N
N

N

HAL

open science

Cache-aware static scheduling for hard real-time
multicore systems based on communication affinities

Lilia Zaourar, Mathieu Jan, Maurice Pitel

» To cite this version:

Lilia Zaourar, Mathieu Jan, Maurice Pitel. Cache-aware static scheduling for hard real-time multicore
systems based on communication affinities. 34th IEEE Real-Time Systems Symposium (RTSS’13),

WiP session, Dec 2013, Vancouver, Canada. pp.3-4. cea-00919483

HAL Id: cea-00919483
https://cea.hal.science/cea-00919483
Submitted on 16 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://cea.hal.science/cea-00919483
https://hal.archives-ouvertes.fr

Cache-aware static scheduling for hard real-time
multicore systems based on communication
affinities

Lilia Zaourar and Mathieu Jan
CEA, LIST
Embedded Real Time Systems Laboratory
F-91191 Gif-sur-Yvette, France
Email: Firstname.Lastname @cea.fr

Abstract—The growing need for continuous processing capa-
bilities has led to the development of multicore systems with a
complex cache hierarchy. Such multicore systems are generally
designed for improving the performance in average case, while
hard real-time systems must consider worst-case scenarios. An
open challenge is therefore to efficiently schedule hard real-time
tasks on a multicore architecture. In this work,we propose a
mathematical formulation for computing a static scheduling that
minimize L, data cache misses between hard real-time tasks on
a multicore architecture using communication affinities.

I. INTRODUCTION

Multicore processors have become the norm in many execu-
tion platforms in various fields. Such architectures come with a
cache memory hierarchy made of several levels, shared or not
between cores. Figure 1 represents the typical cache hierarchy
that can be found in a multicore architecture with two levels
of cache, noted L1, and Lo where x is the number of the core
(in the figure x ranges from 1 to 4). In such architectures, the
Lo cache is larger but provides slower access time than the L,
cache. Generally, the Lo cache is unified and shared among
all cores, while at the L level data and instruction caches are
separated and private to each core. However, in this work we
focus only on the data caches.

Core 2

“L12‘

L2

Core 3

“L13‘

Core 1 Core 4

“ L11 ‘

|
N
S

Fig. 1. Classical cache memory hierarchy of a multicore architecture.

Using such multicore architectures for developing hard real-
time systems is an important research area. Multicore are
generally tuned for optimizing performance for the average
case, while hard real-time systems must consider worst-case
scenarios due to certification constraints. A major problem
lies in the management of cache for mastering the impact of
conflicts on the Worst-Case Execution Time (WCET) of each

Maurice Pitel
Schneider Electric Industries
37, quai Paul Louis Merlin
F-38050 Grenoble, France
Email: Maurice.Pitel @schneider-electric.com

task. Designing cache-aware scheduling policies is becoming
a popular research area. In this work, we show how a static
scheduling that minimizes Ly data cache misses between hard
real-time tasks on a multicore architecture can be computed.

II. RELATED WORK

[2] focuses on the memory-to-Lo traffic in the cache hi-
erarchy of soft real-time systems. They propose a two steps
method to discourage the co-scheduling of the tasks generat-
ing such traffic. First, the tasks that may induce significant
memory-to-Ly traffic are gathered into groups. Then at run-
time, they use a scheduling policy that reduces concurrency
within groups. [1] also proposes several global multi-core
scheduling strategies for soft real-time systems to minimize the
Ly cache trashing. Co-scheduling of the tasks of a same group
is used to optimize the efficient use of the L, shared cache.
Task promotion is another example of a studied scheduling
policy.

When considering hard real-time systems, to the best of our
knowledge we are only aware of [4]. Cache-partitioning tech-
niques are used to avoid interferences, at the Lo cache level,
between the tasks that are running simultaneously. In addition
to regular temporal constraints used within a schedulability
test, cache constraints due to cache-partitionning are added
and steer the computation of the scheduling. They propose a
linear programming formulation to solve this problem and an
approximation of this formulation for larger task sets.

The closest work to ours is [5]. While proposed cache-
aware scheduling strategies are evaluated using a soft-real time
kernel, the results can also be used for hard real-time systems.
They propose a bin packing approach to evenly distribute
the Working Set Size (WSS) of the tasks on all cores in
order to reduce conflicts. The resolution algorithm is based on
the next fit decreasing heuristic applied on the tasks ordered
by their decreasing WSS. Besides, they rely on a notion of
distance between caches of non-uniform memory architectures
to further optimize the solution. This is only used for the tasks
that share some common memory area and are gathered into
groups. However, it is unclear how the common memory area

defines a group as well as how groups are reduced when the
heuristic fails to allocate a group.

To summarize, most of the existing cache-aware scheduling
proposal have focused on the efficient use of the Ly cache.

III. TASK MODEL AND NOTATIONS

Let I' = {71, 72,...,7n} be a set of n independent, syn-
chronous, preemptible and periodic tasks. I' is handled using
the implicit deadline periodic task model. Each task 7; € T’
has the following temporal parameters 7; = (P;, C;). P; is the
period of the task and C; is the WCET. A job ¢ represents
an instance of a task with C; its WCET. Let H be the hyper-
period of task set. It equals to the least common multiple of
all periods of tasks in I'.

As in [6], the hyper-period H is divided in intervals, an
interval being delimited by two task releases. A job can be
present on several intervals, and we note w; ;. the weight of
job j on interval k. We denote by I the set of intervals and
|I;| the duration of the k*" interval, |I},| = tg11 — t. The
weight of each job is the amount of processor necessary to
execute job ¢ on interval |I;| only (it is not an execution time
but a fraction of it). Jr is the job set of all jobs of I' scheduled
during the hyper-period H.

Then, temporal schedulability constraints are expressed us-
ing a linear program described in [7] to compute the optimal
job weights on each interval for all tasks T; € I'. First, the sum
of all job weights on an interval does not exceed the processor
maximum capacity:

> wik < M.k (M)
i€ Jg
Then each job weight does not exceed each processor maxi-
mum capacity:

0 <w;p <1,Vk, Vi)
Finally, jobs must be completely executed:
> wig x |I] = Cy, Vi 3)
kEEi

IV. PROBLEM FORMULATION

The problem we address in this work is to reduce L;
data cache misses when scheduling hard real-time tasks on
a multicore architecture. To this end, we maximize the co-
scheduling on a same core of tasks that exchange data while
still ensuring temporal schedulability constraints. We assume
a static knowledge of data exchange between the tasks of an
application. Therefore, we extend the classical periodic task
model with the WSS parameter for each task and model this
problem using a variant of the knapsack problem. We also
assume that the system is schedulable and hence we only seek
to optimize the allocation of the tasks on the L; caches. In
addition, we suppose that the size of a L; cache enables to
host several tasks simultaneously, a valid hypothesis in the case
studies we consider. We leave as future work the management
of cache conflicts, using techniques such as in [9].

The multicore platform is made of m cores and we note C'r,,
the capacity of each data cache L; (we assume the L; caches

to have an equal size). Finally, from the data of the application
we can calculate W.S'S; which is the WSS of job J;. This is
computed by adding the size of each data section from the
binary of an application. We note a,; the affinity between the
job ¢ and the job i'. The affinity between two tasks is defined
as the number of communication flows between them. Higher
is the number of communication flow, higher is the affinity
between two tasks. Communication flows between tasks are
extracted using the software architecture of the considered hard
real-time application.

Then, integrating into the previously described schedu-
lability constraints require to introduce a decision variable
representing the allocation of the tasks on cores for each
intervals. Let x;;;, be this decision variable that is equal to
1 if the job ¢ is assigned to cache j during time interval
I,k € {1,...,T} and 0O otherwise. The sum of the WSS of
the jobs allocated to a cache should not exceed its capacity:

S WWS; x @i < Cr,, V4, Vk.)
=1

In addition, each job must be assigned to a single cache:

> mijr <1,Vi,Vk (5)
j=1
Besides, to link the temporal schedulability constraints with
the aforementioned cache constraints, the following relation-
ship can be define: if Z?:l Zijr = 0 then w; = 0 and
if Y0 @ik = 1 then w;; > 0. Finally, since our aim is
to maximise affinity L;, we obtain the following objective
function:
n m T
Max(Z) =3 3) ayr X mijr X 2y, Vi, Y5, Yk, (6)

i=1 j=1 k=1
V. CONCLUSION AND FUTURE WORK

In this work, we show how we can extend classical (tempo-
ral) schedulability constraints to minimize L; data cache miss
between communicating hard real-time tasks on a multicore
architecture. In future work, we plan to generalise the formu-
lation to address other level of a cache memory hierarchy. As
our formulation of the problem uses a quadratic knapsack,
known to be NP-hard [8], another next step is therefore
the linearization of the objective function. Then, we plan to
implement it using the CPLEX solver to generate the static
scheduling of hard real-time tasks. Finally, we plan to test our
method on several hard real-time industrial applications.

REFERENCES

[1] J. Calandrino and J. Anderson, Cache-Aware Real-Time Scheduling on
Multicore Platforms: Heuristics and a Case Study, Proc. of the 20st
Euromicro Conf. on Real-Time Systems, 2008.

[2] J. Anderson, J. Calandrino and U. Devi, Real-time scheduling on
multicore platforms, 2005.

[3] J. Calandrino and J. Anderson, On the Design and Implementation of
a Cache-Aware Multicore Real-Time Scheduler, Proc. of the 21st IEEE
Euromicro Conf. on Real-Time Systems, 2009.

[4] N. Guan, M. Stigge, W. Yi, and G. Yu, Cache-aware scheduling and
analysis for multicores, Proc. of the 7th ACM Intl. Conf. on Embedded
software, 2009.

[5]

[6]

C. Lindsay, LWFG: A Cache-Aware Multi-core Real-Time Scheduling
Algorithm, Master Thesis, Virginia Polytechnic Institute and State Uni-
versity, 2012.

M. Lemerre, V. David, C. Aussagues, and G. Vidal-Naquet, Equivalence
between schedule representations: Theory and applications, Proc. of the
IEEE Real-Time and Embedded Technology and Applications Symp.,
2008.

T. Megel, R. Sirdey and V. David, , Minimizing task preemptions and
migrations in multiprocessor optimal real-time schedules, IEEE Real-
Time Systems Symposium (RTSS), 2010.

H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Springer,
2004.

B. Ward, J. Herman, C. Kenna, J. Anderson, Making Shared Caches
More Predictable on Multicore Platforms, Proc. of the 25th Euromicro
Conference on Real-Time Systems, 2013.

