaces where they momentarily become null.

It is therefore possible, in principle, to have both types of supersymmetry within

one class of solutions. Indeed, black-hole microstate geometries have the same time-like

supersymmetries at infinity as a black hole and generically have critical surfaces in the

interior of the solution where the supersymmetries become null. It is instructive to see how

this comes about in detail.

Introduce the obvious frames for the five-dimensional metric:

e0 ≡ Z−1 (dt+ k) , e1 ≡ (ZV )
1
2 V −1 (dψ +A) , ea+1 ≡ (ZV )

1
2 dya , (2.19)

where

Z ≡ V −1 ((Z0V )(Z1V )(Z2V ))
1
3 . (2.20)

Note that we have chosen to write these quantities in terms of the positive functions, ZIV ,

so that the fractional powers are unambiguous and have no branch cuts. Also observe that

the frames e0 and e1 are, respectively, degenerate or singular on critical surfaces.
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Define null frames:

e+ ≡ V (e0 + e1) , e− ≡ V −1 (−e0 + e1) (2.21)

⇔ e0 ≡ 1

2
(V −1 e+ − V e−) , e1 ≡ 1

2
(V −1 e+ + V e−) . (2.22)

and thus

ds25 = −(e0)2 +
4∑
j=1

(ej)2 = e+ e− +
3∑
j=a

(ea+1)2 . (2.23)

It is also convenient to introduce the quantity

Q ≡ Z0Z1Z2V − µ2 V 2 (2.24)

and recall [18–20] that the general expression for Q can be written in terms of the E7

invariant that determines the four-dimensional horizon area for black-hole solutions:

Q = −M2 V 2 − 1

3
M CIJKK

I KJ KK − M V KI LI −
1

4
(KILI)

2

+
1

6
V CIJKLILJLK +

1

4
CIJKCIMNLJLKK

MKN . (2.25)

In particular, it follows from (2.25) that Q is smooth across the critical (V = 0) surfaces.

The whole point is that while the frames e0 and e1 are singular on the critical surfaces,

e+ and e− are smooth on these surfaces. To see this, note that

e+ = (ZV )−1V 2(dt+ ω) +
(

(ZV )−1 (µV 2) + (ZV )
1
2
)

(dψ +A) , (2.26)

e− = −(ZV )−1(dt+ ω) + (ZV )−1
(
V −2 (ZV )

3
2 − µ

)
(dψ +A) . (2.27)

It follows from (2.13) and (2.15) that ZV and µV 2 are well behaved on critical surfaces

and thus e+ is manifestly well behaved. Now observe that

Q =
(
V −2 (ZV )

3
2 − µ

) (
(ZV )

3
2 + µV 2

)
(2.28)

and that as V → 0, the second factor is finite. Since Q is finite as V → 0, it follows that

the first factor in (2.28) must be similarly finite and hence e− is finite on critical surfaces.

More explicitly, define

K = (K0K1K2)
1
3 (2.29)

and note that global positivity of ZIV implies that K0K1K2 > 0 on critical surfaces and

so K is real and smooth across these surfaces. As V → 0, one finds

e+ → 2K (dψ +A) , e− → −K−2(dt+ ω) +
1

2
K−5Q (dψ +A) , (2.30)

which are clearly regular as V → 0.

Finally, define new canonical Lorentzian frames via

ê0 ≡ 1

2
(e+ − e−) =

1

2
(V + V −1) e0 +

1

2
(V − V −1) e1 , (2.31)
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ê1 ≡ 1

2
(e+ + e−) =

1

2
(V − V −1) e0 +

1

2
(V + V −1) e1 . (2.32)

These are also regular as one crosses the V = 0 surface but more importantly, they man-

ifestly represent a Lorentz boost of the original frames (2.19) with boost parameter, χ,

determined by

coshχ =
1

2

(
|V |+ |V |−1

)
, sinhχ =

1

2

(
|V | − |V |−1

)
. (2.33)

Thus one can see that the original frames are singular at V = 0 precisely because they are

infinitely boosted relative to a smooth set of frames. This is consistent with the fact that

the Killing vector, ζµ, becomes momentarily null at V = 0.

Now recall the identity

ε† ε = ε̄Γ0ε = ζ0 = Z−1 = (ZV )−1 V , (2.34)

where we are using frame indices based on (2.19). This implies that in this singular frame

basis the magnitude of ε vanishes as O(|V |1/2) when V → 0. Passing to the non-singular

frames (2.32) requires a Lorentz boost that acts on ε:

ε → ε̂ = exp

(
1

2
χΓ01

)
ε =

1

2
|V |1/2

(
1 + Γ01

)
ε +

1

2
|V |−1/2

(
1− Γ01

)
ε . (2.35)

This means that on the V = 0 surface only the components satisfying

Γ01 ε = −ε , (2.36)

remain finite. Thus the Killing spinor is time-like everywhere except where V = 0, where

it becomes momentarily null.

We therefore conclude that if V 6= 0 then the supersymmetry is precisely that of the

three-charge M2-brane system, but on the V = 0 surfaces this supersymmetry becomes

compatible with the supersymmetry of M5 branes wrapped on the ψ-circle and with mo-

mentum charge on that circle.

2.4 A degenerate limit and a class of null BPS solutions

The fact that, despite appearances, the BPS solutions described in section 2.2 are regular

across V = 0 surfaces enables one to take this somewhat further and find classes of BPS

solutions by taking V ≡ 0 everywhere. As one might anticipate from the discussion above,

these solutions have null supersymmetry and are sourced primarily by M5 branes and

momentum.

To take this limit one can rescale V → λV everywhere in the solutions of section 2.2

and take λ to zero. The metric (2.6) simplifies to

ds211 = −2K−1 dψ
(
dt+ ω − 1

2
K−3 Q̂ dψ

)
+ K2 d~y · d~y +

(
(K1)2

K0K2

) 1
3

(dx25 + dx26)

+

(
(K2)2

K0K1

) 1
3

(dx27 + dx28) +

(
(K0)2

K1K2

) 1
3

(dx29 + dx210) , (2.37)
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where K is defined in (2.29) and Q̂ is simply Q with V ≡ 0:

Q̂ = −2K3M − 1

4
(KILI)

2 +
1

4
CIJKCIMNLJLKK

MKN . (2.38)

The angular momentum vector, ω, is now determined by the simpler equation

~∇× ~ω =
1

2
(KI ~∇LI − LI ~∇KI) . (2.39)

The electromagnetic fields (2.10) reduce to the purely magnetic forms:

A(0) =
1

K1K2

(
K0 L0 −K1 L1 −K2 L2

)
dψ + ~ξ(0) · d~y ,

A(1) =
1

K2K3

(
K1 L1 −K2 L2 −K0 L0

)
dψ + ~ξ(1) · d~y ,

A(2) =
1

K1K3

(
K2 L2 −K1 L1 −K0 L0

)
dψ + ~ξ(2) · d~y . (2.40)

This is the solution that corresponds to the infinite magnetube and, as expected, the Killing

vector, ζ = ∂
∂t , is manifestly null everywhere in the metric (2.37).

3 Supergravity coupled to four vector multiplets

3.1 The supergravity action

Species oscillation requires the addition of extra vector multiplets to the N =2 supergravity

theory employed in section 2 and we will therefore summarize the relevant aspects of these

theories. Our conventions and normalizations will be those of [24, 25].

The action of N = 2, five-dimensional supergravity coupled to N U(1) gauge fields is

given by:

S =
1

2κ5

∫ √
−g d5x

(
R− 1

2
QIJF

I
µνF

Jµν −QIJ∂µXI∂µXJ − 1

24
CIJKF

I
µνF

J
ρσA

K
λ ε̄

µνρσλ

)
,

(3.1)

with I, J = 0, . . . , N . The extra photon lies in the gravity multiplet and so there are only

N independent scalars. It is, however, convenient to parametrize them by N + 1 scalars

XI , satisfying the constraint

1

6
CIJKX

I XJ XK = 1 . (3.2)

Following standard conventions, introduce

XI ≡
1

6
CIJKX

J XK . (3.3)

The scalar kinetic term can then be written as

QIJ =
9

2
XI XJ −

1

2
CIJKX

K . (3.4)

The Chern-Simons structure constants are required to satisfy the constraint

CIJK CJ ′(LM CPQ)K′ δ
JJ ′ δKK

′
=

4

3
δI(LCMPQ) . (3.5)
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It is also convenient to define

CIJK = δII
′
δJJ

′
δKK

′
CI′J ′K′ . (3.6)

Using the constraint (3.5), one can show that the inverse, QIJ , of QIJ is given by:

QIJ = 2XI XJ − 6CIJKXK , (3.7)

and one can show that
1

6
CIJKXI XJ XK =

1

27
. (3.8)

We are simply going to follow [8, 28] and consider eleven-dimensional supergravity

reduced on a T 6. The Maxwell fields descend from the tensor gauge field, C(3), via harmonic

2-forms on T 6. The structure constants CIJK are then simply given by the intersection

form of the dual homology cycles and the XI are moduli of the T 6.

3.2 The supersymmetry conditions

We start with the most general stationary five-dimensional metric:

ds25 = −Z−2 (dt+ k)2 + Z ds24 , (3.9)

where Z is simply a convenient warp factor. Supersymmetry implies, via the condi-

tion (2.3), that the metric ds24 on the spatial base manifold, B, must be hyper-Kähler.

One now defines N + 1 independent functions, ZI by

ZI = 3Z XI , (3.10)

and then (3.8) implies

Z =

(
1

6
CIJKZI ZJ ZK

) 1
3

. (3.11)

It is more convenient to think of the solution as parametrized by the N + 1 independent

scalars, ZI , and that the warp factor is determined by (3.11).

Supersymmetry requires that the Maxwell potentials all have the form

A(I) = −1

2
Z−3CIJK ZJ ZK(dt+ k) + B(I) , (3.12)

where B(I) are purely magnetic components on the spatial base manifold, B. One defines

the magnetic field strengths accordingly:

Θ(I) = dB(I) . (3.13)

Having made all these definitions, the BPS equations take on their canonical linear

form [29]:

Θ(I) = ?4 Θ(I) , (3.14)

∇2
(4)ZI =

1

2
CIJK ?4 Θ(J) ∧Θ(K) , (3.15)
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dk + ?4 dk = ZI Θ(I) , (3.16)

where ?4 is the Hodge dual in the four-dimensional base metric ds24, and ∇2
(4) is the (four-

dimensional) Laplacian of this metric.

We are, once again, going to take the metric on B to be a GH metric (2.7) and so we will

also decompose the vector k according to (2.14). The GH metric and the magnetic fluxes

will also be as before and thus we will take V and KI to have the form (2.11). However, we

will allow the rest of the solution (ZI , µ and ~ω) to depend upon all four variables, (ψ, ~y).

The ZI ’s will still have the form (2.13) but now the LI are general harmonic functions on

the base B:

∇2
(4)LI = 0 . (3.17)

The BPS solutions in these circumstances have been discussed in [16, 30]. The last BPS

equation, (3.16), can be written as

(µ~DV − V ~Dµ) + ~D × ~ω + V ∂ψ~ω = −V
3∑
I=1

ZI ~∇
(
V −1KI

)
, (3.18)

where
~D ≡ ~∇ − ~A∂ψ . (3.19)

This BPS equation, (3.16), has a gauge invariance: k → k + df which translates to

µ→ µ + ∂ψf , ~ω → ~ω + ~Df . (3.20)

It is simplest to use a Lorentz gauge-fixing condition, d ?4 k = 0, which reduces to

V 2 ∂ψµ + ~D · ~ω = 0 . (3.21)

The four-dimensional Laplacian can be written as

∇2
(4)F = V −1

[
V 2 ∂2ψF + ~D · ~DF

]
. (3.22)

If one takes the covariant divergence of (3.18) (using ~D) and uses the Lorentz gauge choice,

one obtains

V
2 ∇2

(4)µ = ~D ·
(
V

3∑
I=1

ZI ~D
(
V −1KI

))
. (3.23)

This equation is still solved by

µ = V −2
(

1

6
CIJKZI ZJ ZK

)
+

1

2

N+1∑
I=1

V −1KILI + M , (3.24)

where, once again, M is a harmonic function in four dimensions. One can then use (3.24)

in (3.18) to simplify the right-hand side to obtain

~D × ~ω + V ∂ψ~ω = V ~DM −M ~DV +
1

2

N+1∑
I=1

(
KI ~DLI − LI ~DKI

)
. (3.25)

One can verify that the covariant divergence (using ~D) generates an identity that is trivially

satisfied as a consequence of (2.8), (3.21), (3.24) and

∇2
(4)LI = ∇2

(4)M = 0 . (3.26)
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3.3 Adding species on the T 4

From the eleven-dimensional perspective, we are going to add extra Maxwell fields coming

from three-form potentials with two legs on the T 4 defined by (x5, x6, x7, x8) but leave the

fields on the other T 2, defined by (x9, x10) unchanged and supporting only one Maxwell

field, which we have labelled as A(0). Thus the only non-zero components of intersection

product, CIJK , are

C0JK = ĈJK = ĈKJ , (3.27)

for some matrix, ĈJK = ĈJK . One can easily see that (3.5) implies that, as matrices,

Ĉ3 = Ĉ and so, assuming that Ĉ is invertible, we have

ĈIJ ĈKL δ
JK = δIL . (3.28)

The four-torus, T 4, has six independent harmonic forms and by generalizing the

Ansatz (2.9) these forms can give rise to six vector fields in five dimensions. However,

some of these vector fields belong to N = 2 gravitino multiplets and do not lie in an

N = 2 supergravity theory coupled to vector multiplets. Indeed, the vector fields in such

an N = 2 supergravity theory are associated with forms in H(1,1)(T 4,C) [8, 26, 27] for a

suitably chosen complex structure. We will take this complex structure to be defined by

w1 = x5 + ix6 , w2 = x7 + ix8 , w0 = x9 + ix10 . (3.29)

Then the forms

Ω1 ≡
i

2
dw1 ∧ dw̄1 = dx5 ∧ dx6 , Ω2 ≡

i

2
dw2 ∧ dw̄2 = dx7 ∧ dx8 , (3.30)

give rise to the other two vector fields, (apart from A(0)), in (2.9). There are two more

forms in H(1,1)(T 4,C):

Ω3 ≡
1

2
√

2
(dw1 ∧ dw̄2 + dw̄1 ∧ dw2) =

1√
2

(dx5 ∧ dx7 + dx6 ∧ dx8) ,

Ω4 ≡
i

2
√

2
(dw1 ∧ dw̄2 − dw̄1 ∧ dw2) =

1√
2

(dx5 ∧ dx8 − dx6 ∧ dx7) . (3.31)

This leads to an intersection matrix

ĈIJ =


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

 , (3.32)

which satisfies (3.28). Indeed the normalizations in (3.31) are set so as to satisfy (3.5)

and (3.28) and yield canonical and uniform normalization of the Maxwell fields.

The eleven-dimensional three-form potential has therefore the form:

C(3) = A(0) ∧ dx9 ∧ dx10 +

4∑
J=1

A(J) ∧ ΩJ . (3.33)
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This is a very modest generalization of the class of theories considered in [8, 28]. Indeed, we

can easily truncate down to A(0), A(1), A(2), A(4) by imposing invariance under the discrete

inversion (t, ψ, ~y, x5, x7, x9)→ −(t, ψ, ~y, x5, x7, x9).

Observe that (3.11) now implies that the space-time metric warp factor, Z, is given by

Z3 =
1

2
Z0

(
ĈIJZI ZJ

)
= Z0

(
Z1 Z2 −

1

2
(Z2

3 + Z2
4 )

)
. (3.34)

It is also convenient to define the quadratic combination:

P ≡ ĈIJZI ZJ =

(
Z1 Z2 −

1

2
(Z2

3 + Z2
4 )

)
. (3.35)

The eleven-dimensional metric in this truncation is given by

ds211 = −Z−2(dt+ k)2 + Z ds24 + Z

(
Z−10 |dw0|2 + P−1 Z2 |dw1|2 + P−1 Z1 |dw2|2

+
i√
2
P−1 Z3 (dw1dw̄2 − dw2dw̄1)−

1√
2
P−1 Z4 (dw1dw̄2 + dw2dw̄1)

)
. (3.36)

4 Solutions in six and ten dimensions

We are ultimately seeking microstate geometries with species oscillation. This is most

easily achieved by using charge density modes on supertubes and for such geometries to be

smooth we must go to six-dimensional supergravity. Indeed, one must choose one of the

vector fields to become the geometric KK fiber and the remaining N vector fields become

encoded in one self-dual and N − 1 anti-self-dual tensor multiplets in the six-dimensional

theory. We will not need all the details in six dimensions because the smooth Maxwell fields

in five dimensions will become smooth tensor gauge fields in six dimensions. The only detail

we have to worry about is the singular Maxwell field coming from the supertube source in

five dimensions and how this becomes smooth geometry in six dimensions.

4.1 Lifting to six dimensions

The six-dimensional metric is

ds26 = 2H−1(dv + β)

(
du+ k − 1

2
Z0 (dv + β)

)
− H ds24 (4.1)

= (Z0H)−1(du+ k)2 − Z0H
−1(dv + β − Z−10 (du+ k)

)2 − H ds24 . (4.2)

where the four-dimensional base is exactly that of the five-dimensional theory. The func-

tions Z0 and K0 define the geometric KK vector field and so the vector potential, β, in (4.1)

is

β ≡ K0

V
(dψ + A) + ~ξ · d~y , (4.3)

where
~∇× ~ξ = −~∇K0 . (4.4)
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The six-dimensional warp factor, H, is defined by the quadratic in (3.35)

H ≡
√
P =

√
Z1 Z2 −

1

2
(Z2

3 + Z2
4 ) . (4.5)

Part of the purpose of separating the T 4 from the T 2 in the M-theory description was

to cleanly separate the fields that will be involved in species oscillation from the fields

that would be involved in the KK uplift to six dimensions. The fields coming from the T 4

in the M-theory description will thus be related to fields coming from the T 4 in the IIB

compactification that leads to the six-dimensional description.

A supertube at ~y = 0 corresponds to having sources for K0 , LI , I = 1, . . . , N and M

of the form

K0 ∼ k

r
, LI ∼

QI
r
, M ∼ m0

r
. (4.6)

as r ≡ |~y| → 0 but with all other functions being regular at r = 0. The supertube thus runs

along the ψ fiber and is smeared along v. The parameter k is the magnetic dipole charge

of the supertube, the QI define its electric charges and m0 is its angular momentum along

ψ. The regularity of the six-dimensional metric then follows from the fact even though

H ∼ O(r−1), the metric can be desingularized by a change of radial variable and the KK

fibration makes the metric transverse to the ψ-fiber into (an orbifold of) R4 [11–13]. The

details of the orbifold depend upon the magnetic and geometric charges. We will review

an example below.

Supertube regularity is not automatic: there are still some conditions upon the location

and charges of the supertube. Specifically, one must ensure a) that the coefficient of

(dψ+A)2 in the metric remains finite as r → 0 and b) that there are no Dirac strings in ω

originating from r = 0. The latter condition can be written in various ways; a convenient

form found in [11] is

lim
r→0

r
[
V µ − Z0K

0
]

= 0 . (4.7)

Given this condition, the finiteness of the coefficient of (dψ + A)2 in the metric is then

equivalent to

lim
r→0

r2Q = 0 , (4.8)

where Q is defined in (2.24) and expressed in simplified form in (2.25).

The two conditions, (4.7) and (4.8), guarantee that a supertube smoothly caps off the

spatial geometry, up to orbifold singularities [11–13].

4.2 The ten-dimensional IIB configuration

The six-dimensional KK uplift above is most simply related to a T 4 compactification of

IIB supergravity. It is relatively easy to see what the corresponding brane configuration is

by compactifying and T-dualizing the M2 and M5 configurations described in section 3.

If one compactifies on x10 then the M2-branes of species “0” become F1-strings wrap-

ping x9 and all the other M2-branes become D2-branes. The M5-dipole charge of species

“0” becomes an NS5-dipole charge wrapping ψ, x5, . . . , x8, where ψ is the GH fiber, while

all the other M5-dipole charges become D4-dipole charges. Performing the T-duality on
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x9 converts the F1-strings and NS5-branes to momentum and KK monopole charges re-

spectively, and all the D2-charges become D3-charges intersecting on a common x9 and

wrapping the T 4 defined by (x5, . . . , x8) in exactly the same manner as the original M2-

charges. Similarly, the D4-dipole charges become D3-dipole charges intersecting on the

common ψ-circle and wrapping the T 4 defined by (x5, . . . , x8) in exactly the same manner

as the original M5 dipole charges.

Thus we obtain a IIB configuration in which all the M2 species have become either D3-

branes or momentum. One can perform two more T-dualities on the T 4, for example along

(x5, x6), thereby converting two of the sets of D3-charges into D1- and D5-charges. This

T-duality changes the other D3-charge species into D3-charges with different orientation,

and introduces additional NS-NS B-fields on the T 4. Thus one can obtain the canonical

D1-D5-P system decorated with additional D3-charges. This last T-duality does not affect

the space-time metric and its regularity.

There is another way to dualize our configurations to magnetubes with D1 and D5

charges. If one starts from a magnetube whose D1 and D5 charges oscillate into F1 and

NS5 charges [1], there is a duality sequence, given by equation (3.1) in [8], that takes this

solution into a solution of the type we construct here but where the species corresponding

to A3 and Z3 is absent. Hence, if one applies the inverse of this duality sequence on a

solution with A3 = 0 = Z3 one obtains the magnetube of [1]. If one applies the inverse

duality sequence to a more general solution, where the third species is also present, the

resulting magnetube will have two extra charges, corresponding to D3 branes with two legs

along the T 4 and one along the common D1-D5 circle.

5 The non-oscillating template

We now describe in detail a simple example of a smooth magnetube geometry, which we

will construct by putting a single supertube (with no species oscillation) on the V = 0

surface in the simplest ambipolar Gibbons-Hawking space. The discussion here follows

closely previous work on supertubes in such backgrounds, but there is some novelty in

dealing with putting the supertube on the V = 0 surface. Our aim in this section is to

show that the conditions for smoothness of the supertube are unchanged by placing it

on the V = 0 surface, and hence translate directly in the conditions for smoothness of

a magnetube. The non-oscillating solution provides a simple context to deal with these

issues and set up the framework before we move on to introduce species oscillation. We will

see later that for the solutions with species oscillation we can choose the charge densities

such that the angular momentum density remains constant, and then the structure of the

metric in the oscillating solutio n is almost identical to that of the non-oscillating solution.

5.1 AdS3 × S2

We start from the simplest solution with a non-trivial critical surface, a two centered

metric. We first review the background solution before we introduce the supertube; we

consider a particularly simple example in which the five-dimensional geometry is simply
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AdS3×S2 [14–16]. This solution is axisymmetric and so it is more convenient to write the

four-dimensional base in terms of cylindrical polars on the flat R3 slices:

ds24 = V −1
(
dψ +A)2 + V (dρ2 + dz2 + ρ2dφ2) . (5.1)

For simplicity we take the two GH charges to be equal and opposite, so

V =
q

r+
− q

r−
, (5.2)

where

r± ≡
√
ρ2 + (z ∓ a)2 (5.3)

for some parameter a. In this simple two-centered solution, the solution will have the

classic form of section 2.2 with two vector multiplets, except we will use the labeling

{I, J,K} = {0, 1, 2} instead of the more common usage ({I, J,K} = {1, 2, 3}).
We initially take the magnetic flux functions, KI , to have the simple form

K0 = K1 = K2 = K =
k

r+
+

k

r−
, (5.4)

where r ≡
√
ρ2 + z2. The electric source functions, LI , are set to

L0 = L1 = L2 = L = −k
2

q

(
1

r+
− 1

r−

)
(5.5)

The coefficients of the r−1± terms in the LI have been fixed by the usual regularity condition

for bubbled geometries in five-dimensions: ZI should be finite at r± = 0.

The harmonic function M in the angular momentum is

M = m∞ +
k3

2 q2

(
1

r+
+

1

r−

)
. (5.6)

Again the coefficients of the r−1± terms in M have been fixed by the usual five-dimensional

regularity conditions for bubbled geometries: µ must be finite at r± = 0. The parameter

m∞ is introduced to ensure smoothness and lack of Dirac strings. Finally, the 3-dimensional

angular-momentum vector, ω, is determined using (2.16):

ω = −2 k3

q a

(
ρ2 + (z − a+ r+)(z + a− r−)

r+r−

)
dφ . (5.7)

To make sure that there are no CTC’s near r± = 0 and to remove Dirac strings, we

must impose the five-dimensional bubble equations: µ(r± = 0) = 0. For this two-centered

solution this requires only that

m∞ = −2 k3

a q2
. (5.8)

To demonstrate that the resulting five-dimensional ambi-polar geometry is just AdS3×
S2, we introduce bipolar coordinates centered on r± = 0:

z = a cosh 2ξ cos θ , ρ = a sinh 2ξ sin θ , ξ ≥ 0 , 0 ≤ θ ≤ π . (5.9)
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In particular, one has

r± = a (cosh 2ξ ∓ cos θ) . (5.10)

Rescaling and shifting the remaining variables according to

τ ≡ a q

8 k3
u , ϕ1 ≡

1

2 q
ψ − a q

8 k3
u , ϕ2 ≡ φ−

1

2 q
ψ +

a q

4 k3
u , (5.11)

the five-dimensional metric then takes the standard global AdS3 × S2 form:

ds25 ≡ R2
1

[
− cosh2 ξ dτ2 + dξ2 + sinh2 ξ dϕ2

1

]
+ R2

2

[
dθ2 + sin2 θ dϕ2

2

]
, (5.12)

with

R1 = 2R2 = 4k . (5.13)

One can further check that the v-fiber in (4.2) adds a Hopf fiber to the S2 making the

metric that of global AdS3 × (S3/Z2k):

ds26 = R2
1

[
cosh2 ξdτ2 − dξ2 − sinh2 ξdϕ2

1

]
−R2

2

[
dθ2 + sin2 θdϕ2

2 +

(
1

2k
dv − cos θdϕ2

)2]
.

(5.14)

One should note that an observer whose world-line has tangent, ∂
∂u , i.e. the observer

is fixed in the GH spatial base, follows a curve with

dϕ1

dτ
= 1 ,

dϕ2

dτ
= 2 , (5.15)

which means that the proper 4-velocity has norm: −4k2 cos2 θ. Thus this GH-stationary

observer follows a time-like curve everywhere except on the equator (θ = π
2 ) of the S2 where

the observer’s trajectory becomes null. This illustrates the general discussion in section 2.3:

in patches that are smooth across the critical surface V = 0, the GH-stationary observers

are being boosted from time-like to null trajectories as V → 0.

5.2 Adding the supertube/magnetube

We will now add a supertube sitting on the V = 0 surface at ρ = z = 0 to the five-

dimensional geometry (5.12). From the discussion above we see that this corresponds to

putting a supertube in AdS3 × (S3/Z2k) so that it spirals around the equator of the S2

while sitting a fixed point (ξ = 0) in AdS3.

Technically, since the supertube is located on top of a V = 0 surface, it is a magne-

tube. However, we will continue to describe it as a supertube because the mathematical

construction and regularity conditions remain unchanged.

We introduce the supertube by taking the magnetic flux functions KI to have the

simple form

K0 =
k

r+
+

k

r−
+

α

r
, K1 = K2 =

k

r+
+

k

r−
, (5.16)

where r ≡
√
ρ2 + z2. The electric source functions LI are set to

L0 = −k
2

q

(
1

r+
− 1

r−

)
, LI = −k

2

q

(
1

r+
− 1

r−

)
+

βI
r
, I = 1, 2 . (5.17)
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The coefficients of the r−1± terms in the LI are as before. The sources at r = 0 in K0,

L1 and L2 correspond to those of a supertube with dipole charge α and electric charges

β1 and β2. We want to demonstrate that for appropriate choices of these parameters the

addition of this supertube leads to a smooth six-dimensional geometry that asymptotically

approaches an AdS3 × (S3/Z2k+α) geometry.

The harmonic function M in the angular momentum is now

M = m∞ +
k3

2 q2

(
1

r+
+

1

r−

)
+

m0

r
. (5.18)

Again the coefficients of the r−1± terms in M are as before. The parameter m0 represents

the angular momentum of the supertube while the parameter m∞ is introduced to ensure

smoothness and lack of Dirac strings.

Finally, the 3-dimensional angular-momentum vector, ω, is determined using (2.16)

and we now find

ω = −
[

2k3

qa

(
ρ2 + (z − a+ r+)(z + a− r−)

r+r−

)
(5.19)

+
1

a

(
m0q +

αk2

2q

)(
ρ2 + (z − a+ r+)(z − r)

rr+
+
ρ2 + (z + r)(z + a− r−)

rr−

)]
dφ .

5.3 Regularity near sources

To make sure that there are no CTCs near r± = 0 and to remove Dirac strings, we must

impose the five-dimensional bubble equations: µ(r± = 0) = 0. This now imposes two

constraints:

β1 = −β2 = −β , (5.20)

and

m∞ +
m0

a
+

2 k3

a q2
+

αk2

2 a q2
= 0 . (5.21)

The first condition is crucial for the existence of the magnetube. The fact that the M2

charges are equal and opposite ensures their cancellation in the Killing spinor equations,

and therefore the fact that the Killing spinors of the magnetube are those of M5 branes

and momentum. The remaining parameters of the solution are α, β and m0.

With the magnetube in place, we must now also consider the regularity conditions

at r = 0. The condition that there are no Dirac strings at r = 0 is given by (4.7).

Alternatively, it can also be read off from (2.16) by simply making sure that ~ω has no

sources of the form a constant multiple of ~∇(1r ). Using the fact that V and L3 vanish at

r = 0, one can easily see that this condition requires that

lim
r→0

r (K1 L1 +K2 L2) = 0 . (5.22)

Since K1 = K2, the absence of Dirac strings at the magnetube is already guaranteed

by (5.20). This is, of course, to be expected since a Dirac string must have two ends and

we have eliminated them everywhere else.
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The other supertube regularity condition (4.8) is easily computed from (2.25) partic-

ularly since V = 0 and L3 = 0 at r = 0. One finds that this condition is satisfied if

m0 = −β
2

2α
, (5.23)

which is the standard relationship between the charges and angular momentum of a super-

tube. The free parameters are then just the charges α, β, as is standard for a supertube.

5.4 Geometry of the regular magnetube

For the later discussion of the oscillating solution, it is useful to summarize here the func-

tions appearing in the six-dimensional metric (4.1) for the non-oscilating magnetube solu-

tion and to note explicitly where the parameter β enters into the solution. The KK electric

function Z0 is independent of the magnetube parameters,

Z0 =
K1K2

V
+ L0 =

K2

V
+ L, (5.24)

where K, L are given by (5.4) and (5.5). The other electric functions are

Z1,2 = Z0 +
α

r

K

V
± β

r
, (5.25)

so the warp factor H is

H2 =

(
Z0 +

α

r

K

V

)2

− β2

r2
. (5.26)

As noted above, (5.20) implies a cancellation that makes µ depend upon β only through

M and the condition (5.23):

µ =
K3

V 2
+
α

r

K2

V 2
− 3k2

2q2
K − k2

2q2
α

r
+M, (5.27)

where M is given by (5.18) with the parameters fixed by (5.21) and (5.23). Thus, the

electric charge parameter, β, only enters the metric (4.1) directly through the warp factor,

H, and appears indirectly in the one-form k through the dependence of m0 on β from (5.23).

Of course, β will also appear directly in the gauge fields A(1) and A(2).

5.5 AdS3 × S3 asymptotics at infinity

One can use the spherical bipolar coordinates (5.9) to study the asymptotic form of our

solution. The warp factor H will behave as

H ≈ k(2k + α)

qa cos θ
+O(e−4ξ). (5.28)

To obtain the leading asymptotics, we only need to consider the first term. As ξ →∞, the

leading-order behaviour of the metric is

ds26 ∼ 8k(2k + α)

[
a2q2

32k2 (2k + α)∆
e2ξ du2 − dξ2 +

∆

8k2 (2k + α)
e2ξ dϕ̂2

1

]
− 2k(2k + α)

[
dθ2 + sin2 θ dϕ̂2

2 +

(
1

2k + α
dv − cos θ dϕ̂2

)2]
, (5.29)
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where

ϕ̂1 ≡
1

2 q
ψ − a q

2 ∆
u , ϕ̂2 ≡ φ −

∆

4 q k2(2k + α)
ψ +

a q

2 k2 (2k + α)
u (5.30)

and

∆ ≡ −2aq2m∞ = k2(4k + α)− q2β2

α
. (5.31)

Observe that (5.30) reduces to (5.11) and that (5.29) matches the asymptotic form of (5.14)

if one first sets β = 0 and then sends α→ 0.

One can absorb the constants in first part of (5.29) by rescaling u and making a

constant shift in ξ. The asymptotic form of the metric is thus that of AdS3 × (S3/Z2k+α)

and is therefore smooth, provided ∆ > 0, or

β2 <
αk2 (4k + α)

q2
. (5.32)

One can, in fact, allow equality here but then the metric becomes asymptotic to some form

of null wave in which only the dψ du term survives at infinity. If ∆ < 0 then the ψ-circles

become closed time-like curves. We assume that (5.32) is true.

The leading-order asymptotics of the matter fields can similarly be calculated; the two

non-KK scalar fields are

X1 =

(
Z0Z2

Z2
1

)1/3

, X2 =

(
Z0Z1

Z2
2

)1/3

, (5.33)

so asymptotically

X1 = X2 =

(
1 +

α

2k

)−1/3
+O(e−4ξ). (5.34)

The background value of the scalar fields is rescaled along with the AdS3 radius of cur-

vature, and there is no sub-leading part at order e−2ξ, so there is no vev for the dual

operators. The two non-KK vector fields are

A(I) = −Z−1I (dt+ k) +
KI

V
(dψ +A) + ~ξ(I) · d~y , I = 1, 2 , (5.35)

where ~∇ × ~ξ(I) = −~∇K(I), and ZI are given by (5.25). In the pure AdS3 background,

A(I) = −2k cos θdϕ2. The leading asymptotics in the presence of the magnetube are

A(I) = −2k cos θdϕ̂2 ∓
β

(2k + α)
dψ +O(e−2ξ) , I = 1, 2 , (5.36)

so we get the same component on the sphere, consistent with the fact that the sphere’s

radius of curvature is unchanged in the metric (5.29). The second term is locally pure

gauge, but as ψ is a compact direction it introduces a Wilson line.

In AdS3, the asymptotic behavior of a massless gauge field is Aµ ∼ A(0)
µ +jµ ln r, where

A
(0)
µ is interpreted as the boundary gauge field and jµ is the vev of the boundary conserved

current. The absence of a logarithmic term in r (a linear term in ξ) in the expansion (5.36)

thus indicates that the introduction of the magnetube does not produce any charge density

from the point of view of the dual CFT; the only effect of β is to turn on a Wilson line

along the ψ circle.
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5.6 Global regularity

As we remarked earlier, the two conditions (4.7) and (4.8) guarantee that a supertube

smoothly caps off the spatial geometry [11–13] and so, in principle, (5.20), (5.21) and (5.23)

guarantee that the supertube is smooth in six dimensions. However, we actually have a

magnetube: that is, a supertube located at the critical (V = 0) surface. While this should

not affect the arguments of [12, 13], we will now examine the metric in more detail to

confirm that the magnetube limit of the supertube does not add any further subtleties.

Even though the metric appears to be singular at the critical surfaces (V = 0), it is well

known that it is actually smooth across such surfaces (see, for example, [20]). There is also

an apparent singularity at r = 0 but this is resolved by the standard change of coordinate

that shows that the supertube is smooth in six dimensions [11–13]. In the solutions we are

considering, these two apparent singularities coincide and while the methods of resolution

of the two types of apparent singularity are not expected to interfere with each other, it is

important to make sure.

Expanding (4.2) in spherical polar coordinates around r = 0, one obtains the leading

order behavior:

ds26 ∼ −
2kα

a

[
dr2

r
+ r

(
dθ2 + sin2 θd̃ϕ2

2 +

(
1

α
dv − cos θdϕ̃2

)2)
− 1

Q0
du2 +

a4q2Q0

4k4α2
dϕ̃2

1

]
,

(5.37)

where

ϕ̃1 ≡
(

1

2 q
ψ − φ

)
− 2 k2 α

q a2
u , ϕ̃2 ≡

1

2

(
1

2q
ψ + φ

)
− q2 β2

2 k2 α2

(
1

2q
ψ − φ

)
. (5.38)

and

Q0 ≡ lim
r→0

(rQ) =
4 k2

q2 a3 α

(
(2k + α) k2 α2 + (2k − α) q2 β2

)
. (5.39)

Provided that Q0 > 0, the metric (5.37) is manifestly a time and S1 fibration defined by

(u, ϕ̃1) over a four-dimensional spatial base defined by (r, θ, ϕ̃2, v). The apparent singularity

at r = 0 in this spatial base is resolved in the usual manner by changing to a new coordinate,

R, defined by r = 1
4R

2. Thus this spatial base is an orbifold of R4, and the whole metric is

smooth up to such orbifold singularities. Indeed if one restricts to slices of constant (u, ϕ̃1),

then one has dφ = 1
2 q dψ and the four dimensional base metric becomes

ds24 ∼ −
2kα

a

[
dR2 +

1

4
R2

(
dθ2 + sin2 θ

(
1

2q
dψ

)2

+

(
1

α
dv − cos θ

(
1

2q
dψ

))2)]
. (5.40)

If one remembers that ψ has period 4π then one sees that this is precisely the metric of

flat R4 for q = α = 1. Other integer values of α and q thus lead to orbifold singularities.

Smoothness around r = 0 this requires Q0 > 0. If 2k > α then this is manifest, but if

not one can use (5.32) to replace β2 and conclude that

Q0 >
4 k4

q2 a3
(
(2k + α)α + (2k − α) (4k + α)

)
=

32 k6

q2 a3
, (5.41)

which establishes positivity.
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Global regularity of the solution also requires that the functions HV , Z1Z
−1
2 and

Z0H
−1 are globally positive and well-behaved, except for possible singularities allowed by

supertubes. In particular, this means that all the functions ZIV must be globally positive.

This is trivial to see for Z0V since it may be explicitly written as

Z0 V =
4 k2

r+ r−
. (5.42)

Similarly one can write

ZI V =
1

r r+ r−

[
4k2 r + k α (r+ + r−) ± q β (r+ − r−)

]
≥ 1

r r+ r−

[
4k2 r + k α (r+ + r−) − |q β (r+ − r−)|

]
>

1

r r+ r−

[
4k2 r + k α (r+ + r−) − k (2k + α) | (r+ − r−)|

]
. (5.43)

where we have used the fact that (5.32) implies |q β| < k(2k + α). Suppose (r+ − r−) > 0,

then we may write this as

ZI V >
1

r r+ r−

[
2 k2 (r + r− − a) + 2 k2 (r + a− r+) + 2 k α r−

]
≥ 0 , (5.44)

where the positivity follows from the triangle inequality. One can easily permute this to

obtain the result for (r+ − r−) < 0.

It is worth noting that this bound is saturated if one takes r− = 0 and thus r = a and

r+ = 2a. This means that the weaker bound (compared to (5.32))

|q β| < k(2k + α) , (5.45)

could also have been deduced from the positivity of ZI V at either r− = 0 or r+ = 0.

Thus the basic bound (5.32) on the supertube charge guarantees that the metric is

non-singular.

Finally, one must make a global check for CTC’s and for this we have to resort to

numerical methods. One needs to verify that the metric is stably causal, that is, the

metric has a global time function. This condition is simply [19]:

− gµν∂µt ∂νt = −gtt = ((Z0V )(Z1V )(Z2V ))−1/3(Q− ω2) > 0 , (5.46)

where ω is squared using the R3 metric. Thus we need to verify the global positivity of

(Q− ω2).

For large values of r, one finds

lim
r→∞

r3 (Q− ω2) = lim
r→∞

r3 (Q) =
4 k2 (2k + α) ∆

aα q2
, (5.47)

where ∆ is defined by (5.31) and hence (5.32) guarantees that (Q−ω2) is positive as one goes

to infinity. Beyond this, we have examined this quantity in several examples of solutions

satisfying (5.32) and found them to be stably causal. A typical example is shown in figure 1.
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Figure 1. Plot of (Q − ω2) for 0 < ξ < 1, 0 < θ < π with parameters q = k = α = a = 1 and

β = 2. These choices obey (5.32) and the plot shows that (Q− ω2) > 0.

6 Species oscillation

Our primary contention in this paper is that species oscillation can be done on any V = 0

surface in any microstate geometry based upon a generic GH base. However, the essential

Green’s functions for such generic microstate geometries are not explicitly known. On the

other hand, the introduction of species oscillation involves a localized source and the two-

centered solution considered in section 5 provides an excellent “local model” of a typical

V = 0 surface in a generic microstate geometry. Moreover, the Green’s functions for this

relatively simple system are known [16] and so the solutions can be constructed explicitly.

Given that species oscillation can be implemented, in a very straightforward manner,

to produce new classes of microstate geometries within such a “local model,” we believe

that the generalization to any microstate geometry should present no difficultly apart from

the fact that explicit analytic examples may not be available.

6.1 Some simple oscillating solutions

We will thus construct the simplest example of a non-trivial solution with species oscilla-

tion: we add a magnetube with an oscillating charge distribution to the simple two-centre

background from the previous section. The first step will be to allow the electric charge

sources in (5.17) to be ψ-dependent much as in [16], however here these charges will oscil-

late into other species of M2-brane charge. To enable this species oscillation we add two

vector multiplets as discussed in section 3 but only give allow them to have electric charges.

We therefore take the GH base with V still given by (5.2) and keep the same magnetic

sources as in (5.16):

K0 =
k

r+
+

k

r−
+

α

r
, K1 = K2 =

k

r+
+

k

r−
, K3 = K4 = 0 . (6.1)

The electric source functions, LI , are set to:

L0 = −k
2

q

(
1

r+
− 1

r−

)
,
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LI = −k
2

q

(
1

r+
− 1

r−

)
+ λI , I = 1, 2 ;

LI = λI , I = 3, 4 , (6.2)

where the oscillating charge fields, λI = λI(ψ, ~y), are harmonic functions in four dimensions

∇2
(4)λI = 0 , (6.3)

that will be required to have no more than an O(r−1) singularity as r → 0:

λI(ψ, ~y) ∼ ρI(ψ)

r
, (6.4)

for some charge-density functions, ρI(ψ). As before, this corresponds to a supertube that

wraps around the ψ circle and now carries four kinds of electric charges, ρI(ψ), as well

as the magnetic dipole charge α. We will assume that the integral over ψ of the charge-

density functions ρI(ψ) vanishes, so that (as we will show later for the asymptotic charges)

the supertube is carrying no net electric charge; the electric charge oscillates between the

different species as we go around the ψ circle. This is the key difference from previous

studies with varying charge density [16], and is possible because we take the supertube on

the V = 0 surface.

Since K3 = K4 ≡ 0, it follows that

ZI(ψ, ~y) = λI , I = 3, 4 . (6.5)

The function, M , must now incorporate the possibility of a ψ-dependent source at r = 0:

M = m∞ +
k3

2 q2

(
1

r+
+

1

r−

)
+ η(ψ, ~y) . (6.6)

where η(ψ, ~y) is harmonic and with no more than an O(r−1) singularity as r → 0:

η(ψ, ~y) ∼ ρ̂(ψ)

r
. (6.7)

6.2 Regularity

It was shown in [16] that for the ψ-dependent solutions we are considering here, supertube

regularity can be analyzed locally in ψ and that regularity is, once again, ensured by

imposing (4.7) and (4.8). As before, (4.7) guarantees the absence of Dirac strings and,

equivalently, this relevant condition can be obtained from (3.25) by requiring that ~ω has

no sources of the form of a constant multiple of ~∇1
r . Using the fact that K1 ≡ K2,

K3 = K4 ≡ 0 and V and L0 vanish at r = 0, this Dirac string condition implies that the

singularities in L1 and L2 must be equal and opposite at r = 0 and thus:

ρ1(ψ) = −ρ2(ψ) . (6.8)

This equation is the generalization of (5.20) to a magnetube with species oscillations. On

the other hand, one can also recover this equation by starting from a supertube that is not
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located on a V = 0 surface [16] (where the analogous condition was a linear relationship

between ρ1(ψ), ρ2(ψ) and ρ̂(ψ)) and try to push this supertube onto the critical surface.

Hence, a magnetube at a critical surface can be seen as an infinitely-boosted regular su-

pertube.

Since the functions λI are harmonic and fall off at infinity, (6.8) implies that we must

have:

λ1(ψ, ~y) = −λ2(ψ, ~y) ⇒ L1(ψ, ~y) = −L2(ψ, ~y) . (6.9)

Using (6.9) and K1 ≡ K2, K3 = K4 ≡ 0 and the vanishing of V and L0 at r = 0, the

second regularity condition collapses in the relatively simple condition:

lim
r→0

r2
[
L1 L2 −

1

2
(L2

3 + L2
4) − 2K0M

]
= 0 . (6.10)

This implies that

2α ρ̂(ψ) = ρ1(ψ) ρ2(ψ)− 1

2
(ρ3(ψ)2 + ρ24(ψ)) = −

(
ρ1(ψ)2 +

1

2
(ρ3(ψ)2 + ρ24(ψ))

)
, (6.11)

which is the analog of (5.23). A similar relation between ρ̂(ψ) and the other charge densities

was also found in [16]. Note that while the integral of ρI(ψ) vanishes, the integral of ρ̂(ψ)

cannot (for non-trivial charge densities) and so the supertube will carry a net angular

momentum. A regular supertube is then parametrized by the constant dipolar magnetic

charge α and three independent electric charge densities, ρ1(ψ), ρ3(ψ) and ρ4(ψ).

6.3 Solutions with a ψ-independent metric

For general charge densities, the example constructed above will have a metric that is a non-

trivial function of ψ, although it will become ψ-independent asymptotically. Remarkably,

however, we can choose the oscillating charge densities in such a way that the metric is

completely independent of ψ. As described in the Introduction, this works in a manner

rather reminiscent of Q-balls: the species fluctuate but the energy-momentum tensor, and

hence the metric does not.

The basic idea is to arrange that

λ1(ψ, ~y)2 +
1

2

(
λ3(ψ, ~y)2 + λ4(ψ, ~y)2

)
= λ(~y)2 , (6.12)

for some function λ(~y). From the asymptotic properties of the λI , it follows that we must

have

ρ1(ψ)2 +
1

2

(
ρ3(ψ)2 + ρ4(ψ)2

)
= β2 , (6.13)

where β is a constant. Then (6.12) will make the warp factor H independent of ψ,

while (6.13) makes the angular momentum density determined by (6.11) a constant, and

hence M is independent of ψ. Since Z0 is unchanged by the addition of the supertube (as

in the non-oscillating template), the full metric (4.1) preserves the Killing symmetry, ∂
∂ψ .

It is clearly easy to choose the charge densities to satisfy (6.13); this is just one con-

straint on the three free functions. It is a much taller order to satisfy (6.12), however,
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as this must be satisfied for all ~y, and we only have the freedom to choose the source

functions that are functions only of ψ. However, the isometry of the base metric along ψ

means that the solution can be decomposed into Fourier modes, and if we take the source

charge densities to involve a single Fourier mode, then we can take solutions λI(ψ, ~y) that

take a product form, λI(ψ, ~y) = Fn(~y)ρI(ψ), and the ~y dependence factors out of (6.12)

which reduces simply to (6.13).3 Thus, we can satisfy (6.12) by taking, for example,

λ1(ψ, ~y) = β Fn(~y) cos(nψ) , λ3(ψ, ~y) = λ4(ψ, ~y) = β Fn(~y) sin(nψ) , (6.14)

where β is a constant and Fn is normalized so that Fn ∼ 1
r as r ≡ |~y| → 0.

In this way, species 1 is locked to species 2 and they oscillate into species 3 and 4.

(There is obviously a family of choices of how to distribute the oscillations amongst species

3 and 4 in such a way as to satisfy (6.13).) We will compute the details of the functions Fn
in section 7, but before going into the technicalities we can make some observations about

the solution.

First note that (6.13) and (6.11) imply that ρ̂(ψ) is constant, and the identity (6.11)

collapses precisely to that of the template solution (5.23). This means that the function M

is exactly as in (5.18). Note, in particular, that M still knows about the amplitude, β, of

the species oscillation. Furthermore, having K1 ≡ K2, K3 = K4 ≡ 0 and λ1 = −λ2 means

that the λI cancel out in the function µ in (2.15) and so it is exactly the same function as

it was in the template solution of section 5. Similarly, the λI cancel out in (3.25) and the

fact that M is independent of ψ means that ω satisfies exactly the same equation as in the

template solution and so is identical with the solution (5.19).

The only difference between the metric of the oscillating solution and the met-

ric of the template arises in the warp factor, H, given by (4.5). It follows

from (2.13), (6.1), (6.2), (6.5) and (6.12) that

H2 =

[
Z0 +

α

r

K

V

]2
− λ(~y)2 . (6.15)

The important point is that this function is independent of ψ and thus ∂
∂ψ is still a Killing

vector of the metric even though the Maxwell fields and scalars are ψ-dependent. Because

of (6.13) the function H also has exactly the same behavior as r → 0 as its counter-

part (5.26) in the template solution. Thus the local regularity of the metric is guaranteed

by that of the template solution.

The fact that the metric is unchanged apart from this change in the warp factor H

also implies that leading-order asymptotics of the metric are also the same as for the non-

oscillating solution. Indeed, the asymptotics is independent of the assumption that the

full metric is ψ-independent. Any ψ-dependence in H is subleading at large distances, and

thus so long as (6.13) is satisfied so that the angular momentum is ψ-independent, the

leading-order asymptotics will be the same as in the non-oscillating solution. Thus, for

3Note that this is a very special choice. Any source function can be written in terms of a superposition of

Fourier modes, but if we consider more than one Fourier mode this factorization does not occur, and (6.12)

cannot be satisfied.
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all solutions satisfying (6.13), the overall amplitude of the oscillating charge densities is

bounded by (5.32).

Furthermore, the λ(~y)2 in (6.15) will not contribute to the asymptotic stress tensor:

as we we will see in the next subsection, the functions Fn(~y) represent higher multipole

moments and therefore fall off faster than 1/r, so λ(~y)2 in (6.15) falls off faster than 1/r2.

Thus this term falls off too fast to contribute to the sub-leading part of the metric that

gives the asymptotic charges. For the gauge fields, there was no contribution to charges in

the non-oscillating case due to the absence of a logarithmic term in (5.36); the faster fall-off

in the oscillating solution does not change this. Thus, the asymptotics of solutions with

species oscillation where the angular momentum density is a constant is very similar to the

non-oscillating case. The only notable difference in the asymptotics is that the suppression

of Fn(~y) implies that the Wilson line noted in (5.36) is absent in the oscillating solution.

7 The oscillating modes

7.1 The Green’s function

To obtain the explicit details of our oscillating solution we need to solve (3.17) on the

base defined by (2.7) with (5.2). Fortunately the relevant Green’s function was computed

in [16]. The expression for this function was very complicated but here there are significant

simplifications because we have put the source point, (ψ′, ~y), at ~y = 0.

Define the following combinations of coordinates:

u ≡ cosh ξ , y ≡ sin θ , w ≡ e
i
2q

(ψ−ψ′)−i(φ−φ′)
, (7.1)

and set

w± ≡
1

2u2 y

[
(2u2 − 1 + y2) ±

√
1− y2

√
(2u2 − 1)2 − y2

]
, (7.2)

x ≡ 1

2
(w+ + w−) =

(2u2 − 1 + y2)

2u2 y
, (7.3)

Observe that w+w− = 1 and hence x ≥ 1 with equality if and only if |w±| = 1. We will

adopt the convention of taking the positive square roots in (7.2) so that |w−| ≤ 1 ≤ |w+|.
It is also convenient to recall that one can map back to the polar variables r± and r

by using (5.9) and (5.10):

u2 =
1

4 a
(r+ + r− + 2a) , y =

1

2 a

√
(r+ + r− − 2r)(r+ + r− + 2r) . (7.4)

Thus the end result can be expressed as a rational function of these variables. In particular,

it is useful to note that √
(2u2 − 1)2 − y2 =

r

a
. (7.5)

The Green’s function can then be written as [16]

Ĝ = − 1

a u y
Re

[
w(1− y w)

(w − w+)(w − w−)

1√
u2 − y w

]
. (7.6)
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= − 1

2 a u y

w

(w − w+)(w − w−)

[
(1− y w)√
u2 − y w

+
(w − y)√
u2 − y w−1

]
, (7.7)

where we have used the fact that w∗ = w−1.

There are several important things to note: (i) r = 0 corresponds to u = 1 and y = 1

and we are going to work in the region r > 0 in which y−1u2 > 1. (ii) The branch points

of
√
u2 − y w are at infinity and at w = y−1u2 > 1 and since |w| = 1, the branch cuts can

be arranged to be safely outside the unit circle. (iii) The fact that w+w− = 1 means that

one of the poles at w± is outside the unit circle while the other is inside. We are choosing

signs of square roots so that |w−| ≤ 1 ≤ |w+|. (iv) The poles at w± coincide at 1 if and

only if y = 1. This is the critical surface, and a careful examination of (7.7) shows that

Ĝ = 0 when y = 1 and is indeed well-behaved across this surface.

7.2 The Fourier modes

7.2.1 The explicit modes

One can obtain the Fourier modes from this Green’s function by integrating against

e
−in( 1

2q
ψ′−φ′)

= wne
−in( 1

2q
ψ−φ)

. Dropping the phase factors of e
−in( 1

2q
ψ−φ)

, the functions of

interest are

Fn =
1

2πi

∮
|w|=1

dw

w
wn
(
F (w) + F (w−1)

)
, (7.8)

where the contour is taken counterclockwise around the unit circle and

F (w) ≡ − 1

2 a u y

[
w(1− y w)

(w − w+)(w − w−)

1√
u2 − y w

]
. (7.9)

Since F (w−1) has a branch cut inside the unit circle, we make the inversion, w → w−1 in

this integral (remembering that the inversion also inverts the orientation of the contour)

and write it as

Fn =
1

2πi

∮
|w|=1

dw

w
(wn + w−n)F (w) . (7.10)

There are now only contributions from poles at w = 0 and at w = w−. We can also assume,

without loss of generality, that n ≥ 0.

An identity that is useful in evaluating residues at w = w− is√
u2 − y w− =

u (1− y w−)√
1− y2

. (7.11)

where we are again taking the positive square roots and have used |w−| ≤ 1.

The residue at w− is now easy to compute:

F (w−)
n =

1

2 r
(wn+ + wn−) . (7.12)

Note that for n = 0 this simply gives r−1 and this has been used to set the normalization

of Fn in general. For general n we can write this in terms of Chebyshev polynomials:

F (w−)
n =

Tn(x)

r
. , (7.13)

where Tn is the nth Chebyshev polynomial of the first kind and x is given by (7.3).
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To evaluate the residue at w = 0, we can use the expansion

1

w2 − 2xw + 1
=
∞∑
p=0

Up(x)wp , (7.14)

where Up(x) are Chebyshev polynomials of the second kind. This series converges for

|w| < |w−| and hence near w = 0. The residue at w = 0 can then be written as

F (0)
n = − 1

2 a u2 y

n−1∑
k=0

1

k!
Un−k−1(x)

[
dk

dkw

(
(1− y w)√

1− y
u2
w

)]∣∣∣∣
w=0

. (7.15)

Thus the solutions to (6.3) can be written as linear combinations of the modes:

Fn e
−in( 1

2q
ψ−φ)

=
(
F (0)
n + F (w−)

n

)
e
−in( 1

2q
ψ−φ)

. (7.16)

with F
(0)
n and F

(w−)
n given by (7.15) and (7.13). In particular, F

(w−)
n gives rise to the

singular source at r = 0 and the remaining parts are essential corrections as we now discuss.

7.2.2 On-axis limit

This description of the modes appears to be rather singular at y = 0, particularly given

the form of x in (7.3). This limit corresponds to θ = 0, π and represents the axis through

all the source points.

It is easy to see that this apparent singularity is an artifact of how we assembled the

modes. Indeed, one can easily take the limit of y → 0 in (7.9) and define

F̂ (w) = lim
y→0

F (w) =
1

2 a (2u2 − 1)
. (7.17)

and hence

Fn →
1

2 a (2u2 − 1)

1

2πi

∮
|w|=1

dw

w
(wn + w−n) =

1

a (2u2 − 1)
δn,0 . (7.18)

which is manifestly smooth and, in fact, only non-zero for n = 0.

One can therefore take the view that F
(w−)
n has the role of generating the proper

singular source at r = 0 and then F
(0)
n has the role of fixing all the other unphysical

singularities in F
(w−)
n .

7.2.3 Examples

As we have already seen,

F0 =
1

a
√

(2u2 − 1)2 − y2
=

1

r
, (7.19)

and this was used to set the normalization of the modes.

The first few Chebyshev polynomials are

T0 = 1 , T1 = x , T2 = 2x2 − 1 ; U0 = 1 , U1 = 2x , U2 = 4x2 − 1 . (7.20)
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Thus

F1 =
T1(x)

r
− 1

2 a u2 y
U0(x) (7.21)

=
1

r

(
r+ + r− + 2r + 2a

r+ + r− + 2a

)√
r+ + r− − 2r

r+ + r− + 2r
, (7.22)

where we have used (7.4) and (7.5). Similarly, one has

F2 =
2x2 − 1

r
− 1

2 a u4 y

(
2u2 x− 1

2
(2u2 − 1)

)
(7.23)

=

(
r+ + r− − 2r

r+ + r− + 2r

)(
1

r
+

4(2r − a)

(r+ + r− + 2a)2
+

6

(r+ + r− + 2a)

)
. (7.24)

Note that both F1 and F2 vanish on the axis, where r+ + r− = 2r. Moreover they both

have a canonically normalized source at r = 0:

lim
r→0

r F1 = lim
r→0

r F2 = 1 . (7.25)

At infinity one should note that (7.4) implies that as r →∞,

r+ + r− − 2r ∼ a2 sin2 θ

r
, (7.26)

and thus

F1 ∼
a sin θ

r2
, F2 ∼

3 a2 sin2 θ

2 r3
. (7.27)

7.3 Asymptotics of the modes at infinity

From the explicit examples above one sees that the modes Fn ∼ 1/rn+1 as would be

expected from charge multipoles. We can easily prove this form in general by recalling that

the Green’s function (7.7) was obtained in [16] by taking the Green’s function on the AdS3×
S2 space (5.12) and Kaluza-Klein reducing to obtain the Green’s function on the ambi-polar

base. The asymptotic behaviour of the Fourier modes of the Green’s function on the AdS3×
S2 space is then easily obtained by a conventional spherical harmonic analysis on the S2.

From the perspective of AdS3 × S2, since ϕ2 = φ − 1
2qψ + 2τ , our Fourier expansion

G =
∑

n Fn(u, y)wn corresponds to an expansion

G =
∑
n

Fn(ξ, θ)e−in(ϕ2−ϕ′2)+2in(τ−τ ′). (7.28)

The Green’s function can be decomposed in terms of the spherical harmonics Ylm(θ, ϕ2)

on the S2; in this decomposition, Fn will only involve spherical harmonics with l ≥ n.

Doing a Kaluza-Klein reduction on the S2, the massless wave equation on AdS3 × S2

becomes a massive wave equation on AdS3 for each spherical harmonic mode with a mass

m2 = l(l + 1)/R2
2 = 4l(l + 1)/R2

1. Thus, Fn =
∑

l>n Fln where at large ξ

sinh 2ξ−1∂ξ sinh 2ξ∂ξFln ≈ −4l(l + 1)Fln, (7.29)
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so Fln ∼ e−2(l+1)ξ, that is at most Fn ∼ 1/rn+1. From the perspective of the AdS3 × S2

asymptotics, the species oscillation of the supertube is introducing a variation of the fields

along the ϕ2 direction in the S2, so it corresponds to exciting higher KK harmonics, which

produce vevs for higher-dimension operators in the dual CFT rather than exciting local

charge densities of the conserved currents.

8 Conclusions

8.1 Comments on supersymmetric species oscillation

Our aim has been to show that the object underlying the species oscillation idea introduced

in [1] is a supersymmetric magnetube: a combination of (M5 and P) magnetic charges as

well as several oscillating (M2) electric charges, that carries the same supersymmetries as

M5 branes and momentum regardless of the oscillations of its electric charges. Trying to

bend this object into a ring in R4 will break these supersymmetries, and will result in

neutral configurations that have been proposed in [1] to describe microstate geometries of

neutral Schwarzschild black holes.

We have also succeeded in realizing the species oscillation idea in a supersymmetric

context, by embedding the magnetube into supersymmetric solutions. In doing this we have

uncovered a remarkable unification of the “timelike” and “null” types of supersymmetries

directly in the framework of five-dimensional supergravity; the “timelike” supersymmetry

on an ambi-polar background becomes locally null on the surface V = 0. Hence an object

that would be invariant only under the magnetic-type “null” supersymmetries, like the

magnetube, can be placed on this surface while preserving the global electric-type “time-

like” supersymmetry. This enables us to construct solutions with species oscillation which

preserve supersymmetry globally.

We have carefully analyzed the smoothness conditions for magnetubes on the V = 0

surface, initially for a magnetube without species oscillation and then for a magnetube

with M2 electric charge densities that vary around the tube in such a way that the net M2

charges vanish. We found that this magnetube can be obtained by moving a supertube

onto the V = 0 surface (which corresponds to giving it an infinite boost) and that, in

the V → 0 limit, the smoothness conditions of the supertube are enough to ensure the

smoothness of the magnetube. We constructed a simple example of a solution with species

oscillation and gave an explicit description of its structure. In this example, the geometry

is independent of the ψ coordinate; the gauge fields are oscillating but their combination

in the stress tensor is ψ-independent, as in the exact near-tube solution discussed in [1].

The simple example we have considered is asymptotically AdS3 × S2, and it would be

interesting to understand the interpretation of the solution with species oscillation from

the point of view of the dual CFT. A key aspect is that when we introduce the ψ-dependent

source, the non-diagonality of the metric in the angular coordinates makes the solution a

function of ψ
2q−φ, as can be seen in the Green’s function (7.6). This combination becomes an

angle in the S2 factor in the asymptotic solution (5.12). Thus, from the point of view of the

AdS3×S2 background, the species oscillation is not introducing dependence on the angular

coordinate in the AdS3 (shifting ϕ1 at fixed ϕ2 remains a symmetry of the solution) but on
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one of the angular coordinates on the S2. Thus, understanding the interpretation of our

solution in the dual CFT will involve a Kaluza-Klein decomposition along the lines of [31].

It will obviously be interesting to further exploit this new freedom in constructing

supersymmetric smooth microstate geometries. It gives us a new possibility to introduce

dipole charges. Examples of solutions with varying charge densities were previously con-

structed in [16], but we can now construct solutions with zero net charge. Another interest-

ing direction for further development is to consider species oscillation on supersymmetric

black strings and black rings.

8.2 Non-BPS, asymptotically flat solutions

Following the direction of [1], probably the most interesting question to ask is if one can

deform our supersymmetric solutions to construct non-supersymmetric asymptotically-flat

solutions, as a step towards constructing microstates for black holes like Schwarzschild.

The solution we constructed above is asymptotically AdS3×S2, but one should be able

to construct similar supersymmetric solutions that are asymptotically flat in five dimensions

by considering a supertube/magnetube at the V = 0 surface in a more general Gibbons-

Hawking base that gives rise to an asymptotically flat background. We have also seen

that the oscillating charge distributions do indeed make no net contribution to the charges

measured from infinity. On the other hand, the size of the oscillation is still bounded by

the background magnetic fluxes and hence by the asymptotic charges.

It is remarkable that one can have stationary asymptotically flat solutions; one might

physically expect that a varying charge density on a rotating object would give rise to

time-dependent multipole moments, which would lead to electromagnetic radiation. How-

ever, the resolution is a familiar effect in supertubes; the supertube is rotating, but the

charge on the supertube corresponds to a charge density wave traveling around the tube

in the opposite direction, so that we get a standing wave. As a result, the multipole

moments of our supersymmetric solutions, whose oscillating parts may be viewed as supe-

rubes/magnetubes, will all be time-independent.

On the other hand, this cancellation of the time-dependence coming from having a

standing wave is a fine-tuned phenomenon. If we excite the supertube/magnetube by

adding some energy, we will need to make it rotate faster to maintain the stabilization by

angular momentum, and it is possible that the counter-rotating charge density wave will

then give rise to time-dependent multipole moments. If true, this would a real obstacle to

finding stationary non-supersymmetric solutions. Note also that the non-stationarity is as-

sociated with the emission of electromagnetic radiation, so the natural timescale for the de-

cay is likely to be much faster than the gravitational timescales associated with a black hole.

The solution discussed in [1] is vulnerable to a similar problem. In the exact near-tube

solutions the authors introduce dependence on a null coordinate t−aφ, corresponding to a

charge density that is a function of t−aφ. In the near-tube solution φ is a coordinate along

a straight black string, and this is related to a solution with charge density depending just

on the position along the string by an (infinite) boost. But in the full asymptotically-flat

solution this corresponds to a truly time-dependent charge distribution, and we expect

– 34 –



J
H
E
P
0
9
(
2
0
1
4
)
1
1
3

that this will lead to electromagnetic radiation in the sub-leading corrections to the solu-

tion, introducing time-dependence in the metric on a timescale set by the electromagnetic

radiation reaction.

Thus we believe that species oscillation has opened up an even larger, new moduli space

of BPS microstate geometries but remain uncertain whether this idea can be adapted to

yield stationary non-BPS configurations.
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