Lilia Zaourar

Mathieu Jan

Maurice Pitel
email: maurice.pitel@schneider-electric.com

Cache-aware static scheduling for hard real-time multicore systems based on communication affinities

I. INTRODUCTION

Multicore processors have become the norm in many execution platforms in various fields. Such architectures come with a cache memory hierarchy made of several levels, shared or not between cores. Figure 1 represents the typical cache hierarchy that can be found in a multicore architecture with two levels of cache, noted L 1x and L 2 where x is the number of the core (in the figure x ranges from 1 to 4). In such architectures, the L 2 cache is larger but provides slower access time than the L 1 cache. Generally, the L 2 cache is unified and shared among all cores, while at the L 1 level data and instruction caches are separated and private to each core. However, in this work we focus only on the data caches. Using such multicore architectures for developing hard realtime systems is an important research area. Multicore are generally tuned for optimizing performance for the average case, while hard real-time systems must consider worst-case scenarios due to certification constraints. A major problem lies in the management of cache for mastering the impact of conflicts on the Worst-Case Execution Time (WCET) of each task. Designing cache-aware scheduling policies is becoming a popular research area. In this work, we show how a static scheduling that minimizes L 1 data cache misses between hard real-time tasks on a multicore architecture can be computed. [START_REF] Anderson | Real-time scheduling on multicore platforms[END_REF] focuses on the memory-to-L 2 traffic in the cache hierarchy of soft real-time systems. They propose a two steps method to discourage the co-scheduling of the tasks generating such traffic. First, the tasks that may induce significant memory-to-L 2 traffic are gathered into groups. Then at runtime, they use a scheduling policy that reduces concurrency within groups. [START_REF] Calandrino | Cache-Aware Real-Time Scheduling on Multicore Platforms: Heuristics and a Case Study[END_REF] also proposes several global multi-core scheduling strategies for soft real-time systems to minimize the L 2 cache trashing. Co-scheduling of the tasks of a same group is used to optimize the efficient use of the L 2 shared cache. Task promotion is another example of a studied scheduling policy.

II. RELATED WORK

When considering hard real-time systems, to the best of our knowledge we are only aware of [START_REF] Guan | Cache-aware scheduling and analysis for multicores[END_REF]. Cache-partitioning techniques are used to avoid interferences, at the L 2 cache level, between the tasks that are running simultaneously. In addition to regular temporal constraints used within a schedulability test, cache constraints due to cache-partitionning are added and steer the computation of the scheduling. They propose a linear programming formulation to solve this problem and an approximation of this formulation for larger task sets.

The closest work to ours is [START_REF] Lindsay | LWFG: A Cache-Aware Multi-core Real-Time Scheduling Algorithm[END_REF]. While proposed cacheaware scheduling strategies are evaluated using a soft-real time kernel, the results can also be used for hard real-time systems. They propose a bin packing approach to evenly distribute the Working Set Size (WSS) of the tasks on all cores in order to reduce conflicts. The resolution algorithm is based on the next fit decreasing heuristic applied on the tasks ordered by their decreasing WSS. Besides, they rely on a notion of distance between caches of non-uniform memory architectures to further optimize the solution. This is only used for the tasks that share some common memory area and are gathered into groups. However, it is unclear how the common memory area defines a group as well as how groups are reduced when the heuristic fails to allocate a group.

To summarize, most of the existing cache-aware scheduling proposal have focused on the efficient use of the L 2 cache.

III. TASK MODEL AND NOTATIONS

Let Γ = {τ 1 , τ 2 , ..., τ n } be a set of n independent, synchronous, preemptible and periodic tasks. Γ is handled using the implicit deadline periodic task model. Each task τ i ∈ Γ has the following temporal parameters τ i = (P i , C i). P i is the period of the task and C i is the WCET. A job i represents an instance of a task with C i its WCET. Let H be the hyperperiod of task set. It equals to the least common multiple of all periods of tasks in Γ.

As in [START_REF] Lemerre | Equivalence between schedule representations: Theory and applications[END_REF], the hyper-period H is divided in intervals, an interval being delimited by two task releases. A job can be present on several intervals, and we note w j,k the weight of job j on interval k. We denote by I the set of intervals and |I k | the duration of the k th interval, |I k | = t k+1 -t k . The weight of each job is the amount of processor necessary to execute job i on interval |I k | only (it is not an execution time but a fraction of it). J Γ is the job set of all jobs of Γ scheduled during the hyper-period H.

Then, temporal schedulability constraints are expressed using a linear program described in [START_REF] Megel | Minimizing task preemptions and migrations in multiprocessor optimal real-time schedules[END_REF] to compute the optimal job weights on each interval for all tasks T i ∈ Γ. First, the sum of all job weights on an interval does not exceed the processor maximum capacity:

i∈J k w i,k ≤ M, ∀k (1)
Then each job weight does not exceed each processor maximum capacity:

0 ≤ w i,k ≤ 1, ∀k, ∀i. (2)
Finally, jobs must be completely executed:

k∈Ei w i,k × |I k | = C i , ∀i. (3)

IV. PROBLEM FORMULATION

The problem we address in this work is to reduce L 1 data cache misses when scheduling hard real-time tasks on a multicore architecture. To this end, we maximize the coscheduling on a same core of tasks that exchange data while still ensuring temporal schedulability constraints. We assume a static knowledge of data exchange between the tasks of an application. Therefore, we extend the classical periodic task model with the WSS parameter for each task and model this problem using a variant of the knapsack problem. We also assume that the system is schedulable and hence we only seek to optimize the allocation of the tasks on the L 1 caches. In addition, we suppose that the size of a L 1 cache enables to host several tasks simultaneously, a valid hypothesis in the case studies we consider. We leave as future work the management of cache conflicts, using techniques such as in [START_REF] Ward | Making Shared Caches More Predictable on Multicore Platforms[END_REF].

The multicore platform is made of m cores and we note C L1 the capacity of each data cache L 1 (we assume the L 1 caches to have an equal size). Finally, from the data of the application we can calculate W SS i which is the WSS of job J i . This is computed by adding the size of each data section from the binary of an application. We note a ii the affinity between the job i and the job i . The affinity between two tasks is defined as the number of communication flows between them. Higher is the number of communication flow, higher is the affinity between two tasks. Communication flows between tasks are extracted using the software architecture of the considered hard real-time application.

Then, integrating into the previously described schedulability constraints require to introduce a decision variable representing the allocation of the tasks on cores for each intervals. Let x ijk be this decision variable that is equal to 1 if the job i is assigned to cache j during time interval I k , k ∈ {1, ..., T } and 0 otherwise. The sum of the WSS of the jobs allocated to a cache should not exceed its capacity:

n i=1 W W S i × x ijk ≤ C L1 , ∀j, ∀k. (4)
In addition, each job must be assigned to a single cache:

m j=1 x ijk ≤ 1, ∀i, ∀k (5)
Besides, to link the temporal schedulability constraints with the aforementioned cache constraints, the following relationship can be define: if

n i=1 x ijk = 0 then w i,k = 0 and if n i=1 x ijk = 1 then w i,k > 0.

V. CONCLUSION AND FUTURE WORK

In this work, we show how we can extend classical (temporal) schedulability constraints to minimize L 1 data cache miss between communicating hard real-time tasks on a multicore architecture. In future work, we plan to generalise the formulation to address other level of a cache memory hierarchy. As our formulation of the problem uses a quadratic knapsack, known to be NP-hard [START_REF] Kellerer | Knapsack problems[END_REF], another next step is therefore the linearization of the objective function. Then, we plan to implement it using the CPLEX solver to generate the static scheduling of hard real-time tasks. Finally, we plan to test our method on several hard real-time industrial applications.

Fig. 1 .

 1 Fig. 1. Classical cache memory hierarchy of a multicore architecture.

a

 Finally, since our aim is to maximise affinity L 1 , we obtain the following objective function: ii × x ijk × x i jk , ∀i, ∀j, ∀k.[START_REF] Lemerre | Equivalence between schedule representations: Theory and applications[END_REF]