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Simulated Data for Linear Regression with Structured and Sparse Penalties

A very active field of research in Bioinformatics is to integrate structure in Machine Learning methods. Methods recently developed claim that they allow simultaneously to link the computed model to the graphical structure of the data set and to select a handful of important features in the analysis.

However, there is still no way to simulate data for which we can separate the three properties that such method claim to achieve. These properties are:

(i) the sparsity of the solution, i.e., the fact the the model is based on a few features of the data;

(ii) the structure of the model;

(iii) the relation between the structure of the model and the graphical model behind the generation of the data.

We propose a framework to simulate data for linear regression in which we control: The signal-to-noise ratio, the internal correlation structure of the data and the optimisation problem that they are a solution of. Also, we make no statistical assumptions on the distribution of the data set.

Introduction

Simulated data are widely used to assess optimisation methods. This is because of their ability to evaluate certain aspects of the methods under study, that are impossible to look into when using real data sets. In the context of convex optimisation, it is never possible to know the exact solution of the minimisation problem with real data and it proves to be a difficult problem even with simulated data. We propose to generalise an approach originally proposed by Nesterov [START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF], for LASSO regression, to a broader family of penalised regressions.

We would thus like to generate simulated data for which we know the exact solution of the optimised function. The inputs are: The minimiser β * , a candidate data set X 0 (n × p), residual vector ε, regularisation parameters (in our case they are two: κ and γ), the signalto-noise ratio σ, and the expression of the function f (β) to minimize.

The candidate version of the dataset may for instance be X 0 ∼ N (0, Σ), and the residual vector may be e ∼ N (0, 1).

The proposed procedure outputs X and y such that

β * = arg min β f (β),
with f a convex function depending on the data set X and the outcome y.

Background

In this section we will present the context of linear regression, with complex penalties and a first algorithm presented by Nesterov [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]. We finish by introducing the properties of the simulated data that a user would like to control.

Linear Regression

We place ourselves in the context of linear regression models. Let X ∈ R n×p be a matrix of n samples, where each sample lies in a p-dimensional space; and let y ∈ R n denote the ndimensional response vector. In the linear regression model y = Xβ +e, where e is an additive noise vector and β represents the unknown p-vector that contains the regression coefficients. This statistical model explains the variability in the dependent variable, y, as a function of the independent variables, X. The model parameters are calculated so as to minimise the classical least squares loss. The value of β that minimises the sum of squared residuals, that is 1 2 Xβy 2 2 , is called the Ordinary Least Squares (OLS) estimator for β. We provide in the following paragraphs the mathematical definitions and notations that will be used throughout this paper. First, we denote by • q the standard ℓ q -norm defined on R p by

x q := p j=1 x q j 1 q , with dual norm • q ′ .
For a smooth real function f on R p , we denote by ∇f (β) the gradient vector (∂ 1 f (β), . . . , ∂ p f (β)). However, many functions that arise in practice may be non-differentiable at certain points. A common example is the ℓ 1 -norm. In that case, the generalisation of the gradient for a non-differentiable convex functions leads naturally to the following definition of the subgradient.

Definition 2.1. A vector v ∈ R p is a subgradient of a convex function f : dom(f ) ⊆ R p → R at β if f (y) ≥ f (β) + v|y -β , (1) 
for all y ∈ dom(f ). The set of all subgradients at β is called the subdifferential, and is denoted by ∂f (β).

LASSO

The function

f (β) = 1 2 Xβ -y 2 2 + κ β 1
is known as the LASSO problem.

Nesterov [START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF] addressed how to simulate data for this case, and we will therefore not go into details. Instead we will simply adapt it to our notation and explain some steps that are not obvious.

The principle behind Nesterov's idea is as follows: First, define the error to be ε = Xβ -y, in the model between Xβ and y, such that it is independent from β * . Then, select acceptable values for the columns of X such that zero belongs to the sub-gradient of f at point β * , with the subgradient

∂f (β) = X ⊤ (Xβ -y) + κ∂ β 1 = X ⊤ ε + κ∂ β 1 . At β * we have such that 0 ∈ X ⊤ ε + κ∂ β * 1 , (2) 
and we stress again that that X ⊤ ε does not depend on β * . We distinguish two cases:

First case: We consider a variable β * i = 0, the ith element of β * . With β * i = 0 it follows that ∂|β * i | = sign(β * i ), and thus that 0 = X ⊤ i ε + κ sign(β * i )
follows because of Eq. ( 2), with X i the ith column of X.

Second case: We consider the case when β * i = 0. We note that the subgradient of

|β * i | when β * i = 0 is ∂|β * i | ∈ [-1, 1]
, and thus from Eq. ( 2) we see that

0 ∈ X ⊤ i ε + κ[-1, 1]. (3) 

Solution

The candidate matrix X 0 will serve as a first un-scaled version of X and in fact we have such that

X i = ω i X 0,i , for all 1 ≤ i ≤ p. If β * i = 0, then X ⊤ i ε + κ sign(β * i ) = 0 and thus X ⊤ i ε = -κ sign(β * i )
and since X i = ω i X 0,i we have

ω i = -κ sign(β * i ) X ⊤ 0,i ε .
If β * i = 0, we use Eq. ( 3) and have

X ⊤ i ε ∈ κ[-1, 1].
Thus, with X i = ω i X 0,i we obtain

ω i X ⊤ 0,i ε ∈ κ[-1, 1],
or equivalently

ω i ∼ κU (-1, 1) X ⊤ 0,i ε , Once X is generated, we let y = Xβ * -ε.

Method

The objective is to generate X and y such that

β * = arg min β 1 2 Xβ -y 2 2 + P (β),
where P is a penalty that can be expressed on the form

P (β) = π∈Π κ π π(β),
in which Π is the set of all penalties, π. This is a general notation to represent the fact that we have many different penalties; κ π is the regularisation parameter of penalty π, and ∂π(β * ) is the subgradient of penalty π at β * . Thus, if you know the subgradient of each penalty, the general solution can be written on the form

ω i = π∈Π -κ π ∂π(β * ) X ⊤ 0 ε
.

The penalties that we consider in this work are

P (β) = κ Ridge 2 β 2 2 + κ ℓ 1 β 1 + κ T V TV(β),
and, as we show below, we know their subgradients.

Subgradient of Complex Penalties

The complex penalties that we consider in this work can be written on the form

π(β) = G g=1 A g β q . ( 4 
)
We will in this work only be interested in the case when q = q ′ = 2, i.e. the Euclidean norm. This is the case when π is e.g. the Total Variation constraint [START_REF] Rudin | Nonlinear total variation based noise removal algorithms * f u = f Uo[END_REF] or Group LASSO [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. We need the following two Lemmas in order to derive the subgradient of this complex penalty.

Lemma 3.1 (Subgradient of the sum). If f 1 and f 2 are convex functions, then

∂(f 1 + f 2 ) = ∂f 1 + ∂f 2 .
Proof. See [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF]. Lemma 3.2 (Subgradient of the composition). If f and g(x) = Ax are linear functions, then

∂(g • f )(β) = A ⊤ ∂f (Aβ).
Proof. See [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF].

These Lemmas play a central role in the following theorem that details the structure of the subgradient of π.

Theorem 3.3 (Subgradient of π). If π has the form given in Eq. (4), then

∂π(β) = A ⊤    ∂ A 1 β 2 . . . ∂ A G β 2    .
Proof.

∂π(β) = ∂   G g=1 A g β 2   = G g=1 ∂ A g β 2 (Using Lemma 3.1) = G g=1 A ⊤ g ∂ A g β 2 (Using Lemma 3.2) = A ⊤    ∂ A 1 β 2 . . . ∂ A G β 2    .
Before we show the application to some actual penalties we will mention that the subgradient of the 2-norm is

∂ x 2 = x x 2 if x 2 > 0, {y | y 2 ≤ 1} if x 2 = 0.
(5)

Algorithm

In this section, we detail the algorithm that generates a simulated dataset that is the solutions to a complex optimisation problem.

Algorithm 1 Simulate dataset Require: β * , X 0 , ε Ensure: X, y and β * such that β * = arg min f (β)

1: for π ∈ Π do 2:
Generate r π ∈ ∂π(β * ) 3: end for 4: for i = 1, . . . , p do 5:

ω i = -π∈Π κπr π,i X ⊤ 0,i e 6: 
X i = ω i X 0,i 7: end for 8: y = Xβ *e

Application

We apply the aforementioned algorithm to generate a data set and associate it to the exact solution of a linear regression problem with Elastic Net and Total variation, TV, penalties. Since Algorithm 1 requires the computation of an element of the subgradient for each penalty, we first focus on detailing the subgradient of TV.

Total Variation

The TV constraint, for a discrete β, is defined as

TV (β) = p i=1 ∇β i 2 , (6) 
where ∇β i is the gradient at point β i . Since β is not continuous, the TV constraint needs to be approximated. It is usually approximated using the forward difference, i.e. such that

TV (β) = p i=1 ∇β i 2 ≈ p 1 -1 i 1 =1 • • • p D -1 i D =1 (β i 1 +1,...,i D -β i 1 ,...,i D ) 2 + • • • + (β i 1 ,...,i D +1 -β i 1 ,...,i D ) 2 ,
where p i is the number of variables in the ith dimension, for i = 1, . . . , D, with D dimensions. We will first illustrate this in the 1-dimensional case. In this case

x 2 = √ x 2 = |x|, since x ∈ R. Thus we have TV (β) ≈ p-1 i=1 |β i+1 -β i |,
We note that if we define

A =        -1 1 0 • • • 0 0 0 -1 1 • • • 0 0 . . . . . . . . . . . . 0 0 • • • 0 -1 1 0 0 • • • 0 0 0        , then TV (β) ≈ p-1 i=1 |β i+1 -β i | = G g=1 A g β 2 ,
where G = p and A g is the gth row of A. Thus, we use Theorem 3.3 and obtain

∂T V (β) = A ⊤    ∂ A 1 β 2 . . . ∂ A G β 2    = A ⊤    ∂ |β 2 -β 1 | . . . ∂ |β G -β G-1 |    ,
in which we use Eq. ( 5) and obtain that

∂|x| = sign(x) if |x| > 0, [-1, 1] if |x| = 0.
The general case will be illustrated with a small example using a 3-dimensional image. A 24-dimensional regression vector β is generated, that represents a 2 × 3 × 4 image. The image, with linear indices indicated, is 1st layer: We note, when using the linear indices, that β 1 and β 2 are neighbours in the 1st dimension, that β 1 and β 5 are neighbours in the 2nd dimension and that β 1 and β 13 are neighbours in the 3rd dimension. Using 3-dimensional indices, i.e. such that β i,j,k , the penalty becomes

T V (β) ≈ p 1 -1 i=1 p 2 -1 j=1 p 3 -1 k=1 (β i+1,j,k -β i,j,k ) 2 + (β i,j+1,k -β i,j,k ) 2 + (β i,j,k+1 -β i,j,k ) 2 , in which p 1 = 4, p 2 = 3 and p 3 = 2.
We thus construct the A matrix to reflect this penalty. The first group will be

A 1 =  
-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0   , Thus, for group A i we will have a -1 in the ith column in all dimensions, a 1 in the i + 1th column for the 1st dimension, a 1 in the (p 1 + i)th column for the 2nd dimension and a 1 in the (p 1 • p 2 + i)th column for the 3rd dimension. Note that when these indices fall outside of the A matrix (i.e., the indices are greater than p 1 , p 2 or p 3 , respectively) then the whole row (but not the group!) must be set to zero (or handled in some other way not specified here).

We thus obtain

∂T V (β) = A ⊤    ∂ A 1 β 2 . . . ∂ A 24 β 2    . (7) 
We use Eq. ( 5) and obtain

∂ A i β 2 = A i β A i β 2 if A i β 2 > 0, αu u 2 , α ∼ U(0, 1), u ∼ U(-1, 1) 3 if A i β 2 = 0. (8) 
We note that A is very sparse, which greatly helps to speed up the implementation.

Linear regression with Elastic Net and Total Variation penalties

We will here give an example with Elastic Net and Total Variation penalties. The function we are working with is

f (β) = 1 2 Xβ -y 2 2 + 1 -κ 2 β * 2 2 + κ β * 1 + γ TV(β).
The subgradient in this case is

0 ∈ X ⊤ ε + (1 -κ)β + κ∂ β * 1 + γ∂ TV(β * ). ( 9 
)
We rearrange like for the LASSO and note that we seek

X ⊤ i ε = -(1 -κ)β * i -κ∂|β * i | -γ(∂ TV(β)) i
and further, since X i = ω i X 0, i , that

ω i = -(1 -κ)β * i -κ∂|β * i | -γ(∂ TV(β)) i X ⊤ 0,i ε
We note that in the case when β * i = 0, adding the smooth Ridge constraint to the LASSO has no effect.

We use Theorem 3.3 and obtain a subdifferential that contains zero

0 ∈ X ⊤ ε + (1 -κ)β + κ∂ β * 1 + γA ⊤    ∂ A 1 β 2 . . . ∂ A G β 2    .
With the subgradient of TV defined using Eq. ( 7) and Eq. (8), we obtain

ω i = -(1 -κ)β * i -κ∂|β * i | -γ   A ⊤    ∂ A 1 β 2 . . . ∂ A G β 2       i X ⊤ 0,i ε ,
for each variable i = 1, . . . , p and with X i = ω i X 0, i . By (•) i , we denote the ith variable of the vector within parentheses. We also remember from Section 2.2 that ∂|x| is sign(x) if x = 0 and x ∈ [-1, 1] if x = 0; thus, if x = 0, we may choose x ∼ U(-1, 1).

SNR and correlation

We use the same definition of signal-to-noise ratio as in [START_REF] Bach | Convex optimization with sparsity-inducing norms[END_REF], namely

SNR = X(β)β 2 e 2 ,
where X(β) is the data generated from β when using the simulation process described above. With this definition of signal-to-noise ratio, and with the definition of the simulated data given above we may scale the regression vector such that SNR

(a) = X(βa)βa 2 e 2 . ( 10 
)
If the user provides a desired signal-to-noise ratio, σ, it is reasonable to ask if we are able to find an a such that SNR(a) = σ. We have the following theorem.

Theorem 4.1. Using the definition of simulated data described above, and with the definition of signal-to-noise ratio in Eq. (10) there exists an a > 0 such that

SNR(a) = σ, (11) 
for σ > 0.

Proof. We rephrase the signal-to-noise ratio as

X(βa)βa 2 = σ e 2 ,
and square both sides to get X(βa)βa 2 2 = σ 2 e 2 2 = s.

We let X i be the ith column of X, we remember that X i = ω i X 0,i , and let β i be the ith element of β. The left-hand side is written

X(βa)βa 2 2 = p i=1 X i β i a ⊤ p i=1 X i β i a (12) = p i=1 p j=1,j =i a 2 X ⊤ i X j β i β j + p i=1 a 2 X ⊤ i X i β 2 i = p i=1 p j=1,j =i a 2 X ⊤ 0,i X 0,j β i β j ω i ω j + p i=1 a 2 X ⊤ i X i β 2 i ω 2 i .
If we add all the constraint rescribed above, i.e. ℓ 1 , ℓ 2 and TV, we have that

ω i = -λ∂|β i | -aκβ i -γ   A ⊤    ∂ A 1 β 2 . . . ∂ A G β 2       i X ⊤ 0,i ε ,
and we may thus write ω i = k i a + m i , with k i = -κβ i X ⊤ 0,i ε and

m i = -λ∂|β i | -γ   A ⊤    ∂ A 1 β 2 . . . ∂ A G β 2       i X ⊤ 0,i ε .
We continue to expand Eq. ( 12) and get p i=1 p j=1,j =i a 2 X ⊤ 0,i X 0,j β i β j ω i ω j + 

p i=1 a 2 X ⊤ i X i β 2 i ω 2 i = p i=1 p j=1,j =i a 2 X ⊤ 0,i X 0,j β i β j (k i a + m i )(k j a + m j ) + p i=1 a 2 X ⊤ i X i β 2 i (k i a + m i ) 2 = p i=1 p j=1,j =i a 2 X ⊤ 0,i X 0,j β i β j d i,j (a 2 k i k j + ak i m j + am i k j + m i m j ) + p i=1 a 2 X ⊤ i X i β 2 i d i,i ( 

  a 2 k 2 i + a2k i m i + m 2 i ).

	p	p
	=	
	i=1	j=1,j =i

a 4 d i,j k i k j + a 3 d i,j (k i m j + m i k j ) + a 2 d i,j m i m j + p i=1 a 4 d i,i k 2 i + a 3 2d i,i k i m i + a 2 d i,i m 2 i .

We note that this is a fourth order polynomial and write it on the generic form X(βa)βa 2 2 = Aa 4 + Ba 3 + Ca 2 .

Now, since we seek a solution a > 0 such that X(βa)βa 2 2 = s, we seek positive roots of the quartic equation

This fourth order polynomial has a minimum of -s at a = 0, also Eq. ( 10) is positive for all values of a, and tends to infinity when a tends to infinity. Thus, by the intermediate value theorem there is a value of a for which X(βa)βa 2 2 -s = 0 and thus also that SNR(a) = σ.

We may use Eq. ( 13) above to find the roots of this fourth order polynomial analytically. This may, however, be tedious because of the many terms of the function. Instead, because of the above theorem, we know that we can sucessfully apply the Bisection method to find a root of this function. The authors have tested this sucessfully, even with larger datasets. Also, we may use either root, if there are more than one, since they all give SNR(a) = σ.

Thus, to control the signal-to-noise ratio, we would encapsulate Algorithm 1 in a Bisection loop in order to control the signal-to-noise ratio.

Also, we control the correlation structure of X 0 by e.g. letting X 0 ∼ N (0, Σ). Also, we let X i = ω i X 0,i for all 1 ≤ i ≤ p. It then follows that cor(X l , X m ) = cor(ω l X 0,l , ω m X 0,m ).

Example

The main benefit of generating the data like this is that we know everything about our data. In particular, we know the true minimiser, β * , and we know the Lagrange multipliers κ and γ. There is no need to use e.g. cross-validation to find any parameters, and we know directly if the β (k) that our minimising algorithm found is close to the true β * or not.

We illustrate this main point by a small simulation, in which we vary κ and γ in an interval around their "true" values and compute f (β (k) )f (β * ) for each of these values. The result is shown in Figure 1, and we see that the solution that gives the smallest function value is at precisely the true values of κ and γ.

Figure 1: An illustration of the benefit of using the simulated data described in this section. The minimum solution is found when using the regularisation parameters used in the construction of the simulated data. These (25 × 36) data had no correlation between variables and the following characteristics: 50 % sparsity, signal-to-noise ratio 100, κ = 0.5, γ = 1.0.