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Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere
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The large-scale circulation of planetary atmospheres such as that of the Earth is traditionally thought of in a
dynamical framework. Here we apply the statistical mechanics theory of turbulent flows to a simplified model of
the global atmosphere, the quasigeostrophic model, leading to nontrivial equilibria. Depending on a few global
parameters, the structure of the flow may be either a solid-body rotation (zonal flow) or a dipole. A second-order
phase transition occurs between these two phases, with associated spontaneous symmetry breaking in the dipole
phase. This model allows us to go beyond the general theory of marginal ensemble equivalence through the
notion of Goldstone modes.
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I. INTRODUCTION

It is well known that two-dimensional (2D) turbulent flows
develop large-scale coherent structures [1] and widely believed
that the existence of these structures is related to the existence
of additional conserved quantities, as compared to the 3D
case. In particular, Kraichnan [2] showed that in 2D flows,
due to the conservation of enstrophy and energy, two inertial
ranges coexist: a direct (downscale) enstrophy cascade and
an inverse (upscale) energy cascade. As a result, the energy
accumulates at the largest scales (lowest wave numbers)
leading to coherent structures. This phenomenon is sometimes
related to a form of Bose-Einstein condensation [2,3]. The
formation of these coherent structures can be accounted for
by statistical mechanics approaches. Given some conserved
quantities, one is able to predict the most probable flow,
which, assuming ergodicity, coincides with the final state
of the flow. One particular area where large-scale coherent
structures are ubiquitous and dynamical approaches are both
analytically intractable and numerically not affordable is
geophysical fluid dynamics. The early attempts to gain a
qualitative understanding of geophysical flows from statistical
mechanics focused on the spectral space [4,5], but a theory
dealing with continuous fields in the physical space is now
available [6–8]. The Miller-Robert-Sommeria (MRS) theory
was used to develop small-scale parametrizations [9–14] and
study the formation of localized vortices such as Jupiter’s great
red spot [15–17] or mesoscale ocean structures such as vortex
rings and zonal jets [18,19]. It has also been discussed in
relation to Fofonoff flows [20–22].

In this paper we construct the phase diagram of a simple
model of atmospheric flow on a rotating sphere: the barotropic
vorticity equation. Nontrivial equilibria are obtained and a
second-order phase transition with spontaneous symmetry
breaking is observed between a solid-body rotation phase and a
dipole phase. In addition, the system displays surprising ther-
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modynamic properties. Standard thermodynamics textbooks
usually explain that for large enough systems (thermodynamic
limit), mean values computed with a probability distribution
that assigns equal weights to all the states having a given
energy (microcanonical distribution) coincide with mean
values computed with a Boltzmann distribution (canonical
distribution). When the energy is not additive, which occurs
in the presence of long-range interactions [23,24], this is
generally not the case. Consequently, peculiar thermodynamic
features may appear: for instance, negative microcanonical
specific heat [25,26] (due to the fluctuation-dissipation theo-
rem, the canonical specific heat is always positive), convex
dips in the microcanonical entropy [27], and unusual phase
transitions [28,29]. The statistical equilibria of the barotropic
vorticity equations on the rotating sphere have been the object
of a number of studies in the past [30–32]. However, no
complete theory in the general framework of modern statistical
mechanics of turbulent flows is available. The purpose of this
paper is to fill this gap by providing the phase diagrams in the
various statistical ensembles and discussing in detail a notion
of marginal ensemble equivalence.

II. STATISTICAL MECHANICS OF IDEAL FLOWS
ON A ROTATING SPHERE

We base our study on the quasigeostrophic (QG) equations,
which provide a simple model of the atmospheric circulation.
For simplicity, we shall treat here only the barotropic case
with no bottom topography so that the potential vorticity is
just the sum of the relative vorticity and the planetary vorticity:
q = ω + f , where f = 2� cos θ and � is the angular velocity
of the Earth. The general case will be described in detail
elsewhere [33]. In the absence of forcing and dissipation, the
potential vorticity is advected by the flow:

∂tq + u · ∇q = 0. (1)

Here u = −r̂ × ∇ψ is the velocity field and ψ is the stream
function, related to the vorticity field by ω = −�ψ . For
convenience, we adopt the gauge condition

∫
D ψ dr = 0.
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Similarly to the 2D Euler equations, QG flows admit dynamical
invariants: the energy E[q] = (1/2)

∫
D(q − f )ψ dr and the

Casimirs �n[q] = ∫
D qn dr. For specific flow domains D,

some additional invariants must be considered. Here we focus
on the case of a sphere with unit radius D = S2, for which the
angular momentum L[q] = ∫

D(q − f ) cos θ dr is conserved.
Steady states of the QG equations that are stationary

in a frame rotating with angular velocity �L with respect
to the terrestrial frame satisfy q(θ,φ,t) = q(θ,φ − �Lt).
Substituting this relation into the evolution equation (1), we
obtain {q,ψ + �L cos θ} = 0, where { , } denote the Poisson
brackets. Hence the general form of steady states of the QG
equations on the sphere is q = F (ψ + �L cos θ ), where F is
an arbitrary function. Statistical mechanics allows us to select
the most probable function F given the value of the dynamical
invariants E,L, and �n as follows.

A priori, the evolution of the flow is purely determined by
the initial potential vorticity field q0. It is well known that
throughout the dynamical evolution, the potential vorticity
field develops finer and finer filaments. This small-scale
behavior of the potential vorticity field makes it difficult to
treat the flow in a deterministic way, as the typical scale
of potential vorticity fluctuations will eventually become
smaller than any simulation or observation resolution. In
contrast, the large-scale structure can be readily predicted by
statistical mechanics. Introducing a coarse-grained potential
vorticity field, one maximizes the statistical entropy subject
to the conservation constraints to obtain the most probable
potential vorticity field [6–8]. It is characterized by a functional
relationship q = F (ψ + �L cos θ ), where the function F

depends on the invariants. In the following we shall assume
that F is linear. Several justifications can be given to motivate
this choice. (i) It corresponds to a MRS equilibrium with a
Gaussian potential vorticity distribution reached for particular
initial conditions [6]. Furthermore, a state that maximizes
S[q] = −(1/2)

∫
D q2dr at fixed energy, circulation, and an-

gular momentum is granted to be thermodynamically stable
[20,34] (see also Ref. [14]). (ii) A linear q-ψ relationship
is obtained in the limit of strong mixing and in the low-
energy limit [35]. (iii) Maximizing the statistical entropy
with conservation of energy, circulation, angular momentum,
and fine-grained enstrophy is equivalent to minimizing the
coarse-grained enstrophy (1/2)

∫
D q2dr defined in terms of the

coarse-grained potential vorticity at fixed energy, circulation,
and angular momentum [36]. The ensemble-mean potential
vorticity is characterized by a linear q-ψ relationship and the
fluctuations around it are Gaussian. (iv) Some authors have
proposed to treat the Casimirs in a canonical way [37], which
is equivalent to choosing a prior small-scale potential vorticity
distribution [37–39]. The ensemble-mean potential vorticity
then maximizes a generalized entropy S[q] = − ∫

D C(q)dr,
where C is a convex function related to the prior. A Gaussian
prior leads to a linear q-ψ relationship; it is associated
with a quadratic generalized entropy S[q] = −(1/2)

∫
D q2dr

proportional to the coarse-grained potential enstrophy. All
these justifications lead to a linear q-ψ relationship. However,
they are not equivalent. They essentially differ in the manner
that the fragile constraints (high-order Casimir invariants) are
treated, while the robust constraints (energy, circulation, and
angular momentum) are strictly taken into account in all these

approaches. In approaches (i) and (ii), although the structure
of the equilibria in the limit considered depends only on the
robust invariants, conservation of the fragile invariants is taken
into account implicitly. To the contrary, approaches (iii) and
(iv) are based on the idea that, in real flows, forcing and
dissipation acting at small scales break down the conservation
of high-order Casimirs. In approach (iii) these constraints are
purely discarded while in approach (iv) they are replaced
by a prior. Note that, strictly speaking, either we consider
the unforced-undamped case and we should consider all the
invariants or we consider the forced-damped case in which case
the value of the robust invariants should also be selected by
the forcing and the dissipation. Finally, approach (ii) does not
make any assumption about the fluctuations of the potential
vorticity, contrary to approaches (i), (iii), and (iv), in which
they are Gaussian.

The microcanonical variational problem reads

S(E,L) = max
q

{S[q]|E[q] = E,L[q] = L}. (2)

Note that it is not necessary to include the circulation in the
constraints as it always vanishes due to the geometry. The
solutions of this variational problem are a subset of the full
class of MRS equilibria. In practice, constrained variational
problems such as Eq. (2) are difficult to solve. It is much more
convenient to work with the dual variational problem with
relaxed constraints, the grand-canonical variational problem:

J (β,μ) = max
q

{S[q] − βE[q] − μL[q]}. (3)

Clearly the two variational problems have the same critical
points, but the nature of the critical points (maxima, minima,
and saddle points) may differ. When this happens, we speak
of ensemble inequivalence [27,37,40]. For isolated systems,
such as the large systems encountered in astrophysics or
geophysical fluid dynamics, the natural ensemble is the
microcanonical ensemble. The classical interpretation of the
grand-canonical ensemble is that the system is in contact
with a reservoir of heat and angular momentum. The physical
interpretation of such a reservoir is unclear. Nevertheless, it is
always worthwhile to consider the grand-canonical ensemble,
be it just as a useful mathematical device. Indeed, a solution
of the grand-canonical problem (3) is always a solution
of the more constrained dual microcanonical problem (2).
Note that the variational principles (2) and (3) also provide
sufficient conditions of nonlinear dynamical stability for the
QG equations [37] (see also Ref. [14]).

III. SOLUTIONS OF THE MEAN-FIELD EQUATION AND
PHASE TRANSITION

The critical points of Eqs. (2) and (3) satisfy δS − βδE −
μδL = 0, which yields a linear q-ψ relationship q = −βψ −
μ cos θ , in accordance with the general form for steady
states q = F (ψ + �L cos θ ), where �L = μ/β is the angular
velocity of the frame in which the flow is stationary. Replacing
q by its definition, we obtain the mean-field equation

�ψ − βψ = f + μ cos θ. (4)

To solve this Helmholtz equation we introduce the eigenvalues
and eigenvectors of the Laplacian on the sphere: �Ynm =
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FIG. 1. (Color online) Amplitude of the dipole, relative to the solid-body rotation, as a function of the control parameter ε. At ε = εc ≡ 1,
a second-order phase transition occurs, accompanied by spontaneous symmetry breaking (in the dipole phase). Sample stream functions are
shown in the insets, with the arbitrary phase φ0 set to 0.

βnYnm, where the spherical harmonics Ynm form an orthonor-
mal basis of the Hilbert space L2(D) and βn = −n(n + 1)
(n ∈ N, −n � m � n).

When β is not an eigenvalue of the Laplacian, the operator
� − βI is invertible and the equilibrium stream function
reads

ψ = �∗ cos θ, (5)

with �∗ = (2� + μ)/(β1 − β). This corresponds to a solid-
body rotation with angular velocity �∗. The energy, angular
momentum, and entropy depend only on the angular ve-
locity: E = �∗2/3, L = 2�∗/3, and S = −2(� + �∗)2/3. In
particular, for a solid-body rotation, the energy and angular
momentum are not independent conserved quantities: They are
related by E = E∗(L), where E∗(L) = 3L2/4. One can easily
show that the energy of any flow with angular momentum L is
always greater than the energy of the solid-body rotation with
the same angular momentum: E � E∗(L).

When β is an eigenvalue of the Laplacian but not the
first nonzero one, say, β = βn>1, the stream function be-
longs to a (2n + 1)-dimensional vector space ψ = �∗ cos θ +∑

m ψnmYnm, with again �∗ = (2� + μ)/(β1 − βn). It is a
superposition of a solid-body rotation with a multipole.
The energy, angular momentum, and entropy are found
to be E = �∗2/3 − βn

∑
m |ψnm|2/2, L = 2�∗/3, and S =

−2(� + �∗)2/3 − βn

∑
m |ψnm|2/2.

Finally, the mean-field equation admits solutions for
β = β1 only if μ = μc ≡ −2�. In that case the stream
function reads ψ = �∗ cos θ + γc sin θ cos φ + γs sin θ sin φ.
The energy, angular momentum, and entropy depend on the
coefficients �∗, γc, and γs : E = (�∗2 + γ 2

c + γ 2
s )/3, L =

2�∗/3, and S = −2[(� + �∗)2 + γ 2
c + γ 2

s ]/3. Introducing
the angle φ0 such that γc = √

3[E − E∗(L)] cos φ0

and γs = √
3[E − E∗(L)] sin φ0, the stream function

becomes

ψ = �∗ cos θ +
√

3[E − E∗(L)] sin θ cos(φ − φ0). (6)

This is a dipole flow with an arbitrary phase φ0. Set-
ting ε = E/E∗(L), the amplitude of the dipole relative
to the background solid-body rotation can be recast as
a(ε) ≡ √

ε − 1; then ψ = (3L/2)[cos θ + a(ε) sin θ cos(φ −
φ0)]. This reveals a second-order phase transition between a
solid-body rotation phase at ε = εc ≡ 1 and a dipole phase for
ε > εc (Fig. 1). The angular momentum controls the overall
amplitude. The phase φ0 is not determined by the control
parameters: This is a case of spontaneous symmetry breaking.
Since the phase transition line coincides with the line of
minimum energy E∗(L), the phase transition would be difficult
to see in practice (in numerical simulations for instance). This
is reminiscent of some systems encountered in condensed
matter physics, where the critical point is sometimes reached at
vanishing temperature (T = 0), such as in the 1D Ising chain.
However, it is possible that, in more realistic models, the two
lines separate from each other.

We stress that the spontaneous symmetry-breaking property
is also related to an apparent paradox of the Kraichnan
statistical theory in spectrally truncated space [41]. In the
spectrally truncated statistical mechanics of quasigeostrophic
flows over topography [4,5,42], there is usually a distinction
between the mean flow and the eddies, or transients. Statistical
equilibria are said to be sharp when the eddy component
vanishes in the limit of infinite cutoff wave number. An
often-read claim is that in the absence of topography, all the
energy is contained in the transients and there is no mean flow
in the statistical equilibria, breaking the sharpness property.
This would be in contradiction with the MRS theory, which
directly predicts sharp equilibria. This apparent paradox is
waived by a symmetry-breaking argument: For a given value
of the canonical parameters, opposite stream functions are
equally admissible. When summing over all the states, they
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cancel out, leaving a null mean flow. However, in practice, the
system selects spontaneously a particular symmetry-breaking
state within the symmetry restoring set of equilibrium states.
Note that this apparent paradox is more easily understood in
the context of the inequivalence of statistical ensembles: The
proper ensemble to work with is the microcanonical ensemble,
in which the paradox does not appear. This was not noticed
at that time, however, because statistical mechanics in the
microcanonical ensemble was still poorly understood (obser-
vation of ensemble inequivalence was made in Refs. [25,26],
but it took some time before a thorough understanding
was reached [27]), although Kraichnan himself expressed
concerns about the relevance of canonical measures for fluid
systems.

IV. NATURE OF THE CRITICAL POINTS AND MARGINAL
ENSEMBLE EQUIVALENCE

The nature of the critical points of entropy is given by
the second variations of the grand-potential functional J [q] ≡
S[q] − βE[q] − μL[q]: A critical point of entropy at fixed
energy and angular momentum is a local maximum if and
only if δ2J < 0 for all perturbations δq that conserve E and
L at first order [14]. This is the microcanonical stability
condition. In the grand-canonical ensemble, the stability
condition is δ2J < 0 for all perturbations. The quadratic
form δ2J = −(1/2)

∫
D(δq)2dr − (1/2)β

∫
D(∇δψ)2dr is neg-

ative definite for β > β1. Hence, in this case, the flow is
grand-canonically stable and therefore also microcanonically
stable. When β < β1, it is easy to build perturbations that
destabilize the flow. Consider a perturbation δq proportional
to a Laplacian eigenvector Ynm. The basic flow is either a
solid-body rotation or a degenerate flow (β = βp>1). For
(n,m) �= (0,0),(1,0) (and n �= p in the degenerate case), the
perturbation conserves the energy and the angular momentum,
while at the same time δ2J > 0. Thus all the states obtained
for β < β1 are microcanonically unstable and therefore also
grand-canonically unstable [33].

When β = β1 the situation is slightly more subtle. The
quadratic form δ2J is degenerate: Its radical R is a vector
space of dimension 3, spanned by Y11, Y1,−1, and Y10. All the
elements of this vector space (which are combinations of solid-
body rotations and dipoles) share the same value J = −2�2/3
of the grand-potential functional, which means that they are
metastable in the grand-canonical ensemble. Perturbations
belonging to R allow transitions between one flow of the
form (6) to another with different values of L, E, and φ0.
In the microcanonical ensemble, imposing conservation of
angular momentum and energy at all orders implies that
the only perturbations in R to be considered are those that
change only φ0. These solutions have the same entropy S =
−2[E − E∗(L)] − (3/2)(L + 2�/3)2. Hence each state with
given (E,L) in the microcanonical ensemble is metastable,
but with fewer Goldstone bosons (only one) than in the
grand-canonical ensemble (where there are three Goldstone
bosons).

To sum up, in the grand-canonical ensemble, the equilib-
rium flow is either a solid-body rotation (β > β1, corotating for
μ < μc, counterrotating for μ > μc) or a dipole (β = β1,μ =
μc) with arbitrary energy, angular momentum, and phase. The

corresponding phase diagram is represented in Fig. 2. In the
particular case μ = 0 (no angular momentum constraint) we
recover the solid-body rotations obtained previously in Monte
Carlo simulations [30]. In the microcanonical ensemble, when
E = E∗(L) the equilibrium flow is a solid-body rotation
(corotating for L > 0, counterrotating for L < 0), while for
E > E∗(L) it is a dipole with arbitrary phase (Fig. 3). A
second-order phase transition occurs between the solid-body-
rotation phase and the dipole phase, accompanied by U(1)
spontaneous symmetry breaking, as the phase of the dipole is
undetermined. The choice of a particular phase is analogous
to the choice of a fundamental state in field theory [43].

The second-order phase transition is very special because
one of the two phases (solid-body rotation) exists only on a
curve E∗(L) while the other phase (dipole) exists on a surface
E > E∗(L). On the curve E∗(L), the parameters β(E,L) and
μ(E,L) take any values in the range β � β1 and μ < μc (if
L > 0) or μ > μc (if L < 0), while on the surface E > E∗(L)
they take the unique values β = β1 and μ = μc. Therefore,
the second derivatives ∂2S/∂E2 = ∂β/∂E and ∂2S/∂L2 =
∂μ/∂L pass from +∞ to 0 as we go from the solid-body
rotation phase to the dipole phase. This is therefore a case of
extreme discontinuity of the second derivatives of the entropy
with respect to the conserved quantities.

Note that the analytical tractability of the system considered
here allows us to understand precisely how the grand-canonical
equilibrium states and the microcanonical equilibrium states
are related: To every half-straight line starting from the critical
point on the grand-canonical phase diagram (in the right half-
plane, see Fig. 2), with the equation μ = �∗(β1 − β) − 2�,
we can associate a single point (E,L) = (�2

∗/3,2�∗/3) on
the E = E∗(L) parabola in the microcanonical phase diagram
(Fig. 3). Similarly, the critical point (β = β1,μ = μc) is
mapped onto the whole area over the parabola. Formally, the
grand-canonical and microcanonical ensembles are equivalent

β

counterrotating
solid�body
rotations

corotating
solid�body
rotations

corotating
solid�body
rotations

counterrotating
solid�body
rotations

Μc��2�

Β1Β2Β3

����0.5

μ

FIG. 2. (Color online) Grand-canonical phase diagram for
barotropic flows on a rotating sphere. Stable equilibrium states are
obtained for β > β1. At the critical point (β = β1,μ = μc), there is
an infinity of metastable states. Vertical dashed lines (green) indicate
the position of unstable degenerate states. At the intersection with the
line μ = μc (dashed red points), only the degenerate part subsists.
On the horizontal blue solid (dashed) line the equilibrium flow is a
stable (unstable) trivial motionless flow. No solution exists if β = β1

and μ �= μc. The dotted half-straight line represents an iso-�∗ line.
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FIG. 3. (Color online) Microcanonical phase diagram for
barotropic flows on a rotating sphere. The parabola E = E∗(L)
corresponds to solid-body rotations, while the shaded area over the
parabola represents dipole flows. The area below the parabola is
not accessible. The parabola is the location of a second-order phase
transition with spontaneous symmetry breaking.

at the macrostate level [40]; it is in fact a case of marginal
equivalence [27]. Note that the marginal ensemble equivalence
is extreme here in that the vast majority of the equilibrium
states in the microcanonical ensemble [E > E∗(L)] are all
included in the set of grand-canonical equilibria obtained at
a single value of the Lagrange parameters (β = β1,μ = μc).
As a consequence, the construction of equilibrium states in
the grand-canonical ensemble may be difficult to control
in practice. Marginal ensemble equivalence is also seen at
the thermodynamic level: Geometrically, the microcanonical
entropy S is a plane. Therefore, it is a concave function,
which is characteristic of ensemble equivalence at the ther-
modynamic level [27,40], but only marginally so: It is also a
convex function. Equivalently, the specific heats ∂2S/∂E2 and
∂2S/∂L2 vanish. This indicates that the system considered is
on the edge of ensemble inequivalence: The grand-canonical
and microcanonical ensembles are formally equivalent, but
very close to being inequivalent.

Here it is possible to analyze the ensemble equivalence
properties beyond marginal ensemble equivalence. Indeed,
as explained above, the metastability in the grand-canonical
ensemble is more severe than in the microcanonical ensemble
since only the phase of the dipole is undetermined (and thus
free to vary due to spontaneously generated perturbations) in
the microcanonical ensemble while the energy and angular
momentum are also unconstrained in the grand-canonical
ensemble. Hence a refinement of the notion of marginal
ensemble equivalence can be introduced by considering the
number of Goldstone modes in each ensemble. It is equal to one
in the microcanonical ensemble, three in the grand-canonical
ensemble, and two in any mixed ensemble (not discussed). As
a practical manifestation of these Goldstone modes, numerical
constructions of the equilibrium states have to be aware that
spontaneous fluctuations may exist, the form of which depends
on the statistical ensemble considered. This property stems
from the degeneracy of the first eigenvalue of the Laplacian
on the sphere. Up to now, most studies have assumed that the
first Laplacian eigenmode was not degenerate [20,21,44,45],

with the notable exception of Refs. [32,46]. Another important
consequence is that in the presence of degeneracies, ensemble
inequivalence results such as those observed in Ref. [20] can
collapse.

Note also that the marginal ensemble equivalence and the
second-order phase transition observed here may not be robust
with respect to small nonlinearities in the q-ψ relationship. As
analyzed in the case of the energy-circulation ensemble on a
rectangular domain [45], depending on the sign of the small
nonlinearity, second-order phase transitions can turn into first-
order phase transitions. Due to the formal similarity between
the two systems, the situation is likely to be the same here.

V. CONCLUSION

In this paper we have explicitly computed a class of
statistical equilibria for 2D flows on a rotating sphere, built
the corresponding phase diagrams, and characterized precisely
the ensemble equivalence properties. Note that all the energy
condenses in the lowest- (nonzero-) order mode. It is the
combination of the angular momentum conservation and
Laplacian degeneracy on the sphere that allows for nontrivial
Bose-Einstein condensation [2]; with the angular momentum
constraint, the energy is shared between two phases, which
makes phase coexistence and phase transition possible. Hence
the results presented here have a fundamentally geometric
nature. Note that in the dipole phase, the value of the
angular momentum fixes the solid-body-rotation part of
the flow. The subtle ensemble equivalence properties of the
system also stem from the particular geometry: The general
inequality E � E∗(L) is purely kinematic. Without this in-
equality, ensemble equivalence would not hold. Nevertheless,
ensemble equivalence is only marginal [27] and it is so in
a particularly extreme way. At the thermodynamic level, the
entropy surface is concave, but not strictly: It is locally flat
at each point of the interior of the parabola E = E∗(L). At
the macrostate level, each microcanonical equilibrium state is
also a grand-canonical equilibrium state. More precisely, the
set of macrostates M(E,L) obtained in the microcanonical
ensemble with a given energy E and angular momentum L

is a subset of the set of macrostates GC(β,μ) obtained in
the grand-canonical ensemble with the adequate Lagrange
parameters (β,μ). When E = E∗(L), M(E,L) = GC(β,μ)
for any (β,μ) satisfying (2� + μ)/(β1 − β) = �∗ with �∗ =
3L/2. For E > E∗(L), M(E,L) � GC(β1,μc). Indeed, the
set GC(β1,μc) contains all the dipole flows with any value
of the energy and angular momentum in the interior of the
parabola, while the set M(E,L) contains only the dipole flows
with given values of the energy and angular momentum. This
is a loose constraint on the two macrostate sets. We have
shown that it is possible to go further than the usual notion of
marginal ensemble equivalence by introducing the concept
of symmetry breaking: The symmetry breaking occurring
in the grand-canonical ensemble is stronger than in the
microcanonical ensemble. As usual in the theory of continuous
symmetry breaking, this is measured by the number of
Goldstone modes. Statistical mechanics in the microcanonical
and grand-canonical ensembles differ in their number of such
modes (zero-energy modes in the microcanonical ensemble
and zero-temperature modes in the grand-canonical ensemble).

056304-5



HERBERT, DUBRULLE, CHAVANIS, AND PAILLARD PHYSICAL REVIEW E 85, 056304 (2012)

This subtle difference can exist only when the Laplacian is
degenerate on the flow domain, which is the case on the sphere
and on any manifold with sufficient symmetries (in fact, it
suffices that the eigenspace corresponding to the first nonzero
eigenvalue of the Laplacian be degenerate). For instance, the
analysis does not apply to the case of a rectangular domain
with a linear q-ψ relationship and zero circulation [21,35],
even though the entropy depends linearly on the energy in
that case. Contrary to our study, symmetries are not sufficient
in this example to go further than the notion of marginal
ensemble equivalence: On a rectangular domain, one has
only a discrete, not continuous, symmetry breaking, which
prevents the discussion in terms of Goldstone bosons. This
explains why it was not discussed before, as all authors
focused on cases when the first eigenvalue of the Laplacian
is not degenerate. Therefore, there exist cases for which a
refinement of the definition of marginal ensemble equivalence
is needed. As Laplacian degeneracies stem from symmetries, it
is natural that the degree of symmetry breaking in macrostates
becomes the refined notion of marginal ensemble equivalence
at the macrostate level. In our system we are able to say
that there is one Goldstone mode in the microcanonical
ensemble, three Goldstone modes in the grand-canonical
ensemble, and two Goldstone modes in both mixed ensembles
(where one constraint is treated microcanonically and the other
canonically).

Note that in the case of a rectangular domain with doubly
periodic boundary condition (the two-dimensional torus), the
first Laplacian eigenmode is degenerate (for aspect ratio one).
The consequence is that the topology of the flow is not fixed
by the invariants when considering only the maximization
of a quadratic generalized entropy functional with energy
constraint: Both parallel flows and dipole flows belong to
the family of extrema [46]. The degeneracy can be lifted
either by stretching the domain or by considering small
nonlinearities in the q-ψ relationship. The coexistence of
two phases is very similar to our findings in the spherical
geometry, except that in our case, even at fixed energy, the
degeneracy can be lifted by the angular momentum constraint
(in the microcanonical ensemble). The square doubly periodic
domain is another example of a case of marginal ensemble
equivalence where our analysis in terms of Goldstone mode
is expected to be valid, with the difference that the marginal
ensemble equivalence there holds only with respect to one
parameter, the energy, whereas in the spherical case it holds in
a two-dimensional thermodynamic parameter space, the (E,L)
plane.

From the geophysical application side, our study is based
on the QG equations. These equations provide a simplified

model of the true equations of motion for geophysical
fluids, which are often called primitive equations and rely
on the Navier-Stokes equations. In the QG approximation
the essential hypotheses are that the fluid layer is thin and
geostrophic balance prevails approximately (which implies
that rotation is strong enough) [47]. Both hypotheses are
relatively well verified in the atmosphere and oceans. Hence,
although we consider here the simplest version of the QG
equations (barotropic case), the model in itself is relatively
realistic (it is not a toy model). However, there is of course
a fundamental difference between the model and reality, as
we consider here that the forcing and dissipation equilibrate
locally while it is only true globally in real steady states. This
strong simplification is common to all the statistical mechanics
approaches up to now, as it ensures that the Liouville theorem
is satisfied.

It is generally believed that the dynamics of the atmosphere
is essentially due to out-of-equilibrium processes. Neverthe-
less, the equilibrium states obtained here resemble to some
extent to patterns observed in planetary atmosphere. For
instance, the solid-body rotation corresponds roughly to the
first order of the general circulation. This type of flows was
also used in the past to model the phenomenon of superrotation
in planetary atmospheres [31]. The similarity is much more
striking when considering the saddle points of the entropy
functional (see Ref. [33] for a detailed description), which al-
though not formally stable may be long lived as the system may
not generate spontaneously the destabilizing perturbations. In
particular, we find states with vortices in the middle latitudes,
which are reminiscent of the atmosphere of the Earth. The
lowest-order saddle point is a quadrupole state, in agreement
with simulations of 2D flows on a nonrotating sphere [48,49].
In the rotating case, zonal structures prevail in numerical
simulations [48,50]. When mixing is not strong enough,
numerical simulations [51] and laboratory experiments
[52] indicate a discrepancy between the final organization
of the flow and the statistical mechanics prediction. In this
case the system may remain in the vicinity of saddle points
of the entropy functional for a long time. Another example
where the out-of-equilibrium steady states are well described
by the equilibrium theory [53] is that of the von Kármán flow
(the functions relating stream function, angular momentum,
and azimuthal velocity being selected by the forcing and
dissipation [54]). This indicates that the out-of-equilibrium
attractors may concentrate near the equilibrium states and thus
computations carried out in the framework of the equilibrium
theory may remain relevant to describe the out-of-equilibrium
steady states when forcing and dissipation equilibrate each
other.
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