The suppression of star formation by powerful active galactic nuclei

M. J. Page, M. Symeonidis, J. D. Vieira, B. Altieri, A. Amblard, V.
Arumugam, H. Aussel, T. Babbedge, A. Blain, J. Bock, et al.

- To cite this version:

M. J. Page, M. Symeonidis, J. D. Vieira, B. Altieri, A. Amblard, et al.. The suppression of star forma- tion by powerful active galactic nuclei. Nature, 2012, 485 (7397), pp.213-216. 10.1038/nature11096 . cea-00881177

HAL Id: cea-00881177

 https://cea.hal.science/cea-00881177Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The suppression of star formation by powerful active galactic nuclei

M.J. Page, ${ }^{1}$ M. Symeonidis, ${ }^{1}$ J.D. Vieira, ${ }^{2}$ B. Altieri, ${ }^{3}$ A. Amblard, ${ }^{4}$ V. Arumugam, ${ }^{5}$ H. Aussel, ${ }^{6}$
T. Babbedge,,7 A. Blain, ${ }^{8}$ J. Bock, ${ }^{2,9}$ A. Boselli, ${ }^{10}$ V. Buat, ${ }^{10}$ N. Castro-Rodríguez,,11,12 A. Cava, ${ }^{13}$ P. Chanial, ${ }^{6}$ D.L. Clements, ${ }^{7}$ A. Conley, ${ }^{14}$ L. Conversi, ${ }^{3}$ A. Cooray, ${ }^{15,2}$ C.D. Dowell,,${ }^{2,9}$ E.N. Dubois, ${ }^{16}$ J.S. Dunlop, ${ }^{5}$
E. Dwek, ${ }^{17}$ S. Dye, ${ }^{18}$ S. Eales, ${ }^{19}$ D. Elbaz, ${ }^{6}$ D. Farrah, ${ }^{16}$ M. Fox, ${ }^{7}$ A. Franceschini, ${ }^{20}$ W. Gear, ${ }^{19}$ J. Glenn, ${ }^{21,14}$
M. Griffin, ${ }^{19}$ M. Halpern, ${ }^{22}$ E. Hatziminaoglou, ${ }^{23}$ E. Ibar, ${ }^{24}$ K. Isaak, ${ }^{25}$ R.J. Ivison, ${ }^{24,5}$ G. Lagache, ${ }^{26}$
L. Levenson, ${ }^{2,9}$ N. Lu, ${ }^{2,27}$ S. Madden, ${ }^{6}$ B. Maffei, ${ }^{28}$ G. Mainetti, ${ }^{20}$ L. Marchetti, ${ }^{20}$ H.T. Nguyen, ${ }^{9,2}$
B. O'Halloran, ${ }^{7}$ S.J. Oliver, ${ }^{16}$ A. Omont, ${ }^{29}$ P. Panuzzo, ${ }^{6}$ A. Papageorgiou, ${ }^{19}$ C.P. Pearson, ${ }^{30,31}$
I. Pérez-Fournon, ${ }^{1,12}$ M. Pohlen, ${ }^{19}$ J.I. Rawlings, ${ }^{1}$ D. Rigopoulou, ${ }^{30,32}$ L. Riguccini, ${ }^{6}$ D. Rizzo, ${ }^{7}$
G. Rodighiero,,20 I.G. Roseboom, ${ }^{16,5}$ M. Rowan-Robinson, ${ }^{7}$ M. Sánchez Portal, ${ }^{3}$ B. Schulz, ${ }^{2,27}$ Douglas Scott, ${ }^{22}$ N. Seymour, ${ }^{33,1}$ D.L. Shupe,,${ }^{2,27}$ A.J. Smith, ${ }^{16}$ J.A. Stevens, ${ }^{34}$ M. Trichas, ${ }^{35}$ K.E. Tugwell, ${ }^{1}$ M. Vaccari, ${ }^{20}$
I. Valtchanov, ${ }^{3}$ M. Viero, ${ }^{2}$ L. Vigroux, ${ }^{29}$ L. Wang, ${ }^{16}$ R. Ward, ${ }^{16}$ G. Wright, ${ }^{24}$ C.K. Xu ${ }^{2,27}$ and M. Zemcov ${ }^{2,9}$
${ }^{1}$ Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK
${ }^{2}$ California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
${ }^{3}$ Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Cañada, 28691 Madrid, Spain
${ }^{4}$ NASA, Ames Research Center, Moffett Field, CA 94035, USA
${ }^{5}$ Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
${ }^{6}$ Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Universit'e Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette, France
${ }^{7}$ Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
${ }^{8}$ Department of Physics \& Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
${ }^{9}$ Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
${ }^{10}$ Laboratoire d'Astrophysique de Marseille, OAMP, Universit'e Aix-marseille, CNRS, 38 rue Fr'ed'eric Joliot-Curie, 13388 Marseille cedex 13, France
${ }^{11}$ Instituto de Astrof'ısica de Canarias (IAC), E-38200 La Laguna, Tenerife, Spain
${ }^{12}$ Departamento de Astrof'ısica, Universidad de La Laguna (ULL), E-38205 La Laguna, Tenerife, Spain
${ }^{13}$ Departamento de Astrof'isica, Facultad de CC. F'isicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
${ }^{14}$ Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309, USA
${ }^{15}$ Dept. of Physics \& Astronomy, University of California, Irvine, CA 92697, USA
${ }^{16}$ Astronomy Centre, Dept. of Physics \& Astronomy, University of Sussex, Brighton BN1 9QH, UK
${ }^{17}$ Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
${ }^{18}$ School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK
${ }^{19}$ School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK
${ }^{20}$ Dipartimento di Astronomia, Università di Padova, vicolo Osservatorio, 3, 35122 Padova, Italy
${ }^{21}$ Dept. of Astrophysical and Planetary Sciences, CASA 389-UCB, University of Colorado, Boulder, CO 80309, USA
${ }^{22}$ Department of Physics \& Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
${ }^{23}$ ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei M" unchen, Germany
${ }^{24}$ UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
${ }^{25}$ European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
${ }^{26}$ Institut d'Astrophysique Spatiale (IAS), bâtiment 121, Universit'e Paris-Sud 11 and CNRS (UMR 8617), 91405 Orsay, France
${ }^{27}$ Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, JPL, Pasadena, CA 91125, USA
${ }^{28}$ School of Physics and Astronomy, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
${ }^{29}$ Institut d'Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris 06, 98bis boulevard Arago, F-75014 Paris, France
${ }^{30}$ RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
${ }^{31}$ Institute for Space Imaging Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
${ }^{32}$ Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3 RH , UK
${ }^{33}$ CSIRO Astronomy \& Space Science, PO Box 76, Epping, NSW 1710, Australia
${ }^{34}$ Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10
9 AB , UK
${ }^{35}$ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

The old, red stars which constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly from accretion onto black holes. It is widely suspected, but unproven, that the tight correlation in mass of the black hole and stellar components ${ }^{1}$ results from the AGN quenching the surrounding star formation as it approaches its peak luminosity $2 ; 3 ; \underline{4}$. X-rays trace emission from AGN unambiguously $\underline{\underline{5}}$, while powerful star-forming galaxies are usually dust-obscured and are brightest at infrared-submillimetre wavelengths ${ }^{6}$. Here we report observations in the submillimetre and X-ray which show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 Gyrs old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of $10^{44} \mathrm{erg} \mathrm{s}^{-1}$. This suppression of star formation in the host galaxies of powerful AGN is a key prediction of models in which the AGN drives a powerful outflow $7 ; 8 ; 9$, expelling the interstellar medium of its host galaxy and transforming the galaxy's properties in a brief period of cosmic time.

Measuring star formation in galaxies containing powerful active galactic nuclei has long been a problem, because the radiation from the AGN outshines that from star formation in almost all wavebands. Of all parts of the electromagnetic spectrum, the far-infrared to millimetre waveband offers the best opportunity to measure star formation in galaxies hosting AGN because, in contrast to strongly star-forming galaxies, AGN emit comparatively little radiation at these wavelengths 10 . The combination of deep X-ray and submillimetre observations therefore offers the best prospects for studying the association of star formation and accretion during the $1<z<3$ epoch when star formation and black hole growth in massive galaxies were at their most vigorous.

The X-ray catalogue of the Chandra Deep Field North (hereafter CDF-N) derives from a series of observations made with the Chandra X-ray observatory with a total of 2 Ms exposure time ${ }^{11}$. We restrict the sample to those sources detected in the most penetrating $2-8 \mathrm{keV}$ band to minimize the influence of obscuration on our results, and we further limit the sample to those sources (64%) for which spectroscopic redshifts are available in the literature ${ }^{12: 13}$. $2-8 \mathrm{keV}$ luminosities were calculated assuming that AGN X-ray spectra are power laws of the form ${ }^{14} S_{\nu} \propto \nu^{-0.9}$; the luminosities are not corrected for absorption intrinsic to the AGN or their host galaxies. In order to restrict the X-ray sample to AGN we have discarded any sources with $2-8 \mathrm{keV}$ luminosity $L_{X}<10^{42} \mathrm{erg} \mathrm{s}^{-1}$. SPIRE ${ }^{15}$ observations of the CDF-N were carried out in October 2009 as part of the HerMES programme ${ }^{16}$. Maps and source catalogues at 250,350 and $500 \mu \mathrm{~m}$ were constructed ${ }^{17}$. At the depth of the SPIRE maps, the dominant source of uncertainty in the maps is confusion noise due to the high sky density of sources. For cross-matching with the Chandra source catalogue ${ }^{11}$ we chose the $250 \mu \mathrm{~m}$ catalogue, which has the most precise positions, and we used only sources with $250 \mu \mathrm{~m}$ flux densities $>18 \mathrm{mJy}$, which corresponds to a
$\left.\begin{array}{lcccc}\text { Region of (z,L) parameter space } & \begin{array}{c}\text { Number } \\ \text { of AGN }\end{array} & \begin{array}{c}\text { Number of AGN } \\ \text { associated with } \\ 250 ~\end{array} \text { m sources }\end{array} ~ \begin{array}{c}\text { Expected number of } \\ \text { spurious associations }\end{array} \begin{array}{c}\text { Fraction of AGN } \\ \text { associated with } \\ 250 ~ \mu \mathrm{~m} \text { sources }\end{array}\right]$

Table 1: $250 \mu \mathrm{~m}$ detection statistics in the various parts of parameter space. The first row corresponds to the entire sample of secure AGN in the CDF-N, while the second and third rows correspond to the regions enclosed within the blue dashed lines in Fig. 11 Confidence intervals on the fraction of AGN associated with $250 \mu \mathrm{~m}$ sources are given at 68%, with 95% intervals enclosed in brackets. It should be noted that there is one case of two AGN being associated with the same $250 \mu \mathrm{~m}$ source. The two AGN have very similar spectroscopic redshifts, and both have X-ray luminosities between 10^{43} and $10^{44} \mathrm{erg} \mathrm{s}^{-1}$. Although the two AGN cannot be resolved at $250 \mu \mathrm{~m}$, source extraction using X-ray and $24 \mu \mathrm{~m}$ positions as priors ${ }^{25}$ indicates that both AGN are 5σ sources at $250 \mu \mathrm{~m}$.
signal/noise ratio >3 when the effects of confusion are included ${ }^{17}$. X-ray sources were matched to 250μ m sources within 6 arcseconds, corresponding to approximately 95% confidence in the $250 \mu \mathrm{~m}$ positions. The detection statistics are given in Table 1. The expected level of spurious associations between X-ray and $250 \mu \mathrm{~m}$ sources was calculated from the sky density of $250 \mu \mathrm{~m}$ sources in 10 to 30 arcsecond-radius annular regions around the X-ray source positions, and is reported in Table 1.

The distribution of CDF-N AGN in the redshift - luminosity plane is shown in Figure 1 and shows a striking trend of $250 \mu \mathrm{~m}$ detectability with X-ray luminosity: of the 24 AGN detected at $250 \mu \mathrm{~m}$, none of them have $L_{X}>$ $10^{44} \mathrm{erg} \mathrm{s}^{-1}$. The redshift range between 1 and 3 is of most interest, because it corresponds to the epoch in which powerful AGN accreted most of their black hole mass and present-day massive galaxies formed most of their stars. Within this redshift range, Fig. 1 shows that 11 out of $44 \mathrm{AGN}\left(25_{-7}^{+8} \%\right)$ with $10^{43} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$ are detected at $250 \mu \mathrm{~m}$, while none of the 21 objects with $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$ are detected. The difference in detection rates has a significance of $>99 \%$ according to a single-tail Fisher's exact test. We have considered the effects that incompleteness in the spectroscopic redshifts, or absorption of the X-ray flux by gas and dust, might have on our results. We find that the systematic non-detection of the powerful AGN is robust against both effects, although X-ray absorption does appear to be a common property of the 250μ m-detected AGN. We have also verified the low $250 \mu \mathrm{~m}$ detection rate of AGN with $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$ using the Extended Chandra Deep Field South field, finding that of 49 such sources with $1<z<3$, only 1 is detected at $250 \mu \mathrm{~m}$.

Infrared spectral energy distributions for the 250μ m-detected AGN were constructed by combining the SPIRE photometry with Spitzer $3.6-160 \mu \mathrm{~m}$ photometry. X-ray and infrared properties of the $11250 \mu \mathrm{~m}$-detected AGN with $1<z<3$ and L_{X} in the range $10^{43}-10^{44} \mathrm{erg} \mathrm{s}^{-1}$ are given in Table 2 In most cases the AGN contributes less than 10% to the infrared luminosity. The best-fit infrared luminosities lie between 4×10^{11} and

Figure 1: Redshifts and $2-8 \mathrm{keV}$ X-ray luminosities of AGN in the CDF-N. The luminosities have been Kcorrected assuming a spectrum $S_{\nu} \propto \nu^{-0.9}$ and are not corrected for intrinsic absorption. The blue dashed rectangles delimit the luminosity decades above and below $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ in the $1<z<3$ redshift range. Error bars correspond to 68% confidence.

ID	Redshift	$\log L_{X}\left(\mathrm{erg} \mathrm{s}^{-1}\right)$	$\log N_{H}\left(\mathrm{~cm}^{-2}\right)$	$N_{H} \operatorname{corr}$	$\log L_{I R}\left(\mathrm{~L}_{\odot}\right)$	AGN $(\%)$	$\mathrm{SFR}^{(}\left(\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right)$
35	2.203	$43.59_{-0.11}^{+0.08}$	$23.6_{-0.2}^{+0.1}$	$0.15_{-0.07}^{+0.05}$	12.70 ± 0.03	12	$750-850$
109	2.580	$43.58_{-0.09}^{+0.07}$	$23.4_{-*}^{+0.1}$	$0.09_{-0.09}^{+0.03}$	13.01 ± 0.05	5	$1660-1750$
135	2.466	$43.69_{-0.09}^{+0.07}$	>24.0	>0.30	12.81 ± 0.05	4	$1060-1110$
158	1.013	$43.05_{-0.05}^{+0.04}$	$23.1_{-0.1}^{+0.1}$	$0.15_{-0.02}^{+0.02}$	12.29 ± 0.09	4	$320-330$
190	2.015	$43.81_{-0.04}^{+0.04}$	$23.6_{-0.1}^{+0.1}$	$0.16_{-0.02}^{+0.02}$	12.88 ± 0.03	21	$1030-1300$
331	1.253	$43.48_{-0.04}^{+0.03}$	-	-	12.51 ± 0.07	5	$530-550$
366	1.970	$43.11_{-0.12}^{+0.08}$	$23.4_{-0.2}^{+0.1}$	$0.11_{-0.04}^{+0.03}$	12.84 ± 0.05	3	$1140-1170$
368	1.996	$43.42_{-0.09}^{+0.07}$	>23.8	>0.26	12.41 ± 0.06	3	$420-430$
384	1.021	$43.49_{-0.03}^{+0.03}$	$23.4_{-0.1}^{+0.1}$	$0.25_{-0.03}^{+0.02}$	11.55 ± 0.17	11	$50-60$
455	1.168	$43.96_{-0.02}^{+0.02}$	-	-	11.97 ± 0.04	30	$110-160$
500	1.990	$43.89_{-0.14}^{+0.10}$	$23.2_{-*}^{+0.2}$	$0.07_{-0.07}^{+0.03}$	12.62 ± 0.03	4	$690-710$

Table 2: Properties of SPIRE-detected AGN. Data are given for AGN with $1<z<3$ and $10^{43} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<$ $10^{44} \mathrm{erg} \mathrm{s}^{-1}$. The first column gives the ID number of the source in the X-ray catalogue ${ }^{11}$. The second column gives the redshift, and the third column gives the logarithm of the $2-8 \mathrm{keV}$ X-ray luminosity. The fourth column gives the \log of the column density of absorbing gas (units of hydrogen atoms per cm^{2}) implied by the ratio of $2-8 \mathrm{keV}$ to $0.5-2 \mathrm{keV}$ X-rays; a dash indicates no evidence for photoelectric absorption in X-rays, and an asterix is used where the lower limit to the column density is unconstrained. The fifth column gives the correction to $\log L_{X}$ to account for the absorption. The sixth column gives the $8-1000 \mu \mathrm{~m}$ IR luminosity. The seventh column gives the maximum likely contribution of an AGN to the infrared luminosity, and the eighth column gives the range of star formation rate implied by the infrared luminosity, where the upper and lower limits correspond to zero AGN contribution and the maximum AGN contribution to the IR luminosity, respectively. Photometry for the spectral energy distributions was extracted from Spitzer and SPIRE images using the X-ray and $24 \mu \mathrm{~m}$ catalogue positions as priors ${ }^{25}$. Total $8-1000 \mu \mathrm{~m}$ infrared luminosities were then determined by fitting templates ${ }^{26}$ to the spectral energy distributions ${ }^{27}$. Upper limits to the AGN contribution to the infrared luminosities were obtained by normalising an AGN template in the mid infrared ${ }^{28}$.
$10^{13} \mathrm{~L}_{\odot}$, implying star formation rates between 50 and $1750 \mathrm{M}_{\odot}$ per year ${ }^{18}$.
We performed a stacking analysis for the $1<z<3$ AGN to probe below the confusion limit of the SPIRE images. We split the sample into five bins of L_{X} from 10^{43} to $10^{45} \mathrm{erg} \mathrm{s}^{-1}$ and determined the average star formation rates of AGN in each bin. The results are shown in Figure 2, In the redshift range $1<z<3$, the mean star formation rate in AGN with L_{X} of $10^{43}-10^{44} \mathrm{erg} \mathrm{s}^{-1}$ is $214 \pm 25 \mathrm{M}_{\odot}$ per year, compared to a mean star formation rate for AGN with $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$ of $65 \pm 18 \mathrm{M}_{\odot}$ per year. These averages are independent of the SPIRE $250 \mu \mathrm{~m}$ detection limit because they are obtained from a stack of all sources within a given range of L_{X}, whether detected at $250 \mu \mathrm{~m}$ or not.

At redshifts of $1-3$, the X-ray luminosity of $10^{44} \mathrm{erg} \mathrm{s}^{-1}$, which divides the regions of $250 \mu \mathrm{~m}$ detection and non-detection in Fig. 1] corresponds approximately to the knee in the luminosity function of AGN19. The steep shape of the luminosity function at $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$ implies that this part of the luminosity function is dominated by objects which are at the peak of their accretion rates. Our observations therefore imply that the most prodigious episodes of star formation are common in the host galaxies of $1<z<3$ AGN, but avoid powerful AGN in which accretion is at its peak.

Figure 2: Star formation rates derived from averaged far-IR luminosities of $1<z<3$ AGN. We converted the 250,350 and $500 \mu \mathrm{~m}$ flux densities for each source into an equivalent $8-1000 \mu \mathrm{~m}$ luminosity by fitting a grey-body curve, with a temperature of 30 K in the rest-frame of the source, an emissivity index of $\beta=1.6$, and a powerlaw extension to the Wien side $\underline{\underline{29}}$ and multiplying by $4 \pi D_{L}^{2}$ where D_{L} is the luminosity distance. Fluctuations in the map sometimes scatter the fluxes of undetected sources to negative values, which translate to negative luminosities when multiplied by $4 \pi D_{L}^{2}$. Such negative solutions for individual AGN were allowed so as not to produce an artificial positive bias in the averages. The luminosities were averaged in 5 bins in L_{X}, which were chosen to include a similar number of AGN in each bin. The average luminosities were then converted to star formation rates $\underline{\underline{18}}$. AGN which are individually detected at $250 \mu \mathrm{~m}$ are included in the averages shown in bold black, but have been excluded from the averages which are shown in grey, to show the contribution that these sources make to the average star formation rates. The grey points have been offset horizontally from the bold black points for clarity. Error bars correspond to 68% confidence and were determined by bootstrap resampling, with a 7% systematic error added in quadrature to account for the calibration error on SPIRE photometry.

This systematic non-coincidence of the peak periods of star formation and accretion implies a palpable interaction between the two processes, and provides a powerful discriminator for the form of AGN feedback which is responsible for terminating star formation in the host galaxy. Two families of feedback models have been proposed, widely referred to as 'quasar mode' and 'radio mode' 20 . In quasar-mode feedback, a luminous AGN generates a powerful wind which terminates star formation by driving the interstellar medium from the surrounding host galaxy. In radio-mode feedback, star formation is suppressed because collimated jets of relativistic particles emitted by a radiatively-inefficient AGN prevent gas in the surrounding hot halo from cooling, thereby starving the galaxy of cool gas from which to form stars.

Radio-mode feedback is commonly invoked in semi-analytical models to limit galaxy masses and luminosities ${ }^{21 ; 20}$. In these models, black holes grow through luminous accretion episodes and black hole mergers. The correlation between black hole and bulge mass comes from assuming that a fixed fraction of the gas is accreted by the nucleus during each star forming episode that results from a galaxy merger or disc instability, and hence star formation and accretion rate should be correlated over the full range of luminosity. Our observations are therefore inconsistent with models in which AGN influence their host galaxies only through radio mode feedback ${ }^{21 ; 20}$. In contrast, models of galaxy formation in which quasar-mode feedback is responsible for terminating the star formation ${ }^{22 ; 8 ; 7 ; 9}$, and which have received some observational support recently $\underline{ }^{23 ; 24}$, predict that the AGN luminosity peaks later than the star formation rate, and thus are consistent with our observations. These models also predict that residual star formation, at the level of a few tens of per cent of the peak, will continue during the period in which the AGN luminosity is at its maximum, consistent with our stacked results which show that on average AGN with $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$ are still forming stars at approximately $65 \mathrm{M}_{\odot}$ per year. Our observations do not discriminate between models invoking major mergers $\frac{8}{}$ or accretion of gas into a massive halo $\frac{22}{}$ as the trigger for the intense star formation. After the interstellar medium has been driven out by the luminous AGN and the AGN itself becomes starved of fuel, radio-mode feedback is the most credible agent by which further star formation is inhibited.

References

[1] Häring \& Rix, On the Black Hole Mass-Bulge Mass Relation. Astrophys. J., 604, L89-L92 (2004)
[2] Silk J. \& Rees M.J., Quasars and galaxy formation. Astron. Astrophys., 331, L1-L4 (1998)
[3] Fabian, A.C., The obscured growth of massive black holes. Mon. Not. R. Astron. Soc., 308, L39-L43 (1999)
[4] King, A.R., Black hole outflows. Mon. Not. R. Astron. Soc., 402, 1516-1522 (2010)
[5] Brandt W.N. \& Hasinger G., Deep Extragalactic X-Ray Surveys. Annu. Rev. Astron. Astrophys., 43, 827-859 (2005)
[6] Sanders D.B. \& Mirabel I.F., Luminous Infrared Galaxies. Annu. Rev. Astron. Astrophys., 34, 749-792 (1996)
[7] Di Matteo T., Springel V. \& Hernquist L., Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature, 433, 604-607 (2005)
[8] Springel V., Di Matteo T., \& Hernquist L., Modelling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc., 361, 776-794 (2005)
[9] Sijacki D., Springel V., Di Matteo T., Herhquist L., A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc., 380, 877-900 (2007)
[10] Hatziminaoglou, E., et al., HerMES: Far infrared properties of known AGN in the HerMES fields. Astron. Astrophys., 518, L33 (2010)
[11] Alexander D.M., Bauer F.E., Brandt W.N., et al., The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs. Astron. J., 126, 539-574 (2003)
[12] Trouille L., Barger A.J., Cowie L.L., Yang Y., Mushotzky R.F., The OPTX Project. I. The Flux and Redshift Catalogs for the CLANS, CLASXS, and CDF-N Fields. Astrophys. J. Suppl., 179: 1-18 (2008)
[13] Barger A.J., et al., A Highly Complete Spectroscopic Survey of the GOODS-N Field. Astrophys. J., 689, 687-708 (2008)
[14] Mateos S., Barcons X., Carrera F.J., Ceballos M.T., Hasinger G., Lehmann I., Fabian A.C., Streblyanska A., XMM-Newton observations of the Lockman Hole IV: spectra of the brightest AGN. Astron. Astrophys., 444, 79-99 (2005)
[15] Griffin M.J., et al., The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys., 518, L3 (2010)
[16] Oliver, S.J., et al., HerMES: SPIRE galaxy number counts at 250, 350, and $500 \mu \mathrm{~m}$. Astron. Astrophys., 518, L21 (2010)
[17] Smith A.J., et al., HerMES: point source catalogues from deep Herschel-SPIRE observations. Mon. Not. R. Astron. Soc., 419, 377-389 (2012)
[18] Kennicutt, R.C., The global Schmidt law in star-forming Galaxies. Astrophys. J., 498, 541-552 (1998)
[19] Ebrero J., et al., The XMM-Newton serendipitous survey. VI. The X-ray luminosity function. Astron. Astrophys., 493, 55-69 (2009)
[20] Croton D.J., et al., The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc., 365, 11-28 (2006)
[21] Bower R. G., et al., Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc., 370, 645-655 (2006)
[22] Granato G.L., et al., A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys. J., 600, 580-594 (2004)
[23] Farrah D., et al., Direct evidence for termination of obscured star formation by radiatively driven outflows in reddened QSOs. Astrophys. J., 745, 178 (2012)
[24] Cano-Díaz M., Maiolino R., Marconi A., Netzer H., Shemmer O., Cresci G., Observational evidence of quasar feedback quenching star formation at high redshift. Astron. Astrophys., 537, L8 (2012)
[25] Roseboom I.G., et al., The Herschel Multi-Tiered Extragalactic Survey: source extraction and crossidentifications in confusion-dominated SPIRE images. Mon. Not. R. Astron. Soc., 409, 48-65 (2010)
[26] Siebenmorgen R. \& Krug̈el E., Dust in starburst nuclei and ULIRGs. SED models for observers. Astron. Astrophys., 461, 445-453 (2007)
[27] Symeonidis M., et al., The link between SCUBA and Spitzer: cold galaxies at z ≤ 1. Mon. Not. R. Astron. Soc., 397, 1728-1738 (2009)
[28] Seymour, N., et al., HerMES: SPIRE emission from radio-selected active galactic nuclei. Mon. Not. R. Astron. Soc., 413, 1777-1786 (2011)
[29] Blain, A.W., Barnard V.E. \& Chapman S.C., Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts. Mon. Not. R. Astron. Soc., 338, 733-744 (2003)

Supplementary Information is linked to the online version of the paper at www.nature.com/nature

Acknowledgments SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex
(UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).

Author Contributions This paper represents the combined work of the HerMES collaboration, the SPIRE Instrument Team's extragalactic survey. M. Page planned the study, and wrote the draft version of the paper. M. Symeonidis fitted models to the spectral energy distributions of the sources and J.D. Vieira performed the stacking analysis. All other coauthors of this paper contributed extensively and equally by their varied contributions to the SPIRE instrument, Herschel mission, analysis of SPIRE and HerMES data, planning of HerMES observations and scientific support of HerMES, and by commenting on this manuscript as part of an internal review process.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare that they have no competing financial interests. Correspondence and requests for materials should be addressed to M.Page (mjp@mssl.ucl.ac.uk).

Supplementary Information

Spectroscopic redshifts of CDF-N X-ray sources

We have taken a recent compilation ${ }^{13}$ as our main source of spectroscopic redshifts. These redshifts are given to two decimal places, but the majority of them originate from earlier studies, so we have in most cases obtained more precise redshifts by tracing them back to the original publications. Where there is a significant discrepancy ($>2 \%$) between a spectroscopic redshift in our main source and that given in earlier literature, we have adopted the redshift from our main source ${ }^{13}$. We have utilised a number of spectroscopic redshifts which are not listed there. The redshifts and literature references for these cases are given in Table S1.

Effect of redshift incompleteness

While we have restricted our study to objects within the CDF-N which have optical spectroscopic identifications and redshifts to ensure fidelity in redshifts and luminosities, we must examine whether the limited spectroscopic completeness (64\%) has any effect on our results. A large fraction of the X-ray sources within the CDF-N have photometric redshifts (i.e. redshifts estimated by comparing photometry in a number of bands to that expected from galaxy template spectra as a function of redshift) in the same compilation that we use for our spectroscopic redshifts ${ }^{13}$. Although these photometric redshifts are of low accuracy and reliability compared to the spectroscopic redshifts, they raise the redshift completeness of the $2-8 \mathrm{keV}$ X-ray sources to 87%, and so offer a good test as to whether the spectroscopic completeness has a significant influence on our results. Table S 2 gives statistics equivalent to those shown in Table 1 of the main paper, but with the photometric redshifts included. As found for the spectroscopic-only sample, no AGN more luminous than $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ are associated with $250 \mu \mathrm{~m}$ sources.

We can be further reassured that our main result is not affected by the spectroscopic incompleteness by looking specifically at the identification statistics of those 2-8 keV X-ray sources which are associated with $250 \mu \mathrm{~m}$ sources. A total of $332-8 \mathrm{keV}$ X-ray sources are associated with $250 \mu \mathrm{~m}$ sources, of which 27 are spectroscopically identified. The spectroscopically-identified fraction of these sources is thus 82%, higher than the $2-8 \mathrm{keV}$ source population as a whole. For the 6 sources without spectroscopic redshifts, Fig. S1 shows the tracks of X-ray luminosity as a function of redshift. We can see that with respect to the $1<z<3$, $10^{43} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{45} \mathrm{erg} \mathrm{s}^{-1}$ region which is well sampled by the X-ray and submillimetre surveys, sources 31, 37 and 431 from the X-ray catalogue ${ }^{12}$ have $L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$ for all $1<z<3$. The tracks for sources 107, 221 and 406 all cross the upper rectangle corresponding to $1<z<3,10^{44} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{45} \mathrm{erg} \mathrm{s}^{-1}$, and so should be examined in more detail. The track for source 221 only enters this rectangle for a tiny redshift interval $(2.94<z<3.0)$. Although our main redshift compilation ${ }^{13}$ does not give a photometric redshift for source

Source number in X-ray catalogue ${ }^{12}$	Spectroscopic redshift	Reference
91	0.294	$\underline{\underline{30}}$
121	0.520	$\underline{31}$
152	0.540	14
191	0.952	14
196	0.680	$\underline{32}$
205	0.943	14
220	4.420	$\underline{33}$
223	2.724	$\underline{34}$
243	0.557	$\underline{\underline{35}}$
266	1.2258	14
287	2.737	14
292	0.497	$\underline{36}$
317	1.760	14
342	0.518	$\underline{30}$
377	3.1569	14
412	1.1435	14
423	2.365	14
441	0.634	$\underline{31}$
443	0.033	$\underline{30}$
470	0.231	$\underline{31}$

Table S1: Spectroscopic redshifts which do not come from our main source ${ }^{13}$ and references to the literature in which these redshifts are published.

221, a photometric redshift of 1.9 is found elsewhere in the literature ${ }^{37}$, in which case it has $L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$ in keeping with the other 250μ m-detected AGN. Source 107 is within 6 arcsec of the same $250 \mu \mathrm{~m}$ source as a brighter X-ray source (source 109), which has a spectroscopic redshift of 2.58 . The brighter X-ray source is closer to the $250 \mu \mathrm{~m}$ source position than source 107 , and source extraction using X-ray and $24 \mu \mathrm{~m}$ positions as priors ${ }^{25}$ does not recover significant 250μ m emission for source 107 , leaving some doubt about the reality of the association. Source 107 has a photometric redshift of 1.15, but could be physically associated with source 109 at $z=2.58$ given that they are only separated by 2.7 arcsec. It can be seen from Fig. S1 that whichever of the two redshifts is adopted for source 107, it has L_{X} between $10^{43} \mathrm{erg} \mathrm{s}^{-1}$ and $10^{44} \mathrm{erg} \mathrm{s}^{-1}$, and hence if the association of source 107 and the $250 \mu \mathrm{~m}$ source is real, it too has $L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$, in keeping with the other $250 \mu \mathrm{~m}$ detected AGN. Finally, we come to source 406, which is the brightest of the six X-ray sources. From the track in Fig. S1, it appears the most likely of the six to be found within the $1<z<3,10^{44} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{45} \mathrm{erg} \mathrm{s}^{-1}$ region of our survey. This source is extremely faint in the optical, with an R-band magnitude of $27.8 \frac{31}{}$, and there are no estimates of photometric redshift available in the literature. The association of this X-ray source with the $250 \mu \mathrm{~m}$ source must be regarded with some doubt, however, because it is located just 5.5 arcsec to the south of a brighter $24 \mu \mathrm{~m}$ and radio source which is closer to the $250 \mu \mathrm{~m}$ position. Source extraction using
$\left.\begin{array}{lcccc}\text { Region of (z,L) parameter space } & \begin{array}{c}\text { Number } \\ \text { of AGN }\end{array} & \begin{array}{c}\text { Number of AGN } \\ \text { associated with } \\ 250 \mu \mathrm{~m} \text { sources }\end{array} & \begin{array}{c}\text { Expected number of } \\ \text { spurious associations }\end{array} & \begin{array}{c}\text { Fraction of AGN } \\ \text { associated with } \\ 250 ~\end{array} \text { m sources }\end{array}\right]$

Table S2: $250 \mu \mathrm{~m}$ detection statistics in the various parts of parameter space when AGN with photometric redshifts are included as well as those with spectroscopic redshifts. The first row corresponds to the full AGN luminosity and redshift parameter space in the CDF-N, while the second and third rows correspond to the regions enclosed within the blue dashed lines in Fig. 1.

X-ray and $24 \mu \mathrm{~m}$ positions as priors ${ }^{25}$ detects source 406 only at the 3σ level. Nonetheless, this source does represent the single example of an X-ray source, potentially associated with a $250 \mu \mathrm{~m}$ source, with a reasonable likelihood of lying within the $1<z<3, L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$ region. Equally, it may fall within the $1<z<3$, $L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$ region. To summarise, it appears that the sources without spectroscopic redshifts are likely to harbour at most one object within the redshift range $1<z<3$, which has $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$.

Effect of X-ray absorption

X-rays in the $2-8 \mathrm{keV}$ band can penetrate considerable column densities of material, but column densities $>10^{23} \mathrm{~cm}^{-2}$ can lead to significant attenuation of the X-ray flux. Conceivably, the different $250 \mu \mathrm{~m}$ detection rates for AGN above and below $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ could be a consequence of X-ray absorption, if 250μ m-luminous AGN are systematically more heavily absorbed than AGN which are not detected at $250 \mu \mathrm{~m}$. X-rays in the $0.5-2$ keV band are absorbed more easily than those in the $2-8 \mathrm{keV}$ band which was used to select our X-ray sample, and hence the hardness ratio of $2-8 \mathrm{keV} / 0.5-2 \mathrm{keV}$ X-rays is a crude but effective estimator of the degree of X-ray absorption.

For each 2-8 keV X-ray source, we used the Portable Interactive Multi-Mission Simulator (PIMMS; http://heasarc.nasa.gov/docs/software/tools/pimms.html) to convert from hardness ratios to spectral indices and column densites. The intrinsic spectra of faint AGN without absorption are power laws of the form $S_{\nu} \propto \nu^{-\alpha}$ with a mean $\alpha=0.9$, and an rms scatter in α of 0.2^{15}. We took a hardness ratio corresponding to $\alpha=0.5$ (2σ from the mean) as the threshold beyond which we considered sources as absorbed. For absorbed sources, we used PIMMS to estimate the column density, assuming an intrinsic spectral index $\alpha=0.9$. PIMMS was then used to calculate the expected degree of attenuation to the observed $2-8 \mathrm{keV}$ X-rays from the column density estimate. The X-ray luminosities were then adjusted accordingly. Where only a lower limit to the hardness ratio is available (due to the faintness of the object in the $0.5-2 \mathrm{keV}$ X-ray band), the luminosity correction corresponding to the lower limit is applied.

Figure S1: $2-8 \mathrm{keV}$ X-ray luminosities as a function of redshift for $2-8 \mathrm{keV}$ X-ray sources which are associated with $250 \mu \mathrm{~m}$ sources and which do not have spectroscopic redshifts. The bold dots indicate photometric redshfits, where available. The blue dashed rectangle delimits the luminosity decades above and below $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ in the $1<z<3$ redshift range as in Fig. 1. Error bars correspond to 68% confidence.

Figure S2: $2-8 \mathrm{keV}$ X-ray luminosities as a function of redshift after correction for absorption. AGN with lowerlimit hardness ratios have absorption-corrected luminosities with unconstrained upper bounds, and these are shown as upward pointing arrows. The blue dashed rectangle delimits the luminosity decades above and below $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ in the $1<z<3$ redshift range as in Fig. 1. Error bars correspond to 68% confidence.

Fig. S2 shows how Fig. 1 would be affected by the absorption corrections. More than half of the $250 \mu \mathrm{~m}-$ detected AGN increase in luminosity when the absorption corrections are applied, but on the whole these corrections are quite modest, with the majority amounting to less than 40% change in luminosity. None of the 250μ m-detected AGN move into the $1<z<3,10^{44} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{45} \mathrm{erg} \mathrm{s}^{-1}$ region. Although several of the 250μ m-detected AGN move close to the $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ boundary, and the absorption corrections for two of the 250μ m-detected AGN are lower limits such that they may have intrinsic luminosities $>10^{44} \mathrm{erg} \mathrm{s}^{-1}$, the essential characteristic of Fig. 1, the low $250 \mu \mathrm{~m}$ detection rate above $10^{44} \mathrm{erg} \mathrm{s}^{-1}$, persists.

The fraction of absorbed AGN is known to depend on luminosity 38 such that absorption is less common in the most luminous AGN. In light of this interdependency between luminosity and absorption, we have also examined the $250 \mu \mathrm{~m}$ detection rate of AGN with $1<z<3$ and $10^{43} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{45} \mathrm{erg} \mathrm{s}^{-1}$ as a function of X-ray absorption rather than X-ray luminosity. Dividing the sample into absorbed and unabsorbed sources using the hardness-ratio criterion given above, we have 9 absorbed and 2 unabsorbed AGN detected at $250 \mu \mathrm{~m}$, and 27 each of absorbed and unabsorbed sources which are not detected at $250 \mu \mathrm{~m}$. Applying a Fisher's exact test, we find that the difference in $250 \mu \mathrm{~m}$ detection rate between absorbed and unabsorbed sources is significant at a little less than 95%. We can reduce the influence of the intrinsic anti-correlation between absorption and luminosity within the sample under test by excluding the sources with X-ray luminosities above $10^{44} \mathrm{erg} \mathrm{s}^{-1}$. We then have 9 absorbed and 2 unabsorbed sources detected at $250 \mu \mathrm{~m}$, with 19 absorbed and 14 unabsorbed sources undetected at $250 \mu \mathrm{~m}$. Applying the Fisher's test, the statistical significance at which the $250 \mu \mathrm{~m}$ detection rate depends on X-ray absorption drops to 90%. Hence, whereas we can demonstrate that the $250 \mu \mathrm{~m}$ detection rate depends on X-ray luminosity, we can not state with such confidence that the $250 \mu \mathrm{~m}$ detection rate depends on X-ray absorption.

Verification in the Extended Chandra Deep Field South

We have verified that the main result of this work, the paucity of 250μ m-detections amongst X-ray-luminous AGN, is reproduced in the Extended Chandra Deep Field South (ECDF-S), which is a larger field than the CDF-N, containing a larger sample of AGN with $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$. We used the published X-ray catalogue ${ }^{39}$ and spectroscopic redshifts ${ }^{40}$. The SPIRE observations of the ECDF-S are shallower than those of CDF-N, but nonetheless are limited primarily by confusion. As with CDF-N, we have adopted a detection threshold of 18 mJy at $250 \mu \mathrm{~m}$, and cross-correlated the X-ray and submillimetre catalogues with a matching radius of 6 arcseconds. The $250 \mu \mathrm{~m}$ detections in the ECDF-S (z, L) plane are shown in Figure S3, analogous to Fig. 1 of the main article. Of 49 sources with $1<z<3$ and $L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$, only 1 is detected at $250 \mu \mathrm{~m}$, confirming the low detection rate obtained in the CDF-N.

Figure S3: $2-8 \mathrm{keV}$ X-ray luminosities as a function of redshift for the ECDF-S field. The blue dashed rectangle delimits the luminosity decades above and below $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ in the $1<z<3$ redshift range as in Fig. 1. Error bars correspond to 68% confidence.

Infrared spectral energy distributions of $250 \mu \mathrm{~m}$-detected AGN

The spectral energy distributions and best fit models for the AGN associated with $250 \mu \mathrm{~m}$ sources with $1<z<3$ and $10^{43} \mathrm{erg} \mathrm{s}^{-1}<L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$, are shown in Fig. S4

Obtaining the average star formation rates through stacking

The average star formation rates shown in Fig. 2 were obtained by averaging the far-infrared luminosities of the AGN to account for the different redshifts of the different AGN. It is more common in stacking analyses to average the fluxes of the objects, and then to use the average flux and the median redshift of the sample to infer an average luminosity. Here we examine how the results would change if we used this latter method rather than stacking directly in luminosity. Fig. S5 shows the star formation rates obtained by the two different methods. The two methods give consistent results, and in both cases the average star formation rates are significantly higher for AGN with $\log L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$ than for AGN with $\log L_{X}>10^{44} \mathrm{erg} \mathrm{s}^{-1}$. We have also examined how the star formation rates would differ if only one of the SPIRE bands were used, instead of all three, to determine the luminosities. For each of the SPIRE bands, we derived a luminosity for each source by normalising a 30 K grey-body in the rest frame to the SPIRE flux and multiplying by $4 \pi D_{L}^{2}$, before averaging the luminosities in each bin. The star formation rates so derived from the three SPIRE bands are shown in

Figure S4: Infrared spectral energy distributions of 250μ m-detected AGN with $1<z<3$ and $10^{43} \mathrm{erg} \mathrm{s}^{-1}<$ $L_{X}<10^{44} \mathrm{erg} \mathrm{s}^{-1}$, based on SPIRE and Spitzer data. We included $850 \mu \mathrm{~m}$ and 1.3 mm photometry from ground-based telescopes where available ${ }^{41 ; 42}$. The black datapoints are the measured photometry, and the red lines show the star-forming model templates ${ }^{26}$ which best fit the data at $24 \mu \mathrm{~m}$ and longward. The black lines show AGN templates ${ }^{43}$, normalised in the mid-IR to estimate the AGN contribution ${ }^{28}$. Each panel is labelled with the identity of the object in the X-ray catalogue ${ }^{12}$.

Figure S5: (a) Stacked 250, 350 and $500 \mu \mathrm{~m}$ SPIRE images of AGN in the five luminosity bins used for Fig. 2. The images are arranged in increasing wavelength from left to right and decreasing X-ray luminosity from bottom to top. (b) Star formation rates obtained from the stacked fluxes and median redshifts (grey) compared to the star formation rates obtained from stacking the luminosities as in Fig. 2 (black). The blue, green and red points show the star formation rates obtained in a similar fashion to the black points, but in these cases using only one of the SPIRE bands to determine the luminosities prior to averaging. Blue, green and red correspond to 250 , 350 and $500 \mu \mathrm{~m}$ bands. The points have been offset slightly in the horizontal direction to aid clarity.

Fig. S5, and are consistent with each other as well as those shown in Fig. 2.

References

[30] Barger A.J., et al., X-Ray, Optical, and Infrared Imaging and Spectral Properties of the 1 Ms Chandra Deep Field North Sources. Astron. J., 124, 1839-1885 (2002)
[31] Barger A.J., et al., Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources. Astron. J., 126, 632-665 (2003)
[32] Cohen J.G., et al., Redshift Clustering in the Hubble Deep Field. Astrophys. J., 471, L5-L9 (1996)
[33] Waddington I., et al., NICMOS Imaging of the Dusty Microjansky Radio Source VLA J123642+621331 at $\mathrm{z}=4.424$. Astrophys. J., 525, L77-L80 (1999)
[34] Barger A.J., et al., Supermassive Black Hole Accretion History Inferred from a Large Sample of Chandra Hard X-Ray Sources. Astron. J., 122, 2177-2189 (2001)
[35] Wirth G.D., et al., The Team Keck Treasury Redshift Survey of the GOODS-North Field. Astron. J., 127, 3121-3136 (2004)
[36] Cowie L.L., et al., A Large Sample of Spectroscopic Redshifts in the ACS-GOODS Region of the Hubble Deep Field North. Astron. J., 127, 3137-3145 (2004)
[37] Donley J.L., Rieke G.H., Perez-Gonzalez P.G., Rigby J.R., Alonso-Herrero A., Spitzer Power-Law Active Galactic Nucleus Candidates in the Chandra Deep Field-North. Astrophys. J., 660, 167-190 (2007)
[38] Della Ceca R., et al., The cosmological properties of AGN in the XMM-Newton Hard Bright Survey. Astron. Astrophys., 487, 119-130 (2008)
[39] Lehmer B.D., et al., The Extended Chandra Deep Field-South Survey: Chandra Point-Source Catalogs. Astrophys. J. Suppl., 161, 21-40 (2005)
[40] Silverman J.D., et al., The Extended Chandra Deep Field-South Survey: Optical Spectroscopy of Faint X-ray Sources with the VLT and Keck. Astrophys. J. Suppl., 191, 124-142 (2010)
[41] Chapman S., Blain A.W., Smail I., Ivison R.J., A redshift survey of the submillimetre galaxy population. Astrophys. J., 622, 772-796 (2005)
[42] Tacconi L.J., et al., High-resolution millimetre imaging of submillimeter galaxies. Astrophys. J., 640, 228-240
[43] Elvis M., et al., Atlas of quasar energy distributions. Astrophys. J. Suppl., 95, 1-68 (1994)

