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LETTERS

A susceptibility locus for lung cancer maps to nicotinic
acetylcholine receptor subunit genes on 15q25
Rayjean J. Hung1,2*, James D. McKay1*, Valerie Gaborieau1, Paolo Boffetta1, Mia Hashibe1, David Zaridze3,
Anush Mukeria3, Neonilia Szeszenia-Dabrowska4, Jolanta Lissowska5, Peter Rudnai6, Eleonora Fabianova7,
Dana Mates8, Vladimir Bencko9, Lenka Foretova10, Vladimir Janout11, Chu Chen12, Gary Goodman12, John K. Field13,
Triantafillos Liloglou13, George Xinarianos13, Adrian Cassidy13, John McLaughlin14, Geoffrey Liu15, Steven Narod16,
Hans E. Krokan17, Frank Skorpen17, Maiken Bratt Elvestad17, Kristian Hveem17, Lars Vatten17, Jakob Linseisen18,
Françoise Clavel-Chapelon19, Paolo Vineis20,21, H. Bas Bueno-de-Mesquita22, Eiliv Lund23, Carmen Martinez24,
Sheila Bingham25, Torgny Rasmuson26, Pierre Hainaut1, Elio Riboli20, Wolfgang Ahrens27, Simone Benhamou28,29,
Pagona Lagiou30, Dimitrios Trichopoulos30, Ivana Holcátová31, Franco Merletti32, Kristina Kjaerheim33,
Antonio Agudo34, Gary Macfarlane35, Renato Talamini36, Lorenzo Simonato37, Ray Lowry38, David I. Conway39,
Ariana Znaor40, Claire Healy41, Diana Zelenika42, Anne Boland42, Marc Delepine42, Mario Foglio42, Doris Lechner42,
Fumihiko Matsuda42, Helene Blanche43, Ivo Gut42, Simon Heath43, Mark Lathrop42,43 & Paul Brennan1

Lung cancer is the most common cause of cancer death worldwide,
with over one million cases annually1. To identify genetic factors
that modify disease risk, we conducted a genome-wide association
study by analysing 317,139 single-nucleotide polymorphisms in
1,989 lung cancer cases and 2,625 controls from six central
European countries. We identified a locus in chromosome region
15q25 that was strongly associated with lung cancer (P 5 9 3 10210).
This locus was replicated in five separate lung cancer studies com-
prising an additional 2,513 lung cancer cases and 4,752 controls
(P 5 5 3 10220 overall), and it was found to account for 14% (attri-
butable risk) of lung cancer cases. Statistically similar risks were
observed irrespective of smoking status or propensity to smoke
tobacco. The association region contains several genes, including
three that encode nicotinic acetylcholine receptor subunits
(CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed
in neurons and other tissues, in particular alveolar epithelial cells,
pulmonary neuroendocrine cells and lung cancer cell lines2,3, and
they bind to N9-nitrosonornicotine and potential lung carcinogens4.
A non-synonymous variant of CHRNA5 that induces an amino acid
substitution (D398N) at a highly conserved site in the second intra-
cellular loop of the protein is among the markers with the strongest

disease associations. Our results provide compelling evidence of a
locus at 15q25 predisposing to lung cancer, and reinforce interest in
nicotinic acetylcholine receptors as potential disease candidates and
chemopreventative targets5.

Lung cancer is caused predominantly by tobacco smoking, with
cessation of tobacco consumption being the primary method for
prevention. The risk among those who quit smoking remains ele-
vated (although less than those who continue to smoke), and former
smokers make up an increasing proportion of lung cancer patients in
countries where tobacco consumption has declined6,7. Treatment
strategies are of limited efficacy, with an overall 5-year survival rate
of about 15%8. Lung cancer has an important heritable component9,
and identifying genes that are involved may suggest chemopreven-
tion targets or allow for identification of groups at high risk. Despite a
large number of studies including both sporadic and multi-case
families, success in identifying genes that cause lung cancer has been
extremely limited.

The availability of tagging single-nucleotide polymorphism (SNP)
panels across the whole genome allows for efficient and comprehen-
sive analysis of common genomic variation to be conducted without
a priori hypotheses based on gene function or disease pathways. They
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require very large series of cases and controls to ensure adequate
statistical power, and multiple subsequent studies to confirm the
initial findings. We conducted a genome-wide association study of
lung cancer using the Illumina Sentrix HumanHap300 BeadChip
containing 317,139 SNPs and estimated to tag approximately 80%
of common genomic variation10. We initially genotyped 1,989 cases
and 2,625 controls from the International Agency for Research on
Cancer (IARC) central Europe lung cancer study. This was con-
ducted in six countries between 1998 and 2002 and each centre fol-
lowed an identical protocol to recruit newly diagnosed cases of
primary lung cancer, as well as a comparable group of population
or hospital controls (Supplementary Methods). We excluded sam-
ples that failed one of several quality control criteria (Supplementary
Methods) or because they showed evidence of admixture with Asian
ethnicity (Supplementary Fig. 1); we also excluded 7,116 problematic
SNPs. This resulted in a comparison of 310,023 SNPs between 1,926
cases and 2,522 controls.

We analysed each SNP individually by calculating P-values for
trend in a logistic regression model and incorporating additional
parameters including country, age and sex (Supplementary
Methods). The distribution of the bottom 90% of P-values was
similar to the expected distribution, and the genomic control para-
meter was 1.03, implying that there was no systematic increase in
false-positive findings owing to population stratification or any other
form of bias (Fig. 1a). However, there was a marked deviation
between the observed and expected P-values among the top 10%
(Fig. 1b). In particular, two SNPs on chromosome 15q25,
rs1051730 and rs8034191, were strongly associated with disease
(P 5 5 3 1029 and P 5 9 3 10210, respectively), exceeding the
genome-wide significance level of P 5 5 3 1027 (Fig. 1c). Further
analysis incorporating adjustment by principal components indi-
cated that population stratification was unlikely to account for this
observation (Supplementary Methods).

The odds ratio (OR) and 95% confidence interval (CI) for carrying
one copy of the most significant marker (rs8034191), adjusted by age,
sex and country, was 1.27 (1.11–1.44) and for carrying two copies of
the allele was 1.80 (1.49–2.18); the allelic OR was 1.32 (1.21–1.45).
When the data were analysed separately by country of origin, we
found a significant association in all countries except Romania,
which had the smallest sample numbers, although the trend in
Romania was similar and the association was significant under a

dominant model (data not shown). There was no evidence of
heterogeneity by country of origin (P 5 0.58). Further adjustment
was undertaken for various tobacco-related variables including dura-
tion of smoking, pack years (average number of cigarette packs per
day multiplied by years of smoking) and age at onset of smoking.
Adjustment by duration of smoking provided the best-fitting model
to account for tobacco use based on the Akaike’s information criteria
(Supplementary Methods), although the adjusted estimates with
duration of smoking (allelic OR 5 1.28 (1.16–1.42)) were similar
to the estimates adjusted by age, sex and country only.

We investigated further the association by genotyping 34 addi-
tional 15q25 markers that were selected as follows. First, we used
an imputation method (see http://www.sph.umich.edu/csg/abecasis/
MACH/index.html) to identify additional genetic variants from the
Centre d’Etude du Polymorphism Humain Utah (CEU) HapMap
data that are likely to have a strong disease association, but are not
present in the HumanHap300 panel. We attempted genotyping of
SNPs from the 15q25 region with an association P-value of the
imputed data of ,1026. Second, we included SNPs of CHRNA5
and CHRNA3 that had been included in a previous study of these
genes in nicotine dependence11. Third, we attempted genotyping of
all non-synonymous SNPs in dbSNP from the six genes within or
near the association region. The results for all markers tested in the
15q25 region, including those in the HumanHap300 panel, are
shown in Supplementary Table 1. Twenty-three of the additional
genotyped markers showed evidence of association exceeding the
genome-wide significance level of 5 3 1027 (Fig. 2). These span more
than 182 kilobases (kb) but are in strong linkage disequilibrium
(pairwise D9 . 0.8 and r2 . 0.6) with two predominant haplotypes
accounting for more than 85% of the haplotypes in patients and
controls (Supplementary Table 2).

To confirm our findings we genotyped rs8034191 and rs16969968
(where rs16969968 is a second variant with a strong disease asso-
ciation) in five further independent studies of lung cancer: the
European Prospective Investigation in Cancer and Nutrition
(EPIC) cohort study (781 cases and 1,578 controls), the Beta-
Carotene and Retinol Efficacy Trial (CARET) cohort study (764 cases
and 1,515 controls), the Health Study of Nord-Trøndelag (HUNT)
and Tromsø cohort studies (235 cases and 392 controls), the
Liverpool lung cancer case-control study (403 cases and 814 con-
trols), and the Toronto lung cancer case-control study (330 cases
and 453 controls) (Supplementary Methods). We observed an
increased risk for both heterozygous and homozygous variants of
rs8034191 in all five replication samples (Table 1), with no evidence
of any statistical heterogeneity between studies. After pooling across
all six studies, the ORs (95% CI) were 1.21 (1.11–1.31) and 1.77
(1.58–2.00) for heterozygous and homozygous carriers, respectively,
the allelic OR was 1.30 (1.23–1.37), and the P-value for trend was
5 3 10220. Further adjustment for duration of tobacco smoking did
not alter the estimates: allelic OR 5 1.30 (1.22–1.40). The genotype-
specific model that estimated the OR for heterozygous and homo-
zygous carriers separately was a significantly better fit than the model
estimating the allelic OR (P 5 0.025), suggesting a potential recessive
effect.

The prevalence of the variant allele was 34%, resulting in 66% of
the control participants carrying at least one copy, and the percentage
of lung cancer explained by carrying at least one allele (that is, the
population attributable risk) was 15% in the combined data set. We
obtained a similar attributable risk in the central European study
(16%) and in the replication studies (14%). The second variant with
strong disease association (rs16969968) that was genotyped in the five
replication studies gave very similar results, as expected from the strong
linkage disequilibrium (D9 5 1.00, r2 5 0.92) among the disease-
associated markers (allelic OR 5 1.30 (1.23–1.38); P 5 1 3 10220).

The large number of patients in the combined data set allowed us
to examine the association in different smoking categories and with
respect to different histological subtypes (Supplementary Table 3 and
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Figure 1 | Genome-wide association results in the central Europe study.
a–c, Quantile–quantile plot for bottom 90% of P-values (a) and top 10% of
P-values (b), as well as scatter plot (c) of P-values in 2log scale from the
trend test for 310,023 genotyped variants comparing 1,926 lung cancer cases
and 2,522 controls.
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Supplementary Discussion). Increased risks were seen for former
smokers (P 5 4 3 1027) and current smokers (P 5 3 3 10210), as
well as a potential increased risk for people who had never smoked
(P 5 0.013). No appreciable variation of the risk was found across the
main histological subtypes of lung cancer. We observed a similar risk
after stratifying by age at diagnosis, and a slightly greater risk for
women compared to men (P 5 0.06) (Supplementary Table 3).
Analysis of the susceptibility locus in additional lung cancer studies
would be desirable to obtain further information on these patterns of
risk, particularly with respect to smoking status, cumulative cigarette
consumption, age and sex. Notably, the risk haplotype is rare in Asian
(Japanese and Chinese) and not observed in African (Yoruba) data in
the HapMap database12 and many of the risk alleles have markedly
varied allele frequencies in different populations (Supplementary
Table 1). Thus, future examination of the association of these mar-
kers with lung cancer in different populations might contribute to
refined mapping of the locus.

We further investigated whether the locus was associated with
cancers of the head and neck including those of the oral cavity, larynx,
pharynx and oesophagus. We analysed rs8034191 in two separate
studies of head and neck cancer conducted in Europe, the first being
conducted in five countries of central Europe and overlapping with
the lung cancer controls from five of the six countries included in the
present genome-wide association study (726 cases and 694 controls),
and the second study being conducted in eight countries of Europe
(the ARCAGE study) and including 1,536 cases and 1,443 controls.
We observed no effect in either of the two studies separately or
combined or in any of the cancer subgroups (Supplementary
Fig. 2), implying that this association was specific for lung cancer.
Similar results were also observed for rs16969968 (data not shown).

The disease-associated markers span six known genes, including
the nicotinic acetylcholine receptor subunits CHRNA5, CHRNA3
and CHRNB4, the IREB2 iron-sensing response element, PSMA4,
which is implicated in DNA repair, and LOC123688, a gene of
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pairwise D9 estimates for these SNPs exceed 0.8.

Table 1 | Lung cancer risk and rs8034191 genotype

T/C versus T/T
genotype

C/C versus T/T
genotype

Co-dominant model

Cases* Controls* OR 95% CI OR 95% CI OR 95% CI P-values P-heterogeneity

Overall 4,435 7,272 1.21 1.11–1.31 1.77 1.58–2.00 1.30 1.23–1.37 5 3 10
220

By study 0.951

Central Europe 1,922 2,520 1.27 1.11–1.44 1.80 1.49–2.18 1.32 1.21–1.45 9 3 10
210

Toronto 330 453 1.20 0.85–1.68 1.84 1.14–2.97 1.32 1.05–1.65 0.017

EPIC 781 1,578 1.18 0.97–1.43 1.68 1.29–2.19 1.27 1.12–1.44 2 3 10
24

CARET 764 1,515 1.31 1.08–1.58 1.77 1.34–2.34 1.33 1.16–1.51 2 3 10
25

Liverpool 403 814 1.04 0.80–1.34 1.65 1.11–2.44 1.20 1.00–1.44 0.047

HUNT/ Tromsö 235 392 1.09 0.77–1.54 2.02 1.21–3.37 1.32 1.04–1.68 0.022

Odds ratio (OR) and 95% confidence interval (CI) for lung cancer comparing heterozygous (T/C) and homozygous (C/C) genotypes of rs8034191 to homozygous (T/T) genotype, overall and
separately for each of the six studies. ORs are standardized by age, sex and country. P-values are derived from the co-dominant model.
* Subjects with valid call for rs8034191.
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unknown function (Fig. 2). It is not possible to identify likely causal
alleles or genes based on the differences in the strength of the
statistical association because of the strong linkage disequilibrium.
However, the nicotinic acetylcholine receptor subunits are strong
candidate genes. CHRNA5 was the only gene found to contain a
non-synonymous variant (rs16969968 in exon 5) with strong disease
association (P 5 3 3 1029). CHRNA3 contained a synonymous
variant in exon 5 (rs1051730) that was also strongly associated with
disease (P 5 5 3 1029); the r2 between these two variants being 0.99.
Although the other markers with a strong disease association either
resided in introns or were inter-genic, we cannot exclude the pos-
sibility that they could have a biological effect on one or more of the
genes from the region. However, other lines of evidence support a
possible role for the nicotinic acetylcholine receptor subunit genes.

Nicotinic acetylcholine receptor subunit genes code for proteins
that form receptors present in neuronal and other tissues, in particu-
lar alveolar epithelial cells, pulmonary neuroendocrine cells, and lung
cancer cell lines2,3, and they bind to nicotine and nicotine derivatives
including N9-nitrosonornicotine. An association of CHRNA3 and
CHRNA5 variants with nicotine dependence has been reported11,13.
The associated markers include the non-synonymous CHRNA5 SNP,
rs16969968, which is one of our markers of lung cancer risk. This SNP
introduces a substitution of aspartic acid (D) to asparagine (N) at
amino acid position 398 (D398N) of the CHRNA5 protein, located in
the central part of the second intracellular loop. Although the func-
tion of the second intracellular loop and the possible biological con-
sequences of the D398N alteration remain to be elucidated, this
amino acid is highly conserved across species, suggesting that it could
have functional importance (Supplementary Fig. 3). A T529A sub-
stitution in the second intracellular loop of a4 nAchR, another nico-
tinic acetylcholine receptor subunit, is known to lead to altered
responses to nicotine exposure in the mouse14.

Within the ARCAGE study (see above), all participants were asked
a series of questions relating to tobacco addiction based on the
Fagerstrom tolerance questionnaire15, and we used these to examine
whether the chromosome 15q25 locus might be implicated in lung
cancer through involvement in tobacco dependence. Two of these
questions (‘time to first cigarette’ and ‘numbers of cigarettes per day’)
have been shown to be particularly strongly associated with nicotine
dependence, and responses to both questions result in a ‘heaviness of
smoking index (HSI)’ with a score of between 0 and 6 (ref. 16). We
did not observe an association in the ARCAGE controls between
rs16969968 and any of the individual Fagerstrom indices of nicotine
addiction, or when comparing controls with a HSI of 0 to those with a
HSI of 3 or more (Supplementary Table 4). Almost identical patterns
were observed for rs8034191 (data not shown). Thus, our data do not
support an important role for the locus in nicotine addiction.
However, a previous study of a large number of candidate gene
markers (4,309 SNPs) identified a possible association between
rs16969968 and addiction (uncorrected P-value 5 6.4 3 1024) using
contrasting extreme phenotypes as measured by the Fagerstrom test
for nicotine dependence (FTND)11. A second study also identified an
association between variants in the region of chromosome 15q25 and
numbers of cigarettes smoked per day, although it did not assess
directly rs1696996813. The FTND and HSI measures of nicotine
dependence are highly correlated together, and with cigarettes per
day17, and additional studies to clarify the relationship between chro-
mosome 15q25 variants and tobacco dependence are warranted in
light of these results.

Our observation of an increased risk with the chromosome 15q25
locus and lung cancer in non-smokers, as well as the lack of an
association with smoking-related head and neck cancers, would indi-
cate that the disease mechanism with lung cancer is unlikely to be
explained by an association with tobacco addiction. Independent
biological data also suggest that nicotinic acetylcholine receptors
could be involved in lung cancer through other mechanisms. It has
been suggested that N9-nitrosonornicotine and nitrosamines may

facilitate neoplastic transformation by stimulating angiogenesis
and tumour growth mediated through their interaction with nico-
tinic acetylcholine receptors18–20. The expression of these receptors
can also be inhibited by nicotine receptor antagonists, which, if con-
firmed to be involved in disease aetiology through such a mechanism,
implies possible chemoprevention opportunities for lung cancer5.

No markers outside of those on chromosome 15q25 exceeded the
genome-wide significance level for association with lung cancer,
although a further 29 had a significance level of P , 5 3 1025

(Supplementary Table 5). Although most were isolated markers,
ten were found to be clustered in a segment of approximately 1 mega-
base (Mb) on chromosome 6p (28.5–29.5 Mb) within an extended
region of high linkage disequilibrium around the major histocom-
patibility complex. Genotyping of the most significant SNP from the
6p region (rs4324798) in the other five studies provided independent
evidence of association (P 5 4 3 1023). In the combined data set, the
trend test reached genome-wide significance (P 5 4 3 1027; see
Supplementary Fig. 4). The region contains up to 20 documented
genes and identification of causal variants is complicated by strong
linkage disequilibrium between variants within neighbouring human
leukocyte antigen (HLA) and non-HLA genes21. Further analyses in
multiple diverse populations will be required to confirm this locus
and to identify additional lung cancer susceptibility variants. To aid
in this, we have made our genome-wide association results available
through a publicly accessible website (http://www.ceph.fr/cancer).

METHODS SUMMARY

A detailed description of the component studies can be found in the

Supplementary Methods. The genotyping of the IARC central Europe study

was conducted using Illumina Sentrix HumanHap300 BeadChip. We excluded

variants with a call rate of less than 95% or whose allele distributions deviated

strongly from Hardy–Weinberg equilibrium among controls. We also excluded

subjects with a completion rate less than 90% or whose reported sex did not

match with the inferred sex based on the heterozygosity rate from the X chromo-

somes. Unexpected duplicates and unexpected first-degree relatives were also

excluded from the analysis. Additional quality control measures were applied as

described in the Supplementary Methods. Population outliers were detected

using STRUCTURE22 with HapMap subjects as internal controls, and were

subsequently excluded from the analysis. Additional analyses for population

stratification were undertaken with EIGENSTRAT23. Odds ratios (OR) and

95% confidence intervals (CI) were calculated using multivariate unconditional

logistic regression models. CEU HapMap SNPs were imputed using MACH

(http://www.sph.umich.edu/csg/abecasis/MACH/index.html). Genotyping of

additional markers was undertaken with Taqman or Amplifluor assays.

Genotyping for all five replication studies was conducted for rs8034191 and

rs16969968, and effect estimates from all six lung cancer studies were combined

using a fixed-effect model. All P-values are two-sided.
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