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LETTERS

The Phaeodactylum genome reveals the evolutionary
history of diatom genomes
Chris Bowler1,2, Andrew E. Allen1,3, Jonathan H. Badger3, Jane Grimwood4, Kamel Jabbari1, Alan Kuo5,
Uma Maheswari1, Cindy Martens6, Florian Maumus1, Robert P. Otillar5, Edda Rayko1, Asaf Salamov5,
Klaas Vandepoele6, Bank Beszteri7, Ansgar Gruber8, Marc Heijde1, Michael Katinka9, Thomas Mock10{,
Klaus Valentin7, Fréderic Verret11, John A. Berges12, Colin Brownlee11, Jean-Paul Cadoret13, Anthony Chiovitti14,
Chang Jae Choi12, Sacha Coesel2{, Alessandra De Martino1, J. Chris Detter5, Colleen Durkin10, Angela Falciatore2,
Jérome Fournet15, Miyoshi Haruta16, Marie J. J. Huysman6,17, Bethany D. Jenkins18, Katerina Jiroutova19,
Richard E. Jorgensen20, Yolaine Joubert15, Aaron Kaplan21, Nils Kröger22, Peter G. Kroth8, Julie La Roche23,
Erica Lindquist5, Markus Lommer23, Véronique Martin–Jézéquel15, Pascal J. Lopez1, Susan Lucas5,
Manuela Mangogna2, Karen McGinnis20, Linda K. Medlin7,11, Anton Montsant1,2, Marie-Pierre Oudot–Le Secq24,
Carolyn Napoli20, Miroslav Obornik19, Micaela Schnitzler Parker10, Jean-Louis Petit9, Betina M. Porcel9,
Nicole Poulsen25, Matthew Robison16, Leszek Rychlewski26, Tatiana A. Rynearson27, Jeremy Schmutz4,
Harris Shapiro5, Magali Siaut2{, Michele Stanley28, Michael R. Sussman16, Alison R. Taylor11,29, Assaf Vardi1,30,
Peter von Dassow31, Wim Vyverman17, Anusuya Willis14, Lucjan S. Wyrwicz26, Daniel S. Rokhsar5,
Jean Weissenbach9, E. Virginia Armbrust10, Beverley R. Green24, Yves Van de Peer6 & Igor V. Grigoriev5

Diatoms are photosynthetic secondary endosymbionts found
throughout marine and freshwater environments, and are
believed to be responsible for around one-fifth of the primary
productivity on Earth1,2. The genome sequence of the marine cent-
ric diatom Thalassiosira pseudonana was recently reported,
revealing a wealth of information about diatom biology3–5. Here
we report the complete genome sequence of the pennate diatom
Phaeodactylum tricornutum and compare it with that of T. pseu-
donana to clarify evolutionary origins, functional significance and
ubiquity of these features throughout diatoms. In spite of the fact
that the pennate and centric lineages have only been diverging for
90 million years, their genome structures are dramatically differ-
ent and a substantial fraction of genes ( 40%) are not shared by
these representatives of the two lineages. Analysis of molecular
divergence compared with yeasts and metazoans reveals rapid
rates of gene diversification in diatoms. Contributing factors

include selective gene family expansions, differential losses and
gains of genes and introns, and differential mobilization of trans-
posable elements. Most significantly, we document the presence of
hundreds of genes from bacteria. More than 300 of these gene
transfers are found in both diatoms, attesting to their ancient
origins, and many are likely to provide novel possibilities for
metabolite management and for perception of environmental sig-
nals. These findings go a long way towards explaining the incred-
ible diversity and success of the diatoms in contemporary oceans.

The sequenced diatoms represent two of the major classes of
diatoms—the bi/multipolar centrics (Mediophyceae), to which
T. pseudonana belongs, and the pennates (Bacillariophyceae), to which
P. tricornutum belongs (Supplementary Fig. 1). The earliest fossil
deposit from centrics is 180 million years (Myr) old and that from
pennates is 90 Myr old6,7. Although being the youngest, the pennates
are by far the most diversified, and they are major components of both
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pelagic and benthic habitats7. They display a range of features, includ-
ing their bilateral symmetry, that distinguish them from centric
species. For example, they have amoeboid isogametes, by contrast with
the motile sperm and oogamy observed in centric species; they are
major biofoulers; they include toxic species; and they generally respond
most strongly to mesoscale iron fertilization7,8. Furthermore, members
of the raphid pennate clade can glide actively along surfaces.

The completed P. tricornutum genome is approximately
27.4 megabases (Mb) in size, which is slightly smaller than T. pseu-
donana (32.4 Mb), and P. tricornutum is predicted to contain fewer
genes (10,402 as opposed to 11,776; Table 1, Supplementary Fig. 2).
Gene identification and functional analysis was facilitated by the
availability of more than 130,000 expressed sequence tags (ESTs)
generated from cells grown under 16 different conditions. In total,
86% of gene predictions had EST support (Supplementary Table 1).

P. tricornutum shares 57% of its genes with T. pseudonana (see
Supplementary Information for criteria used), of which 1,328 are
absent from other sequenced eukaryotes (Table 1). The molecular
divergence between the two diatoms was assessed by examining the
percentage amino acid identity of 4,267 orthologous gene pairs
(Table 2, Fig. 1). We found an average identity of 54.9% between
diatom orthologues, in comparison with approximately 43%
between the diatoms and a more distantly related heterokont, the
non-photosynthetic oomycete Phytophthora sojae. This agrees with
the predicted ancient separation (around 700 Myr ago) of these
lineages9,10. The divergence between the two diatoms is similar to
what is observed between Saccharomyces cerevisiae and the related
yeast Kluyveromyces lactis, and about halfway between the Homo
sapiens/Takifugu rubripes (pufferfish) divergence and the
H. sapiens/Ciona intestinalis (sea squirt) divergence (Table 2,
Fig. 1). The more rapid evolutionary rates of diatoms compared with
other organismal groups (for example, the fish–mammal divergence
probably occurred in the Proterozoic era earlier than 550 Myr ago11) is
consistent with previous observations6,7. As has been found in the two
yeasts12, no major conservation of gene order (synteny) could be
detected between the two diatom genomes other than in a few exam-
ples of microclusters of up to eight genes (Supplementary Fig. 3).
Furthermore, approximately two-thirds of intron positions are
unique to each species (Supplementary Information). The widespread

intron gain that has been reported in T. pseudonana13 was not found in
P. tricornutum (Table 1), suggesting that it may be a recent event in the
centric diatom.

Large-scale within-genome duplication events do not appear to
have played a major role in driving the generation of diatom diversity
(Supplementary Information), by contrast with what has been found
in yeasts and metazoans14,15. The observed high levels of diatom spe-
cies diversity must therefore have been generated by other mechan-
isms. Whereas intron gain may be one factor in centric diatoms, the
dramatic expansion of diatom-specific copia-retrotransposable ele-
ments may have contributed in the P. tricornutum genome (Table 1,
Supplementary Figs 2, 4). These elements also appear to have
expanded in other pennate diatoms (Supplementary Information),
so they may have been a significant driving force in the generation
of pennate diatom diversity through transpositional duplications and
subsequent genome fragmentation.

Diatoms, and heterokonts in general, are believed to be derived
from a secondary endosymbiotic process that took place around one
billion years ago between a red alga and a heterotrophic eukaryote16.
Diatom chloroplast genomes have fewer genes than red algal chloro-
plast genomes, indicating that a number of chloroplast genes were
transferred to the nucleus after secondary endosymbiosis, and a few
more genes appear to be in the process of transfer in one diatom
species or the other5. It is generally thought that the diatom mito-
chondrion originated in the host, and the mitochondrial gene
complement is almost identical to that of haptophytes and crypto-
phytes, which are other algal phyla that may have originated from the
same secondary endosymbiotic event. We used a phylogenomic
approach to search for genes of red algal origin in the two diatoms
and the two sequenced oomycetes, Phytophthora ramorum and
Phytophthora sojae9, using Cyanidioschyzon merolae as reference red
algal genome17. We classified 171 genes as being of red algal origin, on

Table 1 | Major features of the P. tricornutum and T. pseudonana genomes

P. tricornutum T. pseudonana

Genome size 27.4 Mb 32.4 Mb
Predicted genes 10,402 11,776

Core genes* 3,523 4,332

Diatom-specific genes* 1,328 1,407

Unique genes* 4,366 3,912

Introns 8,169 17,880

Introns per gene 0.79 1.52

Long-terminal-repeat
retrotransposon content

5.8% 1.1%

*Different classes of genes were assigned by comparing the P. tricornutum and T. pseudonana
predicted proteomes with those from two plants, three green algae, one red alga, three
metazoans, two fungi and ten other chromalveolates (see Supplementary Information) by all-
against-all BLASTP using an expected cut-off value of 1025. Core genes were defined as being
present in representatives from all these eukaryotic groups, diatom-specific genes were present
in both of the diatoms but not elsewhere, and unique genes were only found in one of the two
diatoms. The different numbers of diatom-specific genes in the two diatoms is a consequence of
species-specific gene duplication events.

Table 2 | Molecular divergence between different organism pairs

Pairwise comparison Mean identity (%) Number of compared pairs

Phaeodactylum tricornutum/Thalassiosira pseudonana 54.9 4,267

Phaeodactylum tricornutum/Phytophthora sojae 43.3 2,952

Saccharomyces cerevisiae/Debaryomyces hansenii 50.1 2,694

Saccharomyces cerevisiae/Kluyveromyces lactis 54.8 4,246

Saccharomyces cerevisiae/Candida glabrata 58.2 4,484

Homo sapiens/Ciona intestinalis 52.6 5,208

Homo sapiens/Takifugu rubripes 61.4 10,225

Summary of numbers of orthologous pairs (reciprocal best hits with an expected cut-off value of 10210) for each organism comparison and their mean percentage identities.
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Figure 1 | Molecular divergence between P. tricornutum and T. pseudonana.
Analysis of molecular divergence between the diatoms and other
heterokonts, and comparison with selected hemiascomycetes and chordates.
The diatom–oomycete pair displays the lowest amino acid identity (43.3%),
in agreement with their proposed ancient separation, around 700 Myr ago10.
The divergence between the pennate and centric diatom is similar to the
fish–mammal divergence, which probably occurred in the Proterozoic era
(550 Myr ago)11. The centric–pennate divergence, on the other hand, has
been dated to at least 90 Myr ago7. In the figure, we represent the cumulative
frequencies of amino acid identity across each set of potential orthologous
pairs shown in Table 2.
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the basis of strong (.85%) bootstrap support for the red-alga-plus-
heterokont clade (Supplementary Table 2). Of the 171 high-scoring
genes, 108 were shared between the two diatoms and 74 (43%) were
predicted to be plastid targeted. In addition, 11 of these genes were
also present in oomycetes, as expected if the common ancestor of
diatoms and oomycetes had a red algal plastid that was subsequently
lost in the oomycetes9. The results of this survey support there being a
red algal origin for the diatom plastid and many gene transfers from
the red algal nucleus to the host nucleus before the former was lost.

A remarkably high number of P. tricornutum predicted genes
appear to have been transferred between diatoms and bacteria (784;
7.5% of gene models). Specifically, by searching for orthologous genes
in 739 prokaryotic genomes, followed by automated phylogenetic tree
construction and manual curation, we confirmed that 587 putative
P. tricornutum genes clustered with bacteria-only clades or formed a
sister group to clades that included only bacterial genes (with or
without other heterokonts). This finding indicates that horizontal
gene transfer between bacteria and diatoms is pervasive and is much
higher than has been found in other sequenced eukaryotes18,19. Of the
587 identified sequences, 42% are only found in P. tricornutum
whereas 56% are present in both diatoms (Fig. 2a), attesting to their
ancient origin. Only 73 sequences are shared between P. tricornutum
and Phytophthora spp. (Fig. 2a, Supplementary Table 3), 59 of which
are also present in T. pseudonana, suggesting that the vast majority of
gene transfers occurred after the divergence of photosynthetic hetero-
konts and oomycetes.

Many of the genes shared between diatoms and bacteria encode
components that are likely to provide novel metabolic capacities, for
example for organic carbon and nitrogen utilization20(xylanases and
glucanases, prismane, carbon-nitrogen hydrolase, amidohydrolase),
functioning of the diatom urea cycle3 (carbamoyl transferase, car-
bamate kinase, ornithine cyclodeaminase) and polyamine metabol-
ism related to diatom cell wall silicification21 (S-adenosylmethionine
(SAM)-dependent decarboxylases and methyltransferases). Others
are likely to encode novel cell wall components, and to provide unor-
thodox mechanisms of DNA replication, repair and recombination
for a eukaryotic cell (Supplementary Table 3).

Bacterial genes in diatoms do not appear to be derived from any
one specific source, but from a range of origins including proteobac-
teria, cyanobacteria and archaea (Fig. 2a, b, Supplementary Table 3).
Heterotrophic bacteria and cyanobacteria, especially diazotrophs
and planctomycete bacteria, have been found in various close asso-
ciations with diatoms22–24, which may explain the unprecedented
levels of horizontal gene transfer events that appear to have occurred.
In P. tricornutum, bacterial genes are distributed throughout the

genome, although several clusters, as well as regions devoid of bac-
terial genes, can be observed (Supplementary Fig. 5). Some of these
genes in diatoms share bacterial-specific gene fusions that support
phylogenetic associations, such as assimilatory nitrite reductase B
and D subunits; these are apparently of planctomycete origin
(Fig. 2c).

Bacterial histidine-kinase-based phosphorelay two-component
systems, which are involved in environmental sensing, also appear
to be highly developed in diatoms. For example, P. tricornutum con-
tains a wide range of two-component signalling proteins sometimes
organized in novel domain associations (Fig. 3). One of these proteins
bears the classical features of bacterial phytochrome photoreceptors,
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Figure 2 | Bacterial genes in diatoms. a, Venn diagrams showing how many
of the bacterial genes identified in P. tricornutum are also found in other
heterokonts (left panel), and which bacterial classes are most related
phylogenetically (right panel). In each case, the Venn diagrams indicate the
number of trees in which the designated taxa occur within the same clade or
in a sister clade of P. tricornutum. b, Breakdown of different bacterial groups
that occur in the same clade or in a sister clade of P. tricornutum. ‘Unique’
denotes a gene found only in a particular bacterial class; ‘shared’ denotes a
gene that is most similar to a gene of that specific bacterial class but that is
also present in other bacterial groups. c, PhyML maximum likelihood tree
(log likelihood ratio, 222,358.321320) as inferred from the amino acid
sequences of the large subunit of NAD(P)H assimilatory nitrite reductase
(NirB). The choice of protein evolution model was WAG with gamma-
distributed rates (a 5 0.80), as suggested by a ProtTest analysis of the
alignment (see Supplementary Information for methods). Numbers above
selected branches indicate maximum likelihood bootstrap support (100
replicates). Gene fusions and distinct open reading frames are indicated
adjacent to the appropriate clades. In most cases, the large (NirB) and small
(NirD) subunits of NAD(P)H assimilatory nitrite reductase are encoded by
distinct open reading frames, but in diatoms and planctomycetes the nirD
and nirB open reading frames have been fused to encode a single gene
product. A total of 587 trees show evidence for prokaryotic origins of diatom
genes and are available in Supplementary Information.
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as previously noted in T. pseudonana3,4. Another domain combination
present in both diatoms resembles aureochrome blue-light photore-
ceptors25, and P. tricornutum contains orthologues of LovHK and
other light-dependent histidine kinases reported in bacteria26,27.

To identify additional novel features of the diatom gene repertoire,
we compared the gene family content of the two diatoms with other
eukaryotes (Fig. 4, Supplementary Figs 6, 7). Diatoms contain many
species-specific multicopy gene families, as well as large numbers of
species-specific single-copy genes (denoted orphans in Fig. 4a). The
higher number of species-specific gene families in P. tricornutum may
suggest that the more recent pennate diatoms possess more specialized
functions, perhaps related to the heterogeneity of the benthic envi-
ronments that they commonly inhabit. The centric diatom, by con-
trast, has retained more features found in other eukaryotes (Fig. 4b,
Table 1), such as the flagellar apparatus28. We found a similar number
of diatom-specific gene families (1,011) and eukaryotic gene families
not found in diatoms (1,062), revealing that the rates of gene gain and
gene loss are very similar and consistent with the high diversification
rates observed in diatoms. We also found that diatom-specific genes
are evolving faster than other genes in diatom genomes (Fig. 4c),
providing a further explanation for the rapid diatom divergence
rates6,7.

Of the gene families found in the diatoms, some contain higher
numbers of genes in comparison with other eukaryotes (Supple-
mentary Table 4, Supplementary Fig. 7); for example, genes involved
in polyamine metabolism are over-represented. The expansion of
polyamine-related components is of interest in consideration of the
role of long-chain polyamines in silica nanofabrication21. Of the eight
predicted spermine/spermidine synthase-like genes in P. tricornu-
tum, three encode potentially bifunctional enzymes bearing both
an aminopropyltransferase domain and a SAM decarboxylase
domain. Interestingly, the only other organisms containing such

bifunctional proteins are T. pseudonana (four copies) and the bac-
teria Bdellovibrio bacteriovorus and Delftia acidovorans. Silaffins and
silacidins are proteins/peptides believed to be involved in diatom
silica formation21,29. P. tricornutum contains only one silaffin-like
protein, and no homologues of silacidin. Frustulin genes, encoding
proteins that form organic constituents of the biosilica cell wall but
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are not involved in silica formation, are present in large numbers and
are highly expressed. Both diatoms contain a similar number of silicic
acid transporters.

Other noteworthy diatom-specific expansions include histidine
kinases (see above and Fig. 3), cyclins and heat-shock transcription
factors. Cyclins are major regulators of the cell cycle in eukaryotes. In
addition to members of each of the canonical families of cyclins, we
found 10 and 42 diatom-specific cyclin genes in P. tricornutum and
T. pseudonana, respectively. The dramatic expansion of this gene
family may reflect the unusual characteristics of diatom life cycles
due to the rigid nature of their cell walls, such as the control of cell
size reduction, the activation of sexual reproduction at a critical size
threshold, and life in rapidly changing and unpredictable environ-
ments7. Conversely, it may be significant that genes encoding RCC1
proteins (RCC, regulator of chromosome condensation), which are
also involved in cell cycle control, have been expanded in both diatom
genomes (Supplementary Table 4). For the putative heat-shock tran-
scription factors, we found 69 copies in P. tricornutum and 89 copies in
T. pseudonana4. These numbers represent almost 50% of the total
number of transcription factors in the two sequenced diatoms. The
significance of this expansion is unclear, but EST data indicates that
the majority are expressed and that some are induced specifically in
response to certain growth conditions (Supplementary Fig. 8).

In conclusion, through our comparative analyses we have revealed
diverse origins of diatom genes. Diatom-specific genes may have
arisen from genome rearrangements and subsequent domain recom-
binations due to the action of diatom-specific transposable elements,
from selective gene family expansions/contractions and from intron
gain/loss. It was previously shown that diatoms have retained genes
from both partners of the secondary endosymbiosis3, thus bringing
together primary metabolic processes such as photosynthetic carbon
fixation and organic nitrogen production by means of the urea cycle
in a single organism30. Our studies now suggest that genes acquired
after secondary endosymbiosis by gene transfer from bacteria are
pervasive in diatoms and represent at least 5% of their gene reper-
toires. This level of horizontal gene transfer is around one order of
magnitude higher than has been found in other free-living eukar-
yotes, and is similar to the rates found between bacteria19. Although
our analyses may be biased by the currently poor taxon sampling of
whole genome sequences in eukaryotes (relative to that for prokar-
yotes), they are nonetheless supported by molecular phylogenies. We
therefore propose that gene transfer from bacteria to diatoms, and
perhaps vice versa, has been a common event in marine environ-
ments and has been a major driving force during diatom evolution.
It has also brought together highly unorthodox combinations of
genes permitting non-canonical management of carbon and nitrogen
in primary metabolism and the sensing of external stimuli adapted to
aquatic environments. The combination of mechanisms reported
here may underlie the rapid diversification rates observed in diatoms
and may explain why they have come to dominate contemporary
marine ecosystems in a relatively short period of time.

METHODS SUMMARY

High-molecular-weight DNA was extracted from axenic cultures of P. tricornu-

tum accession Pt1 8.6 (deposited as CCMP2561 in the Provasoli–Guillard

National Center for Culture of Marine Phytoplankton) and used to construct

replicate libraries containing inserts of 2–3 kb, 6–8 kb and 35–40 kb. Using the

Joint Genome Institute (JGI) JAZZ assembler, approximately 556,000 reads

involving 564 Mb of sequence were trimmed, filtered for short reads and

assembled. All low-quality areas and gaps were identified and converted into

targets for manual finishing. The draft genome sequence of T. pseudonana3 was

finished in a similar way. Both diatom genomes were annotated using the JGI

annotation pipeline, which combines several gene prediction, annotation and

analysis tools. Complementary DNA libraries were constructed from messenger

RNA extracted from P. tricornutum cultures grown under 16 different condi-

tions. More than 130,000 ESTs were generated. Full information about all meth-

ods used for the analyses reported here is available in Supplementary

Information.
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