
HAL Id: cea-00854511
https://cea.hal.science/cea-00854511

Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Design of arbitrarily homogeneous permanent magnet
systems for NMR and MRI: Theory and experimental

developments of a simple portable magnet
Cedric Hugon, Francesca d’Amico, Guy Aubert, Dimitris Sakellariou

To cite this version:
Cedric Hugon, Francesca d’Amico, Guy Aubert, Dimitris Sakellariou. Design of arbitrarily ho-
mogeneous permanent magnet systems for NMR and MRI: Theory and experimental develop-
ments of a simple portable magnet. Journal of Magnetic Resonance, 2010, 205, pp.75-85.
�10.1016/j.jmr.2010.04.003�. �cea-00854511�

https://cea.hal.science/cea-00854511
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Design of arbitrarily homogeneous permanent magnet systems for NMR
and MRI: Theory and experimental developments of a simple portable magnet

Cedric Hugon a, Francesca D’Amico b, Guy Aubert c, Dimitris Sakellariou a,*

aCEA, DSM, IRAMIS, SIS2M, LSDRM CEA Saclay F-91191 Gif-sur-Yvette, France
bCEA, DSM, IRAMIS, SIS2M CEA Saclay F-91191 Gif-sur-Yvette, France

cCEA, DSM, IRFU, CEA Saclay F-91191 Gif-sur-Yvette, France

Starting from general results of magnetostatics, we give fundamental considerations on the design and

characterization of permanent magnets for NMR based on harmonic analysis and symmetry. We then

propose a simple geometry that takes advantage of some of these considerations and discuss the practical

aspects of the assembly of a real magnet based on this geometry, involving the characterization of its ele-

ments, the optimization of the layout and the correction of residual inhomogeneities due to material and

geometry imperfections. We report with this low-cost, light-weight magnet (100 euros and 1.8 kg includ-

ing the aluminum frame) a field of 120 mT (5.1 MHz proton) with a 10 ppm natural homogeneity over a

sphere of 1.5 mm in diameter.

1. Introduction

Portable NMR has been of interest since the early 1950s for
NMR well-logging [1]. One of the first systems to go outside the
laboratory was designed and fabricated by Varian and consisted
of a polarizing coil which was shut off to let the spins evolve in
the Earth’s field [2]. Portable NMR did not draw much attention
for a few decades thereafter due to the conflicting requirement
for strong fields and portability. The development of new magnetic
materials such as NdFeB and SmCo at the beginning of the 1980s
[3] has brought new prospects for portable NMR. Previous materi-
als (AlNiCo, ferrites, etc.) did not offer sufficient energy products to
be suitable for NMR magnets. Halbach, sensing the possibilities of-
fered by rare-earth magnets, developed his famous multipole
structures around these new materials [4]. However, it was only
in 1995 that the first truly portable NMR system was proposed,
the NMR-MOUSE [5]. This system was among the first to offer
the ability to perform NMR outside of a magnet, relaxing standard
limitations on samples (e.g., size) applicable to NMR. Several other
systems based on permanent magnets have been proposed for
both, ex situ and in situ applications [6–14]. An extensive review
on portable NMR by Blümich et al. is available for more details
[11]. Although very promising NMR results have already been re-

ported, the spectral resolution in a given sample volume obtained
from permanent magnet systems cannot yet compete with what
superconducting magnets currently offer. Part of the reason for
the superior performance, is lying in long developments in mag-
netic field generation and control from electromagnets using
Spherical Harmonics [15]. Even though this theory was very early
transposed to permanent magnets by Aubert [16,17] in the context
of 3D magnetic field control, only very recently, similar 2D and 3D
analytical work has been published [8,18], giving rise to unilateral
systems which use properly shaped polar pieces.

In this paper we propose a complete procedure for permanent
magnet design, fabrication, characterization and shimming, which
capitalizes on the spherical harmonic expansion. The theory is
extensively presented and simple symmetry-based rules for mag-
net design are concluded. This approach for magnet design leads
to theoretically perfectly controlled magnetic fields, up to arbitrary
order, without the need of polar pieces. We also present a theoret-
ical scheme for precise and direct measurement of the spherical
harmonic expansion terms from real, and thus imperfect, magnets
and we detail important issues dealing with folding. This tool al-
lows us to pre-calculate the needed corrections for passive shim-
ming, which has to be performed only once (in a way very
similar to shimming the cryo-cooled shims in superconducting
magnets) right after the magnet construction.

In practice, we have verified this procedure by creating and
testing a simple magnet system with no pole pieces, that does
not intend to achieve record performance. This test-bench is a
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compact magnet assembly, based on small, inexpensive, magne-
tized cubes, that produces a longitudinal field in its center. Based
on our theory, we developed and present algorithms to choose
the layout of the cubes from 3D field measurements and sorting.
Finally, we demonstrate passive shimming, using hard ferromag-
netic elements in order to achieve the required compensations
and we report NMR experiments.

2. Theory of spherical harmonic expansion (SHE)

2.1. Design of perfect permanent magnets

We describe in this section a general theory for the homogene-
ity of mobile permanent magnets, based on the spherical harmonic
expansions (SHE) of the scalar potential and the magnetic field. We
revise some well-known properties of this theory and then estab-
lish some symmetry-based rules for permanent magnets design.

In the case of NMR/MRI, the region of interest (RoI) is spherical
and lies outside of the field sources region and one can define a
magnetic pseudo-scalar potential /* such that:

B
!

¼ �~rU� ð1Þ

This potential verifies the Laplace equation:

DU� ¼ 0 ð2Þ

The center of the sphere will be called the origin. We shall use
spherical coordinates in the usual notation with r the distance from
the origin, h the inclination and / the azimuth. The Laplace equa-
tion is separable in the spherical coordinate system and one can
obtain a unique decomposition of the potential on the spherical
harmonics base, centered on the origin. The general solution for
the potential can then be written [19]:

U�ðr; h;/Þ ¼
X

1
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X

l

m¼�l

½Almr
l þ Blmr

�ðlþ1Þ�Y lmðh;/Þ; ð3Þ
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One must remember that the potential exists only in empty
areas of space. The space can therefore be divided in two areas
where the potential exists: inside the biggest sphere centered on
the origin that does not contain any source, and outside the small-
est sphere centered on the origin that contains all the sources. In-
side the former sphere, the potential can be expanded as:

U�ðr; h;/Þ ¼
1

l0

X

1
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m¼1

ðXm
n cosm/

"
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#
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where we call the Zn terms axial terms and the Xm
n and Ym

n terms
skewed terms.

However, in NMR, we are interested in the magnetic field and
not in the potential. As each component of the field satisfies the La-
place equation, it is possible to expand each component in the
same way as the potential. However, the different terms are not
the same. The longitudinal component of the magnetic field can
be expanded as follows1:

Bzðr; h;/Þ ¼ Zz0 þ
X

1

n¼1

rn ZznPnðcos hÞ þ
X

n

m¼1

ðXzmn cosm/

"
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#

: ð6Þ

The SHE expresses the variations of one component of the field
at a time. However, the NMR frequency is proportional to the mag-

nitude of the field, B ¼ j B
!

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y þ B2
z

q

. Hence, in order to see

the small local variations of the field due to the chemical environ-
ment of the observed nucleus, a very homogeneous field is re-
quired. Yet we can remain concerned only about the main
component of the field. This is stated in [15] but we shall prove
it here.

Let the field at the center of the region of interest be B0 uz

!
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Eq. (7) shows that the variations of the main component of the
field come in first order while the other components start at the
second order. As a result, we can restrict the study of homogeneity
to the main component of the field. This main component may
obviously be in any direction of space, but in NMR it is usually
pointing along the z axis of the laboratory. This approximation is
of course only valid in a region of space where the field variations
are small compared to the main field. It is otherwise necessary to
deal with the three components.

Eq. (6) shows that the homogeneity requirements correspond to
an expansion of the field featuring the order 0 term only. This is not
possible, but we can cancel as many terms as necessary to achieve
the required homogeneity over a desired volume. As the variations

induced by a term of order n scale as r
r0

� �n

, with r0 being a refer-

ence radius smaller than the radius of the largest sphere containing
no sources, the field inhomogeneities will be dominated by the
term of lowest order. Thus, to achieve the desired homogeneity,

the k first orders should be cancelled until r
r0

� �kþ1

is small enough.

We shall now see how it is possible to cancel these terms through a
systematic design of the magnet. Symmetries in the structure of
the magnet may help tremendously this task. The symmetry of
the magnet layout will reflect directly into the potential symme-
tries (it is indeed the potential that is really defined by placing
magnetic pieces of specific geometries in space). It is hence neces-
sary to consider the potential expansion before going to the field
expansion.

The conversion between potential and field component expan-
sion terms can be established analytically [15]. We can write, for
example, for the Bz component2

Xzmn ¼ �ðnþmþ 1ÞXm
nþ1 8nP 1;1 6 m 6 n; ð8Þ

Yzmn ¼ �ðnþmþ 1ÞYm
nþ1 8nP 1;1 6 m 6 n; ð9Þ

Zzn ¼ �ðnþ 1ÞZnþ1 8nP 0: ð10Þ

1 The transverse components (Bx and By) would of course follow a similar

expansion.

2 It is also possible to obtain similar relations for the other components of the field

but this goes beyond the focus of this paper.
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It is straightforward to conclude that in order to obtain a homo-
geneous longitudinal field, one should find a source distribution
that creates a potential for which the expansion contains only
the Z1 term. An n-fold rotational symmetry will remove the poten-
tial skewed terms up to order n � 1, the first non-zero skewed
terms being then Xn

n and Yn
n. Hence, the Bz skewed terms up to order

n � 2 will be cancelled (the first non-zero term being at order
n � 1). Once skewed terms have been zeroed, the remaining axial
terms must be taken care of. Another helpful symmetry is then
the planar antisymmetry with respect to xOy, which will leave only
odd axial terms in the potential, hence leaving only even terms in
the expansion of Bz.

3 It is then possible to arbitrarily cancel p axial
orders by choosing the proper dimensions and layout of p + 1 inde-
pendent sources featuring the n-fold rotational symmetry. The opti-
mization of these magnet elements becomes quickly difficult and
prohibitively long if not supported by analytical formulas of the
expansion terms. We have derived such analytical formulas for dif-
ferent source shapes (cylinders, rings and trapezoids), which relate
the spherical harmonic expansion coefficients to selected relevant
geometric parameters. Based on these equations, numerical optimi-
zation provides the ideal parameters for a type of geometry and the
desired field homogeneity.

2.2. Direct measurement of the SHE terms

Using the previously described theory, theoretically perfect
magnets can be designed having an arbitrary field profile. In prac-
tice though, many imperfections (positioning, magnetization
heterogeneities from fabrication, demagnetization, etc.), will con-
tribute to an imperfect magnetic field. In the context of electro-
magnets, a field mapping approach in view of the computation of
the SHE terms [15] offered possibilities for efficient shimming.
However, in the literature no detailed discussion of critical issues
of this technique related to folding have been given in the past.
In addition, to the best of our knowledge this technique has not
been applied to mobile permanent magnets for NMR until now.

The field of a magnet can be characterized in many different
ways, the most straightforward of which is to map the field on a
Cartesian grid with an appropriate detector (Hall or NMR probe).
It is also possible to use the gradient shimming technique which
relies on the use of external gradients to map the field everywhere
in the volume of interest [20]. This technique however depends
highly on the quality of the gradients used to map the field and re-
quires the external gradients to be stronger than the field varia-
tions throughout the volume of interest. Furthermore, a field
appearing constant with this technique only reflects the linearity
of the gradients: once the gradients are removed, the field features
the imperfections of the gradients. Some quality factor can be de-
fined based on the different measurement points in order to assess
the quality of the field. However, it is difficult to explicitly qualify
the variations and compare one profile with another one based so-
lely on such a quality factor. Spectral analysis, or the decomposi-
tion of a function onto an orthonormal basis is probably one of
the most efficient ways of qualifying that function and comparing
it to another one. The spherical harmonic expansion is in that sense
a very convenient tool and has been extensively used in magnet
design and characterization [15].

Field measurements can only be done in a finite number of dis-
crete locations and the operation of retrieving the expansion terms
from such measurements corresponds to a polynomial interpola-
tion. This raises the issues of choosing the appropriate measure-
ment points and aliasing. The following theoretical description of

aliasing in the context of field plotting is largely inspired from
the numerous literature available on the topic of interpolation
and sampling points choice (see for example [21,22]).

In order to perform the right measurements and carry the right
interpolation, it is important to define the number of terms to re-
trieve and this cannot be dealt with without having aliasing in
mind. If we sample a polynomial P in n points xi, we can define
the polynomial P such that

PðxÞ ¼ ðx� x1Þðx� x2Þ � � � ðx� xiÞ � � � ðx� xnÞ ð11Þ

As a result, if we divide P by P, we obtain a quotient Q and a
remainder R:

PðxÞ ¼ QðxÞPðxÞ þ RðxÞ ð12Þ

For the sample point xi, we obtain

PðxiÞ ¼ RðxiÞ ð13Þ

and it is not possible to make the difference between P and R. We
shall call P the sampling polynomial.

For example, let the field variation V to be measured of the form

Vðr; xÞ ¼ Z0P0ðxÞ þ
r
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with x = cosh. Let us sample that field variation in three points lying
on the sphere of radius r < r0 and corresponding to cos h ¼ 1

2 ;0;�
1
2.

The sampling polynomial is hence defined as
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One then finds out that R, as defined above, can be written as
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If we write the terms calculated from sampling (primed terms)
as a function of the real terms (unprimed terms), we obtain

Z0
0 ¼ Z0 �
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Z4

Z0
1 ¼ Z1 �
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Z4:

This demonstrates that for insufficient, non-optimized sampling
points, the higher order terms of the expansion fold into the eval-
uated terms. This is due to the fact that we limit the interpolation
to three terms while the actual field variation features six of them.
Here, we want to emphasize that this problem is always present
when performing field profiling. The measurement requires to set
a finite number of measurement points and to truncate the expan-
sion. The actual field expansion always features more terms than
we fit. However, the expansion usually converges and there exists
an order above which terms can be neglected and will not affect
the extraction of the coefficients. The number of necessary terms
depends on the system producing the field. Hence, one should as-
sess first what is the spectral content likely to be found, based on
the geometry and imperfection sources. The validity of the choice

3 This symmetry cannot be achieved in the case of ex situ systems, where magnetic

sources are allowed only on one side of the RoI.

3



of the necessary number of points should later be checked by ver-
ifying the stability of the interpolation while varying the number of
measurement points or the number of measured terms.

After the number of measurement points is chosen, it is neces-
sary to decide where these points should be. It is a well-known
property of the solutions of the Laplace equations, that if one
knows the field on a closed surface containing no sources, it is pos-
sible to compute the field anywhere inside this surface. Hence, it is
possible to retrieve the inner spherical harmonic expansion from
measurements on a closed surface that does not contain any
source. The sphere is the most adapted geometry and the radius
of measurement should contain the entire volume of interest (inac-
curacies resulting from the measurement errors are amplified by
extrapolation outside the measurement sphere).

However, we want to stress that the effect of aliasing depends
in addition on the radius of measurement. Therefore, the increase
of the radius of measurement must be done with care as aliasing
may corrupt the retrieved terms, resulting in potentially larger er-
rors than measurement errors. Hence, one may need to compute
more terms (and use more points).

There are many ways of sampling the surface of the measure-
ment sphere. We shall discuss here a well-known [15] simple
and straightforward one, though not optimal. This sampling
scheme offers ease for calculation and practical measurement. It
is a combination of an equidistant distribution in / so that the m

orders can be calculated through a simple Fourier transform and
an equidistant distribution in h in order to get the n orders through
a simple fit. It is obvious that one needs at least 2M + 1 points to
obtain all orders m up to M and at least N + 1 different h in order
to retrieve the n orders up to N. The even sampling in h insures that
the lower orders are the least affected by aliasing, making it easier
to obtain a reliable measurement (through increase of measure-
ment points). This sampling scheme necessitates much more
points than necessary as 2M + 1 points are taken for each h. For h
close to 0 or p, numerous points in / are useless. It is possible to
determine an optimal sampling scheme, however, the definition
of such a sampling grid goes beyond the scope of this paper.

3. A simple practical example

This section describes a simple magnet system based on the
previously exposed SHE framework. A short discussion of well-
known imperfections of permanent magnets is given and we pres-
ent an original methodology to measure with good precision the
magnetic moment of cubes (amplitude and orientation). A short
discussion of a screening procedure based on these measurements
follows. The concept of screening parts has been applied for a long
time but the given procedure is original. The ability to simulate
quantitatively the field variations based on the cube measure-
ments is demonstrated for the first time.

3.1. Magnet design

Based on the preceding theory, we can analyze a very simple
magnet structure that creates a longitudinal field (i.e. Bz in the
notation of the preceding section). This magnet structure was orig-
inally invented by Aubert [16] and preliminary developments were
recently discussed [23]. We will summarize the theoretical analy-
sis and focus on practical aspects. The theoretical structure is di-
vided in rings which have a cylindrical symmetry with a number
of segments. We chose to use two rings for which the segments
consisted in cubes arranged cylindrically and anti-symmetrically,
as shown on Fig. 1. Fourty-eight cubes having a side of 12 mmwere
used and the diameter of the bore of the magnet was 52 mm.
Assuming the cubes are all exactly the same and feature homoge-

neous magnetization, the cylindrical arrangement of 12 cubes pro-
vides a 12-fold rotational symmetry, cancelling all field skewed
terms until the 11th order, while the antisymmetric arrangement
of the two rings provides the cancellation of every odd axial term.
The use of two rings allowed the cancellation of one extra axial
term through the use of the appropriate gap (about 42.122 mm).
A photograph of the assembly is shown on Fig. 1. The two rings
of cubes are supported by machined aluminum mounts mounted
on linear translation stages (Owis brand, model VT 65-Z-FGS,
non-magnetic version) in order to adjust the gap between the
two rings. Bracings maintain the gap once the magnet is adjusted
and removed from the linear stages. This magnet, once set up prop-
erly, should offer a homogeneous field up to order 4. This corre-
sponds to a homogeneity of 15 ppm over a 3 mm DSV. Fig. 2
provides a view of the field variations for this theoretical model
(simulations are done using exact cube geometry). Making an axial
magnetic field is usually less efficient than making a transverse
one, using the configuration of Halbach. In our case, with the same
number of cubes representing 630 g of magnetic material, one
could generate a transverse magnetic field of 190 mT with the
same bore radius. The homogeneity of this magnet would be
15 ppm in 3 mm DSV. Using axially magnetized blocs would lead
to even worse efficiency compared to the Aubert or Halbach con-
figurations. In our case the field generated by such a configuration
is 90 mT, with a homogeneity of 26 ppm in 3 mm DSV.

It is straightforward to estimate the effect of position errors of
the different magnet parts from the theoretical calculations. These
estimations indicate the positioning of the magnets must be very
precise. For example, an error of 0.05 mm on the gap between
the rings induces the rise of 15 more ppm of inhomogeneity on
the same diameter, due to the increase of Zz2.

3.2. Material imperfections

The cubes constituting the magnet assembly are not perfect and
feature a distribution of magnetization amplitude and orientation
from one to another. Geometrical tolerances are also a source of
imperfections such as imperfections in the geometry, the location

Fig. 1. Basic layout of the magnet system. It consists of two rings of magnet blocks

that are radially magnetized. The combination of these rings creates a longitudinal

field at the center of the system and confines the field in the structure. The

magnetization of each cube is shown as an arrow on the side. The photograph at the

bottom left shows the final implementation of the cubes in aluminum mounts set

on translation stages for adjustments.
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and the orientation of each cube and then in the orientation and
location of each ring. In most cases, the primary source of imper-
fections in the field are the distribution of magnetization from
one cube to another and the errors on the orientation and location
of the rings.

Furthermore, the magnetization is not homogeneous through-
out each cube. This is caused by the (imperfect) fabrication pro-
cesses and the demagnetizing fields due to the geometry of the
magnet which also induce an inhomogeneous magnetization by
setting a different working point throughout the magnet. The
demagnetization of a part can be simulated by iterative algorithms
such as the one in Radia, a software proposed by the ESRF [24].
However, such simulations remain not precise enough for mag-
netic resonance (0.5 percent compared to experimental results) ,
due to the little knowledge we have of the material behavior and
of its history. Such methods are at best a good way to help refine
the assembly of a magnet. One must be prepared in the end to sig-
nificantly shim the magnet to obtain performance suitable for
NMR.

3.3. Magnetic measurement of magnet pieces

Good knowledge of the magnetic properties of each piece is
necessary in order to achieve high performance and more precise
simulations. It is extremely difficult to retrieve the magnetization
distribution of the magnet part but one can measure with a good
precision (but poor accuracy) its average magnetization. This can
be done by assuming a dipolar approximation of the magnet part
[23]. Several methods can then be used, either based on Hall
probes [25] or on flux coils (see for example Section 5.2 in [26]).
The dipolar approximation is a very good one for any geometry
as long as one measures the field sufficiently far away from the
part. For a cube, the sensor should be located at least at a distance
five times the size of the cube. However it was not possible for us
to perform the measurements at a distance sufficiently remote to
safely assume a dipolar behavior.

It is possible to refine the model used to get the average magne-
tization when a 3D field map of the field can be obtained. Using the
same measurement scheme as in our moment measurement, we
can use analytical formulas for the field generated by a parallelepi-
ped [27]. One can indeed write the field generated by a parallele-
piped of dimensions 2a, 2b and 2c, magnetized along the z

direction (Fig. 3) as:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðxþ aÞ2 þ ðzþ cÞ2
q

y� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðxþ aÞ2 þ ðzþ cÞ2
q

3

7

5
;

ð14Þ

BZ
yðx; y; z; a; b; cÞ ¼

Mz

4p
ln

xþ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðxþ aÞ2 þ ðz� cÞ2
q

x� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðx� aÞ2 þ ðz� cÞ2
q

2

6

4

�
x� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðx� aÞ2 þ ðz� cÞ2
q

xþ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðxþ aÞ2 þ ðz� cÞ2
q

�
x� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðx� aÞ2 þ ðzþ cÞ2
q

xþ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðxþ aÞ2 þ ðzþ cÞ2
q

�
xþ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðxþ aÞ2 þ ðzþ cÞ2
q

x� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðx� aÞ2 þ ðzþ cÞ2
q

3

7

5
;

ð15Þ

BZ
z ðx; y; z; a; b; cÞ ¼

Mz

4p
arctan

ðxþ aÞðyþ bÞ

ðz� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðxþ aÞ2 þ ðz� cÞ2
q

2

6

4

� arctan
ðxþ aÞðyþ bÞ

ðzþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðxþ aÞ2 þ ðzþ cÞ2
q

þ arctan
ðx� aÞðy� bÞ

ðz� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðx� aÞ2 þ ðz� cÞ2
q

� arctan
ðx� aÞðy� bÞ

ðzþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðx� aÞ2 þ ðzþ cÞ2
q

� arctan
ðxþ aÞðy� bÞ

ðz� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðxþ aÞ2 þ ðz� cÞ2
q

þ arctan
ðxþ aÞðy� bÞ

ðzþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy� bÞ2 þ ðxþ aÞ2 þ ðzþ cÞ2
q

� arctan
ðx� aÞðyþ bÞ

ðz� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðx� aÞ2 þ ðz� cÞ2
q

þ arctan
ðx� aÞðyþ bÞ

ðzþ cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyþ bÞ2 þ ðx� aÞ2 þ ðzþ cÞ2
q

3

7

5
:

ð16Þ
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Fig. 2. Contour plot of Bz in the XZ plane, as the theoretical magnet should produce.

One can notice that the variations are dominated by the order 4, and are limited to

about 40 ppm over a sphere of 4 mm diameter. Levels are in ppm. The plot in the

white box shows the field variation in ppm for z = 0 with x varying. A homogeneity

below 0.2 ppm could be achieved in a volume of 1 mm3.
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We have developed Eqs. (14)–(16) further in order to use them
for cube measurements. The field generated by the same parallepi-
ped magnetized along x or y satisfies the same equations after the
proper transformation of coordinates and permutations of a, b and
c. We shall define the following notations to refer to the field gen-
erated by the different magnetization coordinates:

PX
aðx; y; z; a; b; cÞ ¼

1

Mz

BZ
að�z; y; x; c; b; aÞ;

PY
aðx; y; z; a; b; cÞ ¼

1

Mz

BZ
aðx;�z; y; a; c; bÞ;

PZ
aðx; y; z; a; b; cÞ ¼

1

Mz

BZ
aðx; y; z; a; b; cÞ;

ð17Þ

where a can be x, y or z. Using this notation, one can express any
component of the field generated by the parallelepiped through
the following equations:

Bxðx;y;z;a;b;cÞ¼MxP
X
z ðx;y;z;a;b;cÞþMyP

Y
x ðx;y;z;a;b;cÞþMzP

Z
x ðx;y;z;a;b;cÞ;

Byðx;y;z;a;b;cÞ¼MxP
X
y ðx;y;z;a;b;cÞþMyP

Y
z ðx;y;z;a;b;cÞþMzP

Z
yðx;y;z;a;b;cÞ;

Bzðx;y;z;a;b;cÞ¼�MxP
X
x ðx;y;z;a;b;cÞ�MyP

Y
y ðx;y;z;a;b;cÞþMzP

Z
z ðx;y;z;a;b;cÞ:

ð18Þ

This can be summarized in matrix formalism for any compo-
nent a of the field as

Ba ¼ dx;a dy;a dz;a½ �

PX
z PY

x PZ
x

PX
y PY

z PZ
y

�PX
x �PY

y PZ
z

2

6

6

4

3

7

7

5

Mx

My

Mz

2

6

4

3

7

5
; ð19Þ

where db,a = 1 if a = b and zero otherwise.
It can be noticed that only one component of the field is re-

quired to retrieve the three components of the magnetization if
one obtains several measurements in different locations. Using
only one component of the field solves the issue of measuring
the three components of the field at the exact same location. We
will now remain concerned with the z component of the field,
which is measured in several points. One must be careful during
the measurement of one component of the field to have negligible
orthogonal components in the field in order to avoid errors due to
the planar field effect [25].

It is very important to take into account the possible misalign-
ment of the cube’s reference frame with the translation’s and
detector’s ones. In our context, we assume the translation refer-
ence frame is aligned with the cubes reference frame by construc-
tion. However, the position of the detector and its orientation are
not very well known. The detector can be anchored to the center
of the cube in the translation’s frame quite easily to a precision
of about 0.1 mm by eyesight and contact between the probe and
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Fig. 3. Measurements of the magnetization magnitude for an ensemble of 68 cubes. Measurements are performed by placing sequentially the north pole and the south pole of

each cube along the positive Z axis of the laboratory frame. (a) Definition of the different geometrical quantities considered for the measurement of the magnetization of a

cube. The parallelepiped is shown with sides 2a, 2b and 2c referring to the a, b, and c of Eqs. (14)–(16). The detector attitude relative to the reference frame of the

parallelepiped is shown with the different relevant angles (hd and /d found in Eq. (20)). (b) Histogram of the magnetization amplitude The average magnetization is 1.38 T and

the standard deviation is 0.01 T. (c) Histogram of the magnetization inclination. Average inclination is 1.8� and the standard deviation is 0.9�. (d) Histogram of the

magnetization azimuth. Mean value and standard deviation are irrelevant. The azimuth can always be reduced to a value between 0� and 90� as the cube can be rotated by

quarter of turns without changing the geometry. The most relevant parameters are here the amplitude and the inclination which show significant spreads.
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the magnet. However, the tilt of the detector and the refinement of
its position related to the cube requires more involved calibration.
If one defines the attitude of the detector as shown on Fig. 3a, Eq.
(19) can be modified for Bz, as measured by the Hall detector:

BMeas
z ¼ cos/d sinhd sin/d sinhd coshd½ �

PX
z PY

x PZ
x

PX
y PY

z PZ
y

�PX
x �PY

y PZ
z

2

6

6

4

3

7

7

5

Mx

My

Mz

2

6

4

3

7

5
;

ð20Þ

One can calibrate the attitude angles through the measurement
of the cube in a plane, as stated above, with the cube successively
rotated by a known angle X around the z axis. In our case, the
geometry of a cube makes easy to reliably rotate by p

2. One then
obtains a set of measurement matrices corresponding to each rota-
tion angle. All of these measurements are related to each other by a
simple rotation of angle X such that the measured Bz verifies:

BMeas
z ¼ cos/d sin hd sin/d sin hd cos hd½ �

�

PX
z PY

x PZ
x

PX
y PY

z PZ
y

�PX
x �PY

y PZ
z

2

6

6

4

3

7

7

5

cosX sinX 0

� sinX cosX 0

0 0 1

2

6

4

3

7

5

Mx

My

Mz

2

6

4

3

7

5
: ð21Þ

As the cube properties and the detector orientation remain un-
changed from one rotation to the other, it is possible to use these

measurements to obtain at once the magnetization of the cube, the
attitude of the detector, and the center of the cube compared to
the position of the detector (if the set of measurements is well con-
ditioned). It can be assumed that the attitude of the detector and the
centerof thecubearenotgoing tochangewhenswitching to thenext
cube to be measured. As a result, it is possible to measure the entire
set of cubes by using only one calibration for one cube in a given ori-
entation. The best possible alignment should nevertheless be
achieved before calibration. If the detector is tilted too much or too
much off-center, the issue of planar field effectmay be encountered.

We present in Fig. 3 histograms of values for the different com-
ponents of the magnetization of our set of cubes in spherical coor-
dinates for the north pole. We assessed the repeatability of the
measurement to 0.5–1% for the magnetization, 0.5� for h and 2�
for /. The difference between the magnetization calculated with
the dipole assumption and the cube assumption is about 1.5–2%
on the magnetization amplitude, between �1� and 1� on h and a
few tens of degrees on / (the precision on the latter quantity is
low in any case as h is close to zero). It seems hence significantly
more accurate to use the cube assumption in this case. The ob-
served mean magnetization is 1.38 T with a standard deviation of
0.01 T and the average inclination is 1.8� with standard deviation
of 0.9�. This measurement method does not take into account the
possible inhomogeneities of magnetization in the parallelepiped,
which have a lesser effect.

Fig. 4. Contour plots (in ppm) of Bz in the xOz plane for (a) a simulation of the original magnet with Radia based on the measurements of the cubes, (b) the experimental

measurements of the original magnet and (c) the experimental measurements of the shimmed magnet. Simulations based on part measurements can give qualitative as well

as quantitative information on the field variations. Furthermore, plot (c) shows the shimming using small magnets glued in place at calculated positions provides significant

improvement on the field variations.
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3.4. Fabrication strategies: simulation based on measurements and

screening

The magnetization measurements can be used in first place to
skim off the worst pieces which deviate the most from the average
values of the set of magnets. The performances of a particular com-
bination of parts can be simulated based on the measurements. In
order to perform fast estimations of a combination, we assumed
the cubes were simple dipoles for which we derived simple analyt-
ical formulae of the spherical harmonic expansion. These formulae
allow the quick evaluation of the homogeneity of the magnet in
view of massive screening. This dipolar approximation is not inap-
propriate in this case as this step of fabrication aims at reducing
coarse imperfections. Following the notation of Eq. (6), we can
write, for example, the Zz1 and Xz11 terms as

Zz1 ¼ 2
r0
R0

½3 cos h1P3ðcos h0Þ þ sin h1P
1
3ðcos h0Þ cosð/1 � /0Þ�

Xz11 ¼
r0
R0

4 cos h1P
1
3ðcos h0Þ cos/0 � 6 sin h1P3ðcos h0Þ cos/1

n

þ sin h1P
2
3ðcos h0Þ cosð2/0 � /1Þ

o

where r0 is a reference radius, {R0,h0,/0} are the spherical coordi-
nates of the dipole position, and {M1,h1,/1} are the spherical coor-
dinates of the dipole magnetization. The associated Legendre
polynomials Pm

n are defined without the (�1)m Hobson’s factor.
One can hence estimate the SHE of the magnet simply based on
the positions of the cubes and their magnetic measurements. It is
possible to rapidly screen thousands of possible combinations in or-
der to refine the layout of the cubes. It is however impossible to
span the whole set of combination. The result of such a screening
yields a better solution with higher likelihood than when doing it
randomly. However, this is not sufficient for the achievement of
NMR-grade performances as the knowledge of the magnetization
of a magnet is limited to about 1%.

Based on the measurements of the cubes, it is also possible to
simulate a given combination with Radia, in order to assess the
performance of the magnet. The resulting simulations including
demagnetization are accurate with a field at center predicted with-
in 0.2% of the experimental field. We were also able to obtain qual-
itative and quantitative assessments of the field variations on a
large scale. It is possible to predict the coarse variations of the sys-
tem, which will have to be corrected before starting fine adjust-
ments based on NMR. We present on Fig. 4 the contour plot of Bz
in the xOz plane for the simulated magnet and for the experimental
measurements using a Hall probe. These results confirm the possi-
bility of estimating quantitatively the performances of the magnet
assembly once the cubes have been carefully characterized.

3.5. Characterization of the magnet and correction system

3.5.1. Magnet measurement

Based on the discussion of Section 2.2, we can now have a look
at the measurement of the magnet used as an example in this pa-
per. Theoretically, the first non-zero term is Zz4. This means that
the relevant terms to assess the quality of the magnet are all terms
up to and including order 3. Higher order terms are bound to be
present but should be negligible in the volume of interest (as we
will keep the radius small enough to obtain small variations of
the order 4). However, we need to perform the measurements on
a larger radius for practical reasons (the radius of the volume of
interest is only 1.5 mm) and are hence subject to aliasing. As we
saw we can reasonably simulate the field, the necessary number
of measurement points can be evaluated through simulation.
Fig. 5 presents the resulting values of the Zzn terms for different
number of sampling points on a sphere of radius 5 mm. Similar re-

sults can be found with the Xzmn and Yzmn but are not shown here.
While 32 points are clearly insufficient (Zz1 is off by more than
300 ppm), 48 points seem sufficient to achieve a 1 ppm accuracy
on all terms. However, using more than 64 points is not useful.

The field mapping measurements in practice can be done with
any magnetic field sensor mounted on a positioning system, or
with any magnetic field sensor array providing the appropriate
measurement locations, as proposed by Metrolab [28]. We use in
our laboratory both Hall probes (Lakeshore 3-axis probe with Lake-
shore Gaussmeter Model 460) and house-made micro-NMR
probes. The positioning system is made of three motorized transla-

Fig. 5. Simulated measurement of the relevant Zzn terms for the discussed magnet,

with a measurement radius of 5 mm. The stability of the calculated terms with the

increase of measurement points indicates spectral folding is not significantly

affecting the terms of interest. Similar results can be obtained with the Xzmn and Yzmn
but are not shown here as they do not add information.
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Fig. 6. Photograph of the shimmed magnet. The small magnet cubes can be seen

between the two main rings. The upper right schematic shows the four planes

where the location of the shims was constrained. The lower right schematic shows a

3D view of the magnetic elements of the system. Our method allows the fabrication

of a shimmed magnet with a field strength very close to the theoretical one (about

2% difference).
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tional stages (stages Newport model 443 with 50 mm travel dis-
tance coupled with motors LTA-HS). This system offers positioning
with an accuracy better than 10 lm.We developed a LabView soft-
ware to synchronize motion and measurements both with the
Gaussmeter and the NMR spectrometer (Tecmag Apollo) in order
to automate the measurement procedure. This equipment provides
us the ability to perform measurements with arbitrary schemes in
order to extract the SHE terms, which are the basis of the shim-
ming procedure necessary to compensate the magnet
imperfections.

3.5.2. Correction system

Some high performance magnets have been proposed in the
past [29,14], based on intrinsically inhomogeneous structures
(due to geometry) corrected by motion of significant additional
magnet blocks. Here, however, we start with a magnet theoreti-
cally homogeneous to an arbitrary order. The inhomogeneities
are hence mainly due to material imperfections and scarcely to
geometry. This results in a reduced need in shims. One can afford
the use of very small shim pieces to correct for the imperfections
of the magnet. Adding small pieces of ferromagnetic material to
the magnet in order to compensate its inhomogeneities is a stan-
dard procedure in MRI [30,31] and was further developed for

permanent magnets [32]. We adapted this method to serve our
purpose in this example.

The correction of our simple example magnet can be done by
using small magnet cubes placed at appropriate locations. The full
correction of the magnet, meaning up to the theoretical homogene-
ity, necessitates the cancellation of fifteen terms ðZ1; Z2; Z3;X

1
1;Y

1
1;

X1
2;X

2
2;Y

1
2;Y

2
2;X

1
3;X

2
3;X

3
3; Y

1
3; Y

2
3; Y

3
3Þ. One needs p + 1 independent

parameters to cancel p terms. As a result, we need at least 16
parameters. A single cube features three translational degrees of
freedom and three rotational degrees of freedom. We decided to
set the orientation of each cube to the most efficient orientation gi-
ven their location, i.e. antiparallel to the field at the center of the
magnet, leaving no rotational degrees of freedom. For ease of real-
ization, we require to tie the possible positions of each cube to a
plane. As a result, only two translational degrees of freedom
remain for each cube. It follows that one needs at least 8 cubes
in order to cancel all undesired terms and achieve theoretical
homogeneity. The symmetries of the magnet lead to place each

(a)

(b)

Fig. 7. Contour plots of Bz (in ppm) in the xOz plane for (a) a simulation of the

unshimmed magnet with Radia based on imperfect cubes, and (b) for a simulation

of the same magnet shimmed with small cubes. The position of each shim cube has

been calculated in order to minimize the different terms in the spherical harmonics

expansion. One can observe the dramatic improvement of the field homogeneity

after shimming.

(a)

(b)

(c)

Fig. 8. Contribution of the different orders to the field variations on a sphere of

radius 5 mm for a magnet with perfect geometry using the measured cubes. Only

terms theoretically cancelled are shown. (a) Bar graph of the axial orders

contributions. One can notice the cancellation of Z2 due to the appropriate gap

adjustment. The gradient Z1 is the dominant term and Z3 is in this case very small.

(b) and (c) Bar graphs of the different skewed terms Xm
n and Ym

n . The gradient term

X1
1 and Y1

1 are dominant but an order of magnitude smaller than in the low-cost

solution. Second order skewed terms are also very noticable.
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cube in a quadrant of the xOy plane, symmetrically in regard of that
same plane. The areas where each shimming cube can be placed
are shown on Fig. 6.

It is of course necessary to verify that the variables offered by
the shimming system can span the relevant part of the expansion.
We hence conducted a theoretical study of such a shimming
scheme. Based on the measurements of the cubes constituting
the magnet, we simulated the magnet inhomogeneities using Ra-
dia, in order to include demagnetization. The measurement
scheme was simulated numerically and the extraction algorithm
was used in order to obtain simulated SHE terms. Based on these
simulations, we computed the appropriate position of the shim-
ming cubes and added them to the Radia simulation. The shimmed
magnet is shown on Fig. 6 and the field profiles before and after
shimming are shown on Fig. 7. Figs. 8 and 9 present the values of
the different terms before and after shimming. The results are close
to perfect and very encouraging for proceeding with the procedure
experimentally.

The compensation of the magnet can also be done through
modifications of its geometry. It is possible to have some play on
the gap between the rings of the magnet and also on the orienta-
tion of each ring relative to the other. These geometry modifica-
tions are of course very sensitive and have a great impact on the
field variations at the center. The terms mainly concerned by such
movements are the different gradients Zz1, Xz

1
1, Yz

1
1 and Zz2.

We applied this shimming scheme using Hall probe measure-
ments. We successfully obtained the SHE terms and computed
the necessary positions of the shimming cubes (previously charac-
terized). This resulted in a great improvement of the homogeneity,
as it can be seen on Fig. 4c. The NMR linewidth was improved from
40 ppm [23] to 12 ppm (see Fig. 10) for a sample of 3 mm3. The se-
quence used was a simple p

2-acquisition featuring 512 points with a
dwell time of 130 ls. The acquisition was done at 5.04 MHz in 128
scans (25.6 s) on a sample of water doped with CuSO4. This result is
not as good as the 5 ppm the theory lets us expect for the same
sample size, but it can be explained by the crude positioning of
the shims in this prototype (precision on the location of the shims
of about 0.5 mm).

4. Discussion and conclusions

We described a detailed method to design theoretically homo-
geneous magnets up to an arbitrary order. This method is based
on the spherical harmonics, which have been used in the field of
electromagnet design for a long time but scarcely for permanent
magnet systems. This very systematic method can transform the
design of a magnet into a Lego game, once one has the appropriate
analytical formulas. The attainable homogeneity has in theory no
limitations, provided enough elements are used. Following these
concepts, we built a simple example of magnet which is very
light-weighted (1.8 kg), low-cost (100 euros in magnets) and pro-
vides an easy access while delivering �120 mT (5.1 MHz proton)
along the axis. We present an assembly method based on the char-
acterization of the individual cubes constituting the magnet and
complete this assembly method with a shimming methodology
which successfully achieved a homogeneity close to the theoretical
while using a minimum quantity of shimming material and num-
ber of iterations. The shimming procedure relies on the measure-
ment of the spherical harmonic expansion terms of the field for
which we discussed practical aspects including some usually

(a)

(b)

(c)

Fig. 9. Contribution of the different orders to the field variations on a sphere of

radius 5 mm for a magnet with perfect geometry using the measured cubes. The

magnet is shimmed by small cubes as shown on Fig. 6 using the method described

in the text. Only terms theoretically cancelled are shown. (a) Bar graph of the axial

orders contributions. One can notice all terms are reduce to a sub-ppm contribution

and the Z2 term now dominates the axial terms. The remaining variations are due to

the error made by the dipolar approximation. (b) and (c) Bar graphs of the different

skewed terms Xm
n and Ym

n . All terms are reduced to less than 2 ppm. The Ym
n terms

are especially well corrected, remaining below 0.2 ppm in absolute value. The

whole system is dominated by X3
3 . This remaining term is also due to the error made

with the dipolar approximation of the shims. However, this could be refined

through the use of an additional set of small cubes placed further away from the

magnet system center.
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Fig. 10. 1H NMR spectrum of a 3 mm3 sample of water (doped with CuSO4) in the

shimmed magnet. The achieved full width at half maximum is about 12 ppm,

displaying a major improvement on the original 40 ppm linewidth obtained with

the same magnet unshimmed.
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dismissed accuracy considerations. We hence were able to obtain a
magnet with a field profile close to the one theoretically calculated.
The line width of a 3 mm3 water sample is about 12 ppm. This per-
formance is, as expected from the theory (6 ppm in the same vol-
ume), not as good as what was obtained in some existing
systems which also took advantage of bigger magnet size or smal-
ler sample size and stronger field. However, this example gives a
preview of the possibilities offered by using an analytically perfect
starting point for the fabrication. The theoretically perfect struc-
ture is perturbed by material and geometrical imperfections which
can be corrected by small perturbations of the original design. It is
then possible to take the structure to the best of its capabilities.

Another benefit of permanent magnets is that the obtained
solution is scalable. The system can be rendered as small (or as
large) as needed, the field strength and homogeneity properties
will not change, besides the gradient (which is also scaled). Fur-
thermore, this study opens the road to more involved designs for
highly homogeneous ex situ and in situ magnets. Moving towards
more homogeneous systems will require the use of more rings
with appropriate dimensions as more terms of the expansions will
have to be cancelled. Finally, this method is also valid for trans-
verse and arbitrary oriented fields and makes possible the design
of homogeneous systems with the field directly at the magic angle
for magic angle field turning [33]. In that sense, this small proto-
type is a major step toward such a magnet as a longitudinal com-
ponent of the field will be required.
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