
HAL Id: cea-00914960
https://cea.hal.science/cea-00914960v2

Preprint submitted on 23 Dec 2013 (v2), last revised 7 Jan 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulated Data for Linear Regression with Structured
and Sparse Penalties

Tommy Lofstedt, Vincent Guillemot, Vincent Frouin, Edouard Duchesnay,
Fouad Hadj-Selem

To cite this version:
Tommy Lofstedt, Vincent Guillemot, Vincent Frouin, Edouard Duchesnay, Fouad Hadj-Selem. Sim-
ulated Data for Linear Regression with Structured and Sparse Penalties. 2013. �cea-00914960v2�

https://cea.hal.science/cea-00914960v2
https://hal.archives-ouvertes.fr

Simulated Data for Linear Regression with Structured and

Sparse Penalties

Tommy Löfstedt∗1,†, Vincent Guillemot1,†, Vincent Frouin1, Edouard Duchesnay1, and
Fouad Hadj-Selem1,†

1Brainomics Team, Neurospin, CEA Saclay, 91190 Gif sur Yvette – France.
†These authors contributed equally to this work.

Abstract

A very active field of research in Bioinformatics is to integrate structure in Machine
Learning methods. Methods recently developed claim that they allow to simultaneously
link the computed model to the graphical structure of the data set and to select a handful
of important features in the analysis.

However, there is still no way to simulate data for which we can separate the three
properties that such method claim to achieve. These properties are:

(i) the sparsity of the solution, i.e., the fact the the model is based on a few features of
the data;

(ii) the structure of the model;

(iii) the relation between the structure of the model and the graphical model behind the
generation of the data.

We propose a framework to simulate data for linear regression in which we control: their
signal-to-noise ratio, their internal correlation structure and knowing exactly the optimisa-
tion problem that they are a solution of. Also, we make no statistical assumptions on the
distribution of the data set.

1 Introduction

Simulated data are widely used to assess optimisation methods. This is because of their
ability to evaluate certain aspects of the methods under study, that are impossible to look
into when using real data sets. In the context of convex optimisation, it is never possible to
know the exact solution of the minimisation problem with real data and it proves to be a
difficult problem even with simulated data. We propose to generalise an approach originally
proposed by Nesterov [4], for LASSO regression, to a broader family of penalised regressions.

We would thus like to generate simulated data for which we know the exact solution of the
optimised function. The inputs are: the number of individuals n, the number of variables p,
the number of non-null variables p∗, the covariance structure Σ, two regularisation parameters
κ and γ and the expression of the function f(β) to minimize.

The general procedure of this approach is as follows:

(i) Generate a candidate version, X0, of the X matrix. Let e.g. X0 ∼ N(1,Σ).

∗lofstedt.tommy@gmail.com

1

(ii) Generate an error vector ε with the desired noise distribution, e.g. ε ∼ N(0, 1).

(iii) Generate the regression vector β∗ so that it adhers to the constraints associated with
the desired final loss function.

We obtain as outputs X and y such that

β∗ = arg min
β
f(β),

with f a convex function depending on the data set X and the outcome y.

2 Background

We will in this section present the context of linear regression, with complex penalties and
a first algorithm presented by Nesterov [3]. We finish by introducing the properties of the
simulated data that a user would like to control.

2.1 Linear Regression

We place ourselves in the context of linear regression models. Let X ∈ Rn×p be a matrix of
n samples, where each sample lies in a p-dimensional space; and let y ∈ Rn denote the n-
dimensional response vector. In the linear regression model y = Xβ+e, where e is an additive
noise vector and β represents the unknown p-vector that contains the regression coefficients.
This statistical model explains the variability in the dependent variable, y, as a function of
the independent variables, X. The model parameters are calculated so as to minimise the
classical least squares loss. The value of β that minimises the sum of squared residuals, that
is 1

2‖Xβ − y‖
2
2, is called the Ordinary Least Squares (OLS) estimator for β.

We provide in the following paragraphs the mathematical definitions and notations that
will be used throughout this paper. First, we denote by ‖ · ‖q the standard `q-norm defined
on Rp by

‖x‖q :=

 p∑
j=1

xqj

 1
q

.

For a smooth real function f on Rp, we denote by∇f(β) the gradient vector (∂1f(β), . . . , ∂pf(β));
the function f has a Lipschitz continuous gradient on a convex set K with Lipschitz constant
L(∇(f)) > 0 if for all β1, β2 ∈ K

‖∇f(β1)−∇f(β2)‖2 ≤ L(∇(f))‖β1 − β2‖2.

However, many functions that arise in practice may be non-differentiable at certain points. A
common example is the `1-norm. In that case, the generalisation of the gradient for a non-
differentiable convex functions leads naturally to the following definition of the subgradient.

Definition 2.1. A vector v ∈ Rp is a subgradient of a convex function f : dom(f) ⊆ Rp → R
at β if

f(y) ≥ f(β) + 〈v|y − β〉, (1)

for all y ∈ dom(f). The set of all subgradients at β is called the subdifferential, and is denoted
by ∂f(β).

We conclude this section by recalling the definition of the proximal operator, which is a
very important concept in the framework of non-differentiable optimisation.

2

Definition 2.2. Let h : Rp → R be a closed proper (i.e. h(β) 6= +∞) convex function [2],
then the proximal mapping (or proximal operator) proxh(x) : Rp → Rp is defined by

proxh(β) := arg min
u∈Rp

{
h(u) +

1

2
‖u− β‖2

}
, (2)

Note that we will often encounter the proximal operator of the scaled function th, where
t > 0, which can be expressed as

proxth(β) := arg min
u∈Rp

{
h(u) +

1

2t
‖u− β‖2

}
, (3)

and will be referred to as the proximal operator of h with parameter t.

2.2 LASSO

The function

f(β) =
1

2
‖Xβ − y‖22 + κ‖β‖1

is known as the LASSO problem.
This case is addressed by Nesterov [4], and we will therefore not go into details. Instead

we will simply adapt it to our notation and explain some steps that are not obvious.
The principle behind Nesterov’s idea is as follows: First, define the error to be ε = Xβ−y,

in the model between Xβ and y, such that it is independent from β∗. Then, select acceptable
values for the columns of X such that 0 belongs to the sub-gradient of f at point β∗, with
the subgradient

∂f(β) = X>(Xβ − y) + κ∂‖β‖1
= X>ε+ κ∂‖β‖1.

We select β∗ is such that
0 ∈ X>ε+ κ∂‖β∗‖1, (4)

and we stress again that that X>ε does not depend on β∗.
We distinguish two cases:

First case: We consider a variable β∗i 6= 0, the ith element of β∗. With β∗i 6= 0 it follows
that ∂|β∗i | = sign(β∗i), and thus that

0 = X>i ε+ κ sign(β∗i)

follows because of Eq. (4), with Xi the ith column of X.

Second case: We consider the case when β∗i = 0. We note that the subgradient of |β∗i |
when β∗i = 0 is

∂|β∗i | ∈ [−1, 1],

and thus from Eq. (4) we see that

0 ∈ X>i ε+ κ[−1, 1]. (5)

3

Solution

As mentioned earlier, the first step is to generate ε (n× 1), e.g. such that ε ∼ N (0, 1).
The next step is to generate an n×p matrix X0 with a known covariance structure Σ, e.g.

such that X0 ∼ N (0,Σ). It will serve as a first un-scaled version of X and in fact we have
such that Xi = ωiX0,i, for all 1 ≤ i ≤ p.

If β∗i 6= 0, then X>i ε+ κ sign(β∗i) = 0 and thus

X>i ε = −κ sign(β∗i)

and since Xi = ωiX0,i we have

ωi =
−κ sign(β∗i)

X>0,iε
.

If β∗i = 0, we use Eq. (5) and have

X>i ε ∈ κ[−1, 1].

Thus, with Xi = ωiX0,i we obtain

ωiX
>
0,iε ∈ κ[−1, 1],

or equivalently

ωi ∼
κU(−1, 1)

X>0,iε
,

Once X and β∗ are generated, we let y = Xβ∗ − ε.

2.3 SNR and correlation

We use the same definition of signal-to-noise ratio as in [1], namely

SNR =
‖X(β)β‖2
‖e‖2

,

where X(β) is the data generated from β when using the simulation process described above.
With this definition of signal-to-noise ratio, and with the definition of the simulated data

given above we may scale the regression vector such that

SNR(a) =
‖X(βa)βa‖2
‖e‖2

. (6)

If the user provides a desired signal-to-noise ratio, σ, it is reasonable to ask if we are able to
find an a such that SNR(a) = σ. We have the following theorem.

Theorem 2.1. Using the definition of simulated data described above, and with the definition
of signal-to-noise ratio in Eq. (6) there exists an a > 0 such that

SNR(a) = σ, (7)

for σ > 0.

Proof. We rephrase the signal-to-noise ratio as

‖X(βa)βa‖2 = σ‖e‖2,

4

and square both sides to get

‖X(βa)βa‖22 = σ2‖e‖22 = s.

We let Xi be the ith column of X, we remember that Xi = ωiX0,i, and let βi be the ith
element of β. The left-hand side is written

‖X(βa)βa‖22 =

(
p∑
i=1

Xiβia

)>(p∑
i=1

Xiβia

)
(8)

=

p∑
i=1

p∑
j=1,j 6=i

a2X>i Xjβiβj +

p∑
i=1

a2X>i Xiβ
2
i

=

p∑
i=1

p∑
j=1,j 6=i

a2X>0,iX0,jβiβjωiωj +

p∑
i=1

a2X>i Xiβ
2
i ω

2
i .

If we add all the constraint rescribed above, i.e. `1, `2 and TV, we have that

ωi =

−λ∂|βi| − aκβi − γ

A>
 ∂‖A1β‖2

...
∂‖AGβ‖2

i

X>0,iε
,

and we may thus write
ωi = kia+mi,

with

ki =
−κβi
X>0,iε

and

mi =

−λ∂|βi| − γ

A>
 ∂‖A1β‖2

...
∂‖AGβ‖2

i

X>0,iε
.

We continue to expand Eq. (8) and get
p∑
i=1

p∑
j=1,j 6=i

a2X>0,iX0,jβiβjωiωj +

p∑
i=1

a2X>i Xiβ
2
i ω

2
i

=

p∑
i=1

p∑
j=1,j 6=i

a2X>0,iX0,jβiβj(kia+mi)(kja+mj) +

p∑
i=1

a2X>i Xiβ
2
i (kia+mi)

2

=

p∑
i=1

p∑
j=1,j 6=i

a2X>0,iX0,jβiβj︸ ︷︷ ︸
di,j

(a2kikj + akimj + amikj +mimj)

+

p∑
i=1

a2X>i Xiβ
2
i︸ ︷︷ ︸

di,i

(a2k2
i + a2kimi +m2

i).

=

p∑
i=1

p∑
j=1,j 6=i

a4di,jkikj + a3di,j(kimj +mikj) + a2di,jmimj

+

p∑
i=1

a4di,ik
2
i + a32di,ikimi + a2di,im

2
i .

5

We note that this is a fourth order polynomial and write it on the generic form

‖X(βa)βa‖22 = Aa4 +Ba3 + Ca2.

Now, since we seek a solution a > 0 such that ‖X(βa)βa‖22 = s, we seek positive roots of the
quartic equation

Aa4 +Ba3 + Ca2 − s = 0. (9)

This fourth order polynomial has a minimum of −s at a = 0, also Eq. (6) is positive for all
values of a, and tends to infinity when a tends to infinity. Thus, by the intermediate value
theorem there is a value of a for which ‖X(βa)βa‖22−s = 0 and thus also that SNR(a) = σ.

We may use Eq. (9) above to find the roots of this fourth order polynomial analytically.
This may, however, be tedious because of the many terms of the function. Instead, because
of the above theorem, we know that we can sucessfully apply the Bisection method to find
a root of this function. The authors have tested this sucessfully, even with larger datasets.
Also, we may use either root, if there are more than one, since they all give SNR(a) = σ.

We control the correlation structure of X0 by e.g. letting X0 ∼ N (0,Σ). Also, we let
Xi = ωiX0,i for all 1 ≤ i ≤ p. It then follows that cor(Xl, Xm) = cor(ωlX0,l, ωmX0,m).

3 Method

The objective is to generate X and y such that

β∗ = arg min
β

1

2
‖Xβ − y‖22 + P (β),

where P is a penalty that can be expressed on the form

P (β) =
∑
π∈Π

κππ(β),

where Π is the set of all penalties, π. This is a general notation to represent the fact that we
have many different penalties; κπ is the regularisation parameter of penalty π and rπ(β∗) is
a candidate for the subgradient of penalty π at β∗.

The penalties that we consider in this work are

P (β) =
κRidge

2
‖β‖22 + κ`1‖β‖1 + κTV TV(β).

Thus, if you have a good candidate for the subgradient of each penalty, the general solution
can be written on the form

ωi =

∑
π∈Π−κπ∂π(β∗)

X>0 ε
.

3.1 Subgradient of Complex Penalties

The complex penalties that we consider in this work can be written on the form

P (β) =

G∑
g=1

‖Agβ‖p (10)

where ‖ · ‖q is the q-norm with dual norm ‖ · ‖q′ . We will in this work only be interested in
the case when q = q′ = 2, i.e. the Euclidean norm. This is the case when P is e.g. the Total
Variation constraint [5] or Group LASSO [6].

We need the following two Lemmas in order to derive the subgradient of this complex
penalty P .

6

Lemma 3.1 (Subgradient of the sum). If f1 and f2 are convex functions, then

∂(f1 + f2) = ∂f1 + ∂f2.

Proof. See [2].

Lemma 3.2 (Subgradient of the composition). If f and g(x) = Ax are linear functions, then

∂(g ◦ f)(β) = A>∂f(Aβ).

Proof. See [2].

These Lemmas play a central role in the following theorem that details the structure of
the subgradient of P .

Theorem 3.3 (Subgradient of P). If P has the form given in Eq. (10), then

∂P (β) = A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 .
Proof.

∂P (β) = ∂

 G∑
g=1

‖Agβ‖2

=

G∑
g=1

∂‖Agβ‖2 (Using Lemma 3.1)

=

G∑
g=1

A>g ∂‖Agβ‖2 (Using Lemma 3.2)

= A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 .

Before we show the application to some actual penalties we will mention that the subgra-
dient of the 2-norm is

∂‖x‖2 =

{
x
‖x‖2 if ‖x‖2 > 0,

{y | ‖y‖2 ≤ 1} if ‖x‖2 = 0.
(11)

3.2 Algorithm

In this subsection, we detail the algorithm used to generate a simulated data set to which
can be associated the solution of a complex optimization problem. As explained earlier, the
whole algorithm is embedded into a bisection loop in order to control the SNR.

7

Algorithm 1 Data set simulation

Require: Σ, β∗

Ensure: X, y and β∗ such that β∗ = arg min f(β)
1: Generate X0 ∼ N (1,Σ)
2: Generate the error vector e ∼ N (1, 1)
3: for π ∈ Π do
4: Compute a vector rπ belonging to the subradient of penalty π at β∗

5: end for
6: ∀i, ωi =

−
∑
π∈Π κπrπ
〈X0,i|e〉

7: Scale each column of X0 by ωi to obtain X
8: Compute y = Xβ∗ − e

4 Application

We apply the aforementioned algorithm to generate a data set and associate it to the exact
solution of a linear regression problem with Elastic Net and Total variation penalties. Since
Algorithm 1 requires the computation of an element of the subgradient for each penalty, we
first focus on detailing the subgradient of TV.

4.1 Total Variation

The total variation, TV, constraint, for a discrete β, is defined as

TV (β) =

p∑
i=1

‖∇βi‖2, (12)

where ∇βi is the gradient at point βi.
Since β is not continuous, the TV constraint needs to be approximated. It is usually

approximated using the forward difference, i.e. such that

TV (β) =

p∑
i=1

‖∇βi‖2

≈
p1−1∑
i1=1

· · ·
pD−1∑
iD=1

√
(βi1+1,...,iD − βi1,...,iD)2 + · · ·+ (βi1,...,iD+1 − βi1,...,iD)2,

where pi is the number of variables in the ith dimension, for i = 1, . . . , D, with D dimensions.
We will first illustrate this in the 1-dimensional case. In this case ‖x‖ =

√
x2 = |x|, since

x ∈ R. Thus we have

TV (β) ≈
p−1∑
i=1

|βi+1 − βi|,

We note that if we define

A =

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

. . .
. . .

...
0 0 · · · 0 −1 1
0 0 · · · 0 0 0

 ,

8

then

TV (β) ≈
p−1∑
i=1

|βi+1 − βi| =
G∑
g=1

‖Agβ‖2,

where G = p and Ag is the gth row of A.
Thus, we use Theorem 3.3 and obtain

∂TV (β) = A>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 = A>

 ∂ |β2 − β1|
...

∂ |βG − βG−1|

 ,
in which we use Eq. (11) and obtain that

∂|x| =

{
sign(x) if |x| > 0,

[−1, 1] if |x| = 0.

The general case will be illustrated with a small example using a 3-dimensional image. A
24-dimensional regression vector β is generated, that represents a 2×3×4 image. The image,
with linear indices indicated, is

1st layer:

1 2 3 4

5 6 7 8

9 10 11 12

2nd layer:

13 14 15 16

17 18 19 20

21 22 23 24

We note, when using the linear indices, that β1 and β2 are neighbours in the 1st dimension,
that β1 and β5 are neighbours in the 2nd dimension and that β1 and β13 are neighbours in
the 3rd dimension. Using 3-dimensional indices, i.e. such that βi,j,k, the penalty becomes

TV (β) ≈
p1−1∑
i=1

p2−1∑
j=1

p3−1∑
k=1

√
(βi+1,j,k − βi,j,k)2 + (βi,j+1,k − βi,j,k)2 + (βi,j,k+1 − βi,j,k)2,

in which p1 = 4, p2 = 3 and p3 = 2.
We thus construct the A matrix to reflect penalty. The first group will be

A1 =

 −1 1 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 ,
Thus, for group Ai we will have a −1 in the ith column in all dimensions, a 1 in the i+ 1th
column for the 1st dimension, a 1 in the (p1 + i)th column for the 2nd dimension and a 1 in
the (p1 · p2 + i)th column for the 3rd dimension. Note that when these indices fall outside of
the matrix (i.e., the indices are greater than p1, p2 or p3, respectively) then the whole row
(but not the group!) must be set to zero (or handled in some other way not specified here).

We thus obtain

∂TV (β) = A>

 ∂‖A1β‖2
...

∂‖A24β‖2

 . (13)

9

We use Eq. (11) and obtain

∂‖Aiβ‖2 =

{
Aiβ
‖Aiβ‖2 if ‖Aiβ‖2 > 0,
αu
‖u‖2 , α ∼ U(0, 1), u ∼ U(−1, 1)3 if ‖Aiβ‖2 = 0.

(14)

We note that A is very sparse, which greatly helps to speed up the implementation.

4.2 Linear regression with Elastic Net and Total Variation penalties

We will here give an example with Elastic Net and Total Variation penalties. The function
we are working with is

f(β) =
1

2
‖Xβ − y‖22 +

1− κ
2
‖β∗‖22 + κ‖β∗‖1 + γ TV(β).

The subgradient in this case is

0 ∈ X>ε+ (1− κ)β + κ∂‖β∗‖1 + γ∂ TV(β∗). (15)

We rearrange like for the LASSO and note that

X>i ε = −(1− κ)β∗i − κ sign(β∗i)− γ(∂ TV(β))i

and further, since Xi = ωiX0,i , that

ωi =
−(1− κ)β∗i − κ sign(β∗i)− γ(∂ TV(β))i

X>0,iε

We note that in the case when β∗i = 0, adding the smooth Ridge constraint to the LASSO
has no effect.

We use Theorem 3.3 and obtain a subdifferential that contains zero

0 ∈ X>ε+ (1− κ)β + κ∂‖β∗‖1 + γA>

 ∂‖A1β‖2
...

∂‖AGβ‖2

 .
With the subgradient of TV defined using Eq. (13) and Eq. (14), we obtain

ωi =

−(1− κ)β∗i − κ sign(β∗i)− γ

A>
 ∂‖A1β‖2

...
∂‖AGβ‖2

i

X>0,iε
,

for each variable i = 1, . . . , p and with Xi = ωiX0,i . By (·)i, we denote the ith variable of the
vector within parentheses.

The main benefit of generating the data like this is that we know everything about our
data. In particular, we know the true minimiser, β∗, and we know the Lagrange multipliers
κ and γ. There is no need to use e.g. cross-validation to find any parameters, and we know
directly if the β(k) that our minimising algorithm found is close to the true β∗ or not.

We illustrate this main point by a small simulation, in which we vary κ and γ in an interval
around their “true” values and compute f(β(k))−f(β∗) for each of these values. The result is
shown in Fig. 1, and we see that the solution giving the smallest function value is at precisely
the true values of κ and γ.

10

Figure 1: An illustration of the benefit of using the simulated data described in this section.
The minimum solution is found when using the regularisation parameters used in the con-
struction of the simulated data. These (25 × 36) data had no correlation between variables
and the following characteristics: 50 % sparsity, signal-to-noise ratio 100, κ = 0.5, γ = 1.0.

References

[1] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Convex opti-
mization with sparsity-inducing norms. In S. Sra, S. Nowozin, and S. J. Wright, editors,
Optimization for Machine Learning. MIT Press, 2011.

[2] J. Frédéric Bonnans, Jean Charles Gilbert, and Claude Lemarechal. Numerical Optimiza-
tion: Theoretical and Practical Aspects. Springer-Verlag Berlin and Heidelberg GmbH &
Co. K, 2nd edition, 2006.

[3] Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, December 2004.

[4] Yu. Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, 140(1):125–161, 2013.

[5] L Rudin, S Osher, E Fatemi, and Santa Monica. Nonlinear total variation based noise
removal algorithms * f u = f Uo. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[6] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67, February 2006.

11

