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Response to Comments on “Saturation
of the Southern Ocean CO2 Sink Due
to Recent Climate Change”
Corinne Le Quéré,1,2* Christian Rödenbeck,3 Erik T. Buitenhuis,1 Thomas J. Conway,4

Ray Langenfelds,5 Antony Gomez,6 Casper Labuschagne,7 Michel Ramonet,8 Takakiyo Nakazawa,9

Nicolas Metzl,10 Nathan P. Gillett,11 Martin Heimann3

We estimated a weakening of the Southern Ocean carbon dioxide (CO2) sink since 1981 relative to the
trend expected from the large increase in atmospheric CO2. We agree with Law et al. that network
choice increases the uncertainty of trend estimates but argue that their network of five locations is too
small to be reliable. A future reversal of Southern Ocean CO2 saturation as suggested by Zickfeld et al.
is possible, but only at high atmospheric CO2 concentrations, and the effect would be temporary.

We showed that the Southern Ocean
CO2 sink has saturated between 1981
and 2004 despite the large increase in

atmospheric CO2 and attributed this saturation to
increased windiness caused by human-induced
climate change (1). Law et al. (2) suggest that
our results critically depend on the data used.
Whereas network choices do introduce additional
uncertainty, further analysis indicates that the
available body of data still supports a saturating
CO2 sink. Law et al.’s network of five locations
appears too small to detect the regional signal,
and their ocean model has been poorly validated
with observations and contradicts all five other
published estimates. Zickfeld et al. (3) suggest
that the CO2 saturation will reverse in the future.
A reversal would be possible, but only if atmo-
spheric CO2 reaches very high concentration,
and it would only be temporary. We expect that
the Southern Ocean CO2 sink will continue to
weaken at least for another 25 years, and prob-
ably well into this century, and will have long-

term consequences for the stabilization of atmo-
spheric CO2 on a multicentury time scale.

Law et al. (2) reproduce the saturation of the
Southern Ocean CO2 sink with their atmospheric
inverse method and our set of 11 atmospheric
CO2 observing stations (3). Conversely, we ob-
tain an increasing sink as do Law et al. when using
their set of only five locations (Fig. 1). This con-
firms that the inferred trends are not dependent
on the method or model used but are present in
the selected observations (4). We agree with Law
et al. that inversions require a careful selection of
observational stations. In our original report (1)
we selected the largest station network that still
reproduced results of shorter but better-constrained
inversions.We also verified the consistency of our
results with additional data records that were not
originally selected (5). The results of Law et al.
suggest that our sensitivity tests did not take into
account influences of possible data inhomogeneities
for signals seen only by individual sites. Over the
long time period necessary for the detection of
trends, the reality is that there is little redundancy
in the available early data. In addition, sampling

and measurement technologies underwent im-
portant improvements during the earlier part of
the records. The selection of stations requires a
balance of the need for sufficient constraints with
the risk of potential problems and is partly sub-
jective. We agree with Law et al. that the addi-
tional uncertainty of network choice, not specifically
quantified in (1), increases the uncertainty in
trend estimates. As explained below, however, the
saturating CO2 sink found in (1) remains a more
credible result than the increasing sink estimated
with only five sites.

Law et al. invoke synthetic inversions to
support that their five locations are sufficient to
detect Southern Ocean trends. However, synthetic
inversions are a necessary but not sufficient con-
dition for concluding that a feature can be repro-
duced by an inversion. For example, if the fluxes
chosen as “known truth” have an increasing sink
both in the Southern Ocean and in the rest of the
world [as seems to be the case in Law et al. (2)],
the synthetic inversion will not fail even if the
station set was not sufficient to distinguish the
trends in these areas. Therefore, five locations
may work in the synthetic inversions even if
they do not work with real data (6). In fact, the
five-station network of (2) does not include any
data that could detect the northern limit of the
Southern Ocean at 45°S and distinguish it from
the tropics, and contains no stations in the Atlantic
or Indian sectors (Fig. 1). Because there is no
question that the global CO2 sink outside the
Southern Ocean increases in response to increasing
CO2 (7), it is conceivable that this behavior is
then also aliased into the Southern Ocean.
Amsterdam Island (AMS) and Ascension Island
(ASC) provide additional constraints at 40°S in
the Indian Ocean and 8°S in the Atlantic Ocean.

Nevertheless, Law et al. argue that the trend
in ASC must be incorrect because the difference
between ASC and South Pole (SPO) measure-
ments is not identical to the difference between
Samoa (SMO) and SPO. However, because ASC
and SMO are located more than 15,000 km apart
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Fig. 1. World map showing the location of the 11 stations used in the standard inversion in (1) (blue
triangles) and the five stations used in (2) (red circles). Other stations discussed in the text are shown in
small blue dots.
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in different ocean basins, they need not be identical.
We reviewed the instrument changes at ASC (8).
Documented parallel measurements using older
and newer methods do not indicate biases of
sufficient magnitude. Undocumented biases from
the change in flask type in 1992 are conceivable,
although similar instrument changes at other sites
(e.g., SMO) did not cause problematic biases. Re-
evaluation of site-specific effects on fluxes does
not suggest a decisive offset, though further anal-
ysis is ongoing.

Law et al. further point out the larger num-
ber of bad flask pairs and the larger scatter in the
earlier ASC record, which indeed call for caution.
However, if ASC is considered unreliable on
these grounds, this judgment would certainly also
have to be applied to Palmer Station (PSA), which
has similar scatter as well as substantial data gaps
before 1988. Yet, PSA has been used by Law et al.
Contrary to ASC, the effect of PSA is a more
negative trend (increasing sink).

Law et al. argue that the observed seasonal
cycle at AMS must be wrong after 1999 because
it diverges from other Southern Ocean stations.
All stations that Law et al. compared to AMS
are located farther south than AMS. From 1999,
the seasonality at AMS resembles the seasonality
at Cape Point (CPT), which is located at the
same latitude as AMS but farther west (Fig. 1). We
reviewed the instrument changes at AMS (8)
and found no signs of biases before 2001. How-
ever, a drift in calibration cylinders affecting data
after 2001 was identified recently and these data
are being revised (8). Trends in (1) calculated up
to 2001 maintained the saturation of the CO2 sink,
although its statistical significance decreased to
92.5% (from 99.5%) and the inversion set-up
had a larger influence on the results.

To investigate the influence of the choice of
network, we performed additional sensitivity tests.

We tested the influence of individually adding
AMS, ASC, CHR, PSA, and Baring Head (BHD)
stations to a network of nine stations [similar to
Law et al.’s but with additional Northern Hem-
isphere sites and excluding PSA (9)]. As in (2),
each single station in this reduced network has a
large influence and both AMS and ASC (indi-
vidually) detect a saturation of the CO2 sink
(Fig. 2). We also tested the influence of ASC,
BHD, Halley Bay (HBA), Cape Grim (CGO),
Syowa (SYO), Kermadec (KER), and Azores
(AZR) on a network now increased to 11 or 16
stations (Fig. 2). The influence of each individual
station is reduced by approximately half. In all
cases using this enhanced network, a saturation of
the CO2 sink was detected and was most
influenced by ASC, AMS, and KER (individu-
ally). These sensitivity tests show that the
selected network of stations has a smaller
influence on the estimated trends as the number
of stations increases.

Law et al. do not reproduce our results with
their ocean model. However, they appear to con-
tradict their own results published in (10) and
results from all other process models published
so far (11–13). In (10), their model estimates a
reduction in the Southern Ocean CO2 sink with
a trend of +0.06 Pg C year–1 decade–1, very
close to our estimate and in contradiction to their
trend of –0.14 Pg C year–1 decade–1 presented
in (2). In (2), wind changes in the Southern
Ocean do produce a saturation of the Southern
Ocean CO2 sink as in (1) and (10–13), but this
effect is entirely compensated by an enhanced
CO2 uptake in response to heat and water fluxes,
which differ from (10). Neither the model re-
sults in (10) nor those presented in (2) have
been evaluated with time-varying observations.
We show in Fig. 3 that our model reproduces
observed variations in sea surface temperature

(14, 15) (independent from our results), giving
us confidence that the variability in heat and water
fluxes in our model is reasonable. Thus, we
conclude that results presented in (2) overestimate
the influence of heat and water fluxes on the
Southern Ocean CO2 sink and that the model
results of (1) and (10–13) are more realistic.

Turning to the comment by Zickfeld et al.
(3), the authors stipulate that the saturation of
the Southern Ocean CO2 sink will reverse in the
21st century. In (1), we projected that the satu-
ration of the CO2 sink would persist for at least
25 years, but we have not made projections be-
yond this time scale. For reasons explained below,
we think a reversal of the saturation is possible,
but not below an atmospheric CO2 concentra-
tion of ~640 parts per million (ppm), and the
effect would be only temporary.

First, let us explain why a reversal is possi-
ble. In (1), we showed that the observed weakening
of the Southern Ocean CO2 sink was caused by
an intensification of the overturning circulation
in the Southern Ocean in response to increased
winds (Fig. 4). The deep ocean is rich in natural
carbon. In the current ocean, the concentration
of carbon in the deep ocean exceeds that of the
surface ocean (Fig. 4, left panel). As the overturning
circulation increases, the natural carbon of the
deep ocean is transported up to the surface, and
the carbon of the surface is transported down to
the deep ocean. More carbon is currently trans-
ported upward than downward, which leads to a
weakening of the Southern Ocean CO2 sink.

CO2 from human emissions penetrates the
ocean from the surface and only slowly invades
the deep ocean. If the surface carbon concen-
tration exceeds the deep ocean concentration in
the future, the impact of an increase in wind on
the Southern Ocean CO2 sink could reverse
(Fig. 4, middle panel). The concentration differ-
ence between the surface and the deep ocean is
currently ~140 mmol kg–1, and the surface car-
bon concentration increases by ~0.5 mmol/kg for
every ppm increase in atmospheric CO2 (16, 17).
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This projects the reversal around an atmospheric
CO2 concentration of ~640 ppm (18), with large
uncertainty caused by the patterns and depth of
the overturning circulation, the response of eddy
activity, and the reequilibration of carbon.

In the longer term, CO2 from human emis-
sions will be mixed throughout the entire ocean
(Fig. 4, right panel). Surface carbon concentration
will then again be lower than the deep carbon
concentration, and the strengthened Southern Ocean
sink suggested by Zickfeld et al. (3) will, if it
occurs at all, revert back to a weaker Southern Ocean
sink. The ultimate partitioning of CO2 between
the atmosphere and ocean will depend on the re-
equilibration of the oceans towarmerwaters, higher
winds, and the readjustment of marine ecosys-
tems. Based on the behavior of the ocean during
the geological past, we expect that some of the
ocean’s natural carbon may be permanently out-
gassed to the atmosphere and lead to a higher
stabilization concentration of atmospheric CO2.

It is possible that the reversal hypothesized in
(3) will not occur at all and that the weakening
of the sink will instead intensify. This would
be the case if there were a large warming of the
Southern ocean surface, if the response of ma-
rine ecosystems to ocean acidification or other
changes reduces their efficiency in exporting
carbon to the deep ocean, or if the wind increases
faster than the atmospheric CO2 (for instance, if
climate sensitivity is at the upper end of current
estimates).

The model of Zickfeld et al. estimates a
strengthening of the Southern Ocean CO2 sink
since 1950, whereas the observations and mod-
els we analyzed in (1) suggest a weakening sink.
Zickfeld et al. show that a reversal is possible,
but they provide no information regarding the time
scale or the amplitude of change required. Based
on the model we used in (1), which has been
evaluated with existing observations over the past
decades, we maintain that the Southern Ocean

CO2 sink will continue to weaken compared with
its expected trend at least for another 25 years
and probably well into this century.

The detection of changes in the efficiency of
CO2 sinks is extremely challenging because trends
are only beginning to emerge from the noise (7).
Yet, this information is essential to test the re-
sponse of climate-carbon models, which have up
to now been unconstrained by observations (19).
The detection of trends from atmospheric CO2

observations appears robust to the inversion meth-
od used, at least in the Southern Ocean. Quality
control of the observations is essential, but it must
be based on rational criteria and applied to all
stations equally. The exclusion of stations based
on their unique signal risks removing real infor-
mation. Early CO2 observations are too sparse
and precious to reject based on subjective grounds.
Thus, the aim of inversion is to extract signals
from the early data and to quantify their asso-
ciated errors. Although our analysis contains un-
certainties partly underestimated in (1), both our
inversion and process model results suggest a per-
sistence of the 1981 to 2004 trends when ap-
plied to data for 2005 and 2006 (20).
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