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We report far-infrared and submillimeter observations of Supernova 1987A, the star that exploded 

on February 23, 1987 in the Large Magellanic Cloud, a galaxy located 160,000 lightyears away. The 

observations reveal the presence of a population of cold dust grains radiating with a temperature of 

~17–23 K at a rate of about 220 L⊙. The intensity and spectral energy distribution of the emission 

suggests a dust mass of ~0.4–0.7 M⊙.  The radiation must originate from the SN ejecta and requires 

the efficient precipitation of all refractory material into dust. Our observations imply that 

supernovae can produce the large dust masses detected in young galaxies at very high redshifts. 
 

 
 
Supernovae produce most of the heavy elements found in the Universe and disperse them into their 

surrounding galactic environment. They chemically enrich the material from which new generations of 

stars and planets are formed. SN 1987A exploded on 23 February 1987 in the Large Magellanic Cloud 

(LMC), only 50 kpc away. Because of its proximity, it has been possible to witness its evolution from 

explosion to remnant. SN 1987A has thus become one of the most extensively studied extragalactic 

objects, with ground, airborne, and space observatories covering a wide range of the electromagnetic 

spectrum. Here we report far-infrared and submillimeter (submm) observations of SN 1987A. 

 
 
Previous Observations of Supernova 1987A 

The detection of neutrinos from SN 1987A confirmed that the event marked the explosive death of 

a massive star (1, 2). The intensity and evolution of its UV and optical light curves showed that the SN’s 

luminosity was powered by the radioactive decays of 
56

Ni and 
56

Co, yielding 0.06 M⊙ of 
56

Fe (3). The 

γ-rays and X-rays from radioactive nuclei emerged only four months after the explosion (4, 5), suggesting 

that the ejecta were clumpy (6). The large width of near- and mid-infrared spectral lines of heavy elements 

(7) indicated that the newly synthesized material from the stellar core had undergone substantial mixing 

into the outer ejecta of the stellar explosion (6). SN 1987A was classified as a type II event on the basis of 

the detection of hydrogen in its optical spectrum (8). 



Examination of plates of the region obtained before the SN explosion, allowed the detection of its 

progenitor, a blue supergiant (Sk–69 202), that was believed to have had an initial mass of 18–20 M⊙ (8). 

The progenitor underwent extensive mass loss during its post main-sequence evolution (8). The detection 

and evolution of UV lines from highly ionized gas revealed previously ejected material that was flash 

ionized by the X-ray and UV radiation released when the outwardly expanding shock generated by the 

collapse of the stellar core broke out through the surface of the progenitor star (9). The presence of 

progenitor material was later confirmed by Hubble Space Telescope observations, which revealed a thin 

elliptical ring (1.6”×1.2”) (10) containing many knots within it (11). The equatorial ring is part of a system 

of three rings forming an hour-glass like configuration centered on the explosion. The mass of the ring is 

estimated to be >~ 6 × 10−2 M⊙ (12). 

Mid-infrared spectral and photometric observations of SN 1987A obtained with the Kuiper 

Airborne Observatory (13) revealed the presence of newly formed dust in the SN, providing direct 

evidence for the formation of grains in the cooling ejecta of a supernova. The dust condensation process 

started around day 450–600 after the explosion (14,15); it is thought that dust have condensed in the 

clumps within the ejecta (16). The dust mass was estimated to be at least ~10−4 M⊙ (17).  

Several years after the explosion, SN 1987A had evolved from a SN remnant radiating as a result 

of radioactive decays, mainly 
56

Co and 
44

Ti (3), into a remnant where the interaction of the SN blast wave 

with the circumstellar medium is causing the ring to brighten up. This interaction, dominated by the 

collision between the blast wave and the equatorial ring, manifested through the appearance of UV-optical 

hot spots strung like beads around the ring (18). Similar ring structures were also observed at X-ray 

wavelengths and in the mid-infrared (19). 

Subsequent spectral observations with the Spitzer Space Telescope on days 6200–8000 (20) 

revealed strong infrared (6–30 µm) emission arising from about 10−6 M⊙ of silicate dust in the inner ring 

that had been collisionally heated to a temperature of 180 K by the shocked X-ray emitting gas. The dust in 

the ring was ejected during the pre-SN evolution of the progenitor star. 

 
Observations and Results  



Using the Herschel Space Observatory’s (21) imaging instruments, PACS (22), and SPIRE (23), 

we observed SN 1987A as part of the HERschel Inventory of The Agents of Galaxy Evolution in the 

Magellanic Clouds open time key program, HERITAGE (24). The observing survey covered 5 bands, 

PACS 100 and 160 µm, and SPIRE 250, 350, and 500 µm bands with angular resolutions of 6.69”×6.89”, 

10.65”×12.13”, 18.2”, 24.9” and 36.3”, respectively. SN 1987A was observed on April 30th and August 5th, 

2010 (days 8467 and 8564 after the explosion).  

The PACS and SPIRE images of the combined two epochs (Fig. 1) (25) reveal SN 1987A as a faint 

but detectable point source coincident with the VLBI measured coordinates of SN 1987A, RA: 5h 35m 

27.990s, Dec: −69d 16’ 11.110” (J2000) (26). Spatial comparison of these images with prior Spitzer 

detections with MIPS at 24 µm and IRAC at 8 µm (20) confirms the location of SN 1987A with respect to 

nearby interstellar features. In the PACS 100 and 160 µm images, SN 1987A is clearly detected as a point 

source that is well separated from the nearby interstellar medium (ISM) dust. In the SPIRE bands, the 

250-µm image shows SN 1987A as a point source, but the SN begins to merge with the nearby ISM dust 

emission at 350 µm, and blends completely at 500 µm owing to the increasing beam size at longer 

wavelengths.  The Hubble and Spitzer Space Telescopes and Herschel Space Observatory images (Fig. 1a, 

c–h) show that SN 1987A is located in a region with relatively low amounts of ISM gas and dust. 

We obtained photometry from the processed Herschel images (Table 1) (27), assuming SN1987A 

is unresolved; the fluxes are plotted in Fig. 2a. There are two peaks in the spectral energy distribution 

(SED), one near 20 µm and the other at 150–200 µm (Fig. 2a). The total luminosity from 100–500 µm is 

approximately 220 L⊙. The mid-infrared (5–40 µm) luminosity is 1200 L⊙ (epoch of 7983 days) (20) and 

the X-ray luminosity is ~500 L⊙ (8012 days) (28). Thus, the far-infrared/submm emission we detected is an 

important component of this SN’s SED. 
 

The Origin of the far-infrared/submm Emission  
The smooth blackbody-like shape of the far-infrared/submm SED (Fig. 2a) suggests continuous emission 

from dust. However, synchrotron emission and line emission from the same gas that produces the UV, 

optical and near-infrared lines are also possible. 



Line emission can arise from the supernova ejecta and the circumstellar rings. The rings were first 

flash-ionized by the supernova, and have since recombined and cooled (12). To estimate the contribution 

from ionized lines from the inner ring, we extended the photoionization code of (12) to include 

far-infrared/submm lines.  The expected line intensities of the strongest ionized lines are 0.5 × 10−15 , 1.2 × 

10−15 , 0.1 × 10−15, and 0.2 × 10−15 erg s−1 cm−2 for the 88 µm [OIII], 122 µm [NII], 158 µm [CII], and 205 

µm [NII] lines, respectively. These line fluxes are equivalent to a 0.2 % contribution to the total Herschel 

in-band fluxes; hence, photoionised lines make a negligible contribution to the far-infrared/submm fluxes.  

Another possible contribution to the line emission may come from the radiatively cooling gas shocked by 

the ejecta/ring interaction (11). However, it is unlikely that this contribution could be orders of magnitude 

higher than those from photoionised gas, because the forbidden lines are collisionally de-excited in the 

high-density shocked gas. 

Continuum synchrotron radiation can also contribute to the emission in the Herschel bands. The 

synchrotron radiation has been measured at radio frequencies up to day 8014 after the explosion (26, 29; 

Fig. 2a); we extrapolated the fluxes to far-IR wavelengths using a power-law.  The predicted Herschel flux 

densities from synchrotron radiation are two orders of magnitude lower than those we measured  (Fig. 2a), 

implying that the emission observed by Herschel is mostly due to the continuum emission from dust. 
 
 
 
 

Dust mass  
Using the flux densities and their uncertainties, we calculated the dust temperature and mass needed to 

account for the observations (Table 2, and Fig 2b) (30).  

We explored four possible origins for the dust: progenitor dust, ambient ISM dust swept up by SN 

shocks, a light echo from ISM dust, and SN ejecta dust. 

It is thought that the progenitor of SN 1987A ejected 8 M⊙ of gas during its red supergiant (RS) 

phase prior to the SN explosion (3). The dust ejected this way is expected to be composed mostly of 

silicates because RS produce oxygen-rich dust. Adopting a gas-to-dust mass ratio of 300 (31) implies a 



silicate dust mass from the RS of 0.03 M⊙. The silicate dust mass required to fit the observed emission is 

much higher  (>  2  M⊙; Table 2), equivalent to >  600  M⊙ of gas. A similar evaluation rules out the 

possibility that dust could have been formed during another evolutionary phase of the progenitor, e.g. a 

luminous blue variable. It is therefore unlikely that the observed far-infrared/submm emission could have 

originated from dust formed by the SN progenitor. 

As it expands, the SN sweeps-up dust from the ambient ISM. The SN shock speed is up to 6000 km s
−1 

(32), and the distance already travelled by the shocks is up to 30,000 AU (0.6 arcsec). We assumed a gas 

density of 1 hydrogen atom per cm
3 in the LMC ISM and adopted a gas-to-dust mass ratio of 300. Within 

this volume, only a small mass of ISM dust (3  ×  10−6 M⊙) will have been swept-up. This estimate is 

consistent with Herschel measurements of the ISM dust emission of <  10−4 M⊙, based on the sky 

background level in the 160-µm band (70.4±9.6 MJy sr
−1

) measured for a 1.3x0.4 arcsec2 region centered 

at the position of SN, after removal of a point spread function (PSF). Our measured dust emission requires 

a much higher dust mass; hence favoring emission from SN dust rather than from swept-up ISM dust. 

The original SN energy pulse could potentially have been absorbed and re-emitted by 

interstellar dust grains to produce infrared echoes. To account for the Herschel fluxes, an infrared echo 

would have to originate from a dust cloud located at about 11 light years directly behind the SN, which is 

improbable. Moreover, this dust would have been heated by the optical and UV light, which had a 

luminosity of Luvo=1041 erg sec-1 (17), implying a flux incident on the dust F=Luvo/(4πR2), where R=11 

light years. Taking this energy input as the dust heating rate, equilibrium with the dust cooling rate 

yields the dust temperatures ranging from 40 K for silicate, and 70–110 K for graphite, for a range of 

grain sizes from 0.01–0.1 µm (33). These temperatures are substantially higher than those measured by 

Herschel (Table 2), ruling out an echo as an explanation for the Herschel SED. 

Thus, we conclude that the emission observed by Herschel is associated with cold dust in the SN 

ejecta. 

The dust that is emitting at Herschel wavelengths could be heated by one or more of the following 

mechanisms: (a) by the X-ray emission arising from the interaction of the blast wave with the equatorial 

ring, which has a luminosity of about 500 L⊙ (20, 28); (b) by the energy released from the long-lived 



radioactive 44Ti isotope present in the ejecta - our measured far-infrared/submm luminosity of 220 L⊙ is 

about half of the predicted 44Ti luminosity at this epoch (~400 L⊙) (35); (c) the ambient diffuse interstellar 

radiation field, given that the temperature of the far-infrared/submm emitting dust is very similar to that of 

ISM dust. 

 
The Origin of the Cold Dust in the Ejecta  

The masses predicted for the major refractory elements (Table 3) in the ejecta of SN1987A (3, 34) 

restrict the maximum mass of dust that could have formed in the ejecta if all these elements precipitated 

from the gas phase (Table 4). The total available dust mass is about 0.71 M⊙ in either nucleosynthesis 

model. The maximum mass of silicate dust of 0.51 or 0.40 M⊙, depending on the models, is smaller than 

the 2.4 M⊙ required to fit the observed far-infrared/submm flux with pure silicate emission. The same 

holds for carbon and iron dust. It is clear that any attempt to fit the observed spectrum with a single dust 

species requires a larger mass of that particular dust species than is available in the ejecta. 

The far-infrared/submm fluxes could, however, be the sum of the emission from several different 

dust species in the ejecta. Figures 2c and 2d show the predicted far-IR SEDs arising from dust in the ejecta 

of SN1987A using ejecta abundances from models1 and 2, respectively (Table 4). Figure 2c and d suggest 

that a significant fraction of the major refractory elements are depleted onto dust, and that the total dust 

mass is about 0.4–0.7 M⊙. 

 Support for the presence of large amounts of dust in the ejecta may come from HST observations 

of the ejecta Ha profile in 2004 and 2010 (36) which show the red-ward part of the profile to be largely 

missing, which could be interpreted as implying that emission from material at the far side of the ejecta 

suffers more extinction by intervening dust than material at the front side. 
 

The derived dust mass is about 103 times larger and about twenty times colder than that measured 

at mid-infrared wavelengths around 600 days after the explosion, soon after it first condensed out of the 

ejecta (15,16). Far-infrared and submm observatories with Herschel’s sensitivity did not exist at that time. 

It is possible this submm dust mass existed at day 600. However, it is also possible that this dust mass grew 



by accretion over the past 20 years, or that initially optical/infrared-thick dust-bearing clumps may have 

become optically thin at far-infrared and submm wavelengths. Overall, the observations provide evidence 

for the efficient formation and growth of massive quantities of dust in SN ejecta. 

Our result could impact on the understanding of the evolution of dust in galaxies. In the LMC, the 

rate of type II SNe is estimated to be one per 300 years (37). If all type II SNe form typically 0.4 M⊙ of 

dust, the overall SN dust injection rate into the ISM would be more than 10−3 M⊙ year
−1. This is about ten 

times higher than the overall dust inputs measured from asymptotic giant branch stars in the LMC (38, 39). 

With such a high efficiency and with a dust lifetime of 2–4×108 years (40), it would be possible to explain 

a substantial fraction of the dust in the LMC (about 1 × 106 M⊙; 41, also 31) by a stellar origin. 

 
 

The large amount of dust inferred to be present in the ejecta of SN 1987A is consistent with that 

required to explain the dust masses in high-redshift galaxies (42, 43), i.e. 0.1–1.0 M⊙ of dust per SN, 

if the dust is not significantly destroyed during its injection into the ISM and subsequent encounters 

with interstellar shocks. Supernovae may therefore be significant contributors of dust detected in such 

galaxies. 
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Table 1: The measured PACS and SPIRE flux densities of SN 1987A. We added in quadrature the 
uncertainties from the source extraction and the absolute errors in the flux calibration, which are 
estimated to be 10% for the PACS bands and 7% for the SPIRE bands (47, 48). * 3-sigma upper limit. 

Band Flux (mJy) 
PACS 100 µm 70.5 ± 8.5 
PACS 160 µm 125.3 ± 16.1 

131.7 ± 12.1 SPIRE 250 µm 
SPIRE 350 µm 49.3 ± 6.5 
SPIRE 500 µm <57.3* 



 
 
Dust Species Md (M⊙) Td (K) 
Amorphous carbon 0.35 ± 0.06 21.2 ± 0.7 
Silicate 2.4 ± 0.4 17.7 ± 0.5 
Iron (a=0.1 µm) 3.4 ± 0.6 19.2 ± 0.7 
Iron (a=0.5 µm) 0.34 ± 0.06 25.7 ± 0.9 
 
Table 2: Dust temperatures (Td) and corresponding dust masses (Md) derived by fitting the whole of the 
far-infrared/submm emission with a single dust species (30). Quantities are insensitive to grain radius, 
except metallic iron. The absorption efficiency of metallic iron depends on grain radius (a), and the table 
represents the results for grain radii of 0.1 and 0.5 µm.  
 
 
 



 
 
 
 
Figure 1: The Herschel images of SN 1987A together with the Spitzer infrared (20) and the Hubble optical 
(56, 57) images. North is top and east is left. The two vertical white lines indicate the position of SN 
1987A measured from radio observations.  (Inset i)  Background-subtracted 350-µm image, where the 
background is estimated from the 250-µm residual image after the subtraction of the point spread function 
at the position of SN 1987A. The PSFs shows the resolution of the Herschel instruments.  Panel (b) shows 
an enlarged HST optical image, indicating the morphology of the SN remnant. [Source: panel (a), the 
Hubble Heritage Team (AURA/STScI/NASA); panel (b), NASA, ESA, P. Challis and R. Kirshner 
(Harvard-Smithsonian Center for Astrophysics)]. 



 
 
Figure 2: (a) The infrared spectral energy distribution of SN 1987A. Herschel detected SN 1987A from 100 
to 350 µm. An upper limit is given at 500 µm. The other observational data were collected from the 
literature: 5.8–24 µm photometric data and 5–30 µm spectra (20), which measures the warm dust emission; 
and the radio continuum (26, 29), which traces the synchrotron emission. (b): model fits to the 
far-infrared/submm dust emission using different single dust species. Parameters are given in Table 2.  (c 
and d): The sum of the contributions from each dust species to the far-infrared/submm spectrum of SN 
1987A. The flux at each wavelength is that derived from fitting the observed spectrum with each dust 
species alone (Table 2), scaled by the fraction of its mass available in the ejecta from abundance 
considerations (Table 4). The model 1 and model 2 abundances in Table 4 correspond to (c) and (d), 
respectively. The hatched areas represent the range of possible fluxes from each species, with the lower 
and upper boundaries corresponding, respectively, to the scaling of the minimum and maximum and dust 
masses (uncertainties in Table 2) required to produce the observed spectrum. 
 
 
 



Elements Mass  (M⊙) 
Model 1 Model2 

C 0.114 0.26 
O 1.48 0.24 
Mg 0.183 0.04 
Si 0.101 0.14 
Fe 0.083 0.075 
Table 3: Model prediction of the mass of representative refractory elements synthesized in the SN 1987A 
ejecta. Isotopes which contribute a large fraction of the total atomic mass were accounted for. Model 1: 
theoretical calculations of elemental abundance from (3). Model 2: calculations from an updated version of 
(34). 
 
 
 
 
Dust Species md (M⊙) 

Model 1 Model 2 
Amorphous carbon 0.11 0.26 
Silicate 0.52 0.37 
Iron 0.08 0.08 
Total 0.71 0.71 
 
Table 4: The dust mass assumes 100% dust condensation of the available elemental mass (md). The range 
of dust masses reflects the difference in compositions in Table 3. All silicates are assumed to be in the form 
of MgO and SiO2 dust. The mass of carbon dust assumes that no significant fraction of carbon is locked up 
in CO molecules. 


