
HAL Id: cea-00853993
https://cea.hal.science/cea-00853993v1

Submitted on 17 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An expansion of the field modulus suitable for the
description of strong field gradients in axisymmetric
magnetic fields: Application to single-sided magnet

design, field mapping and STRAFI
Cedric Hugon, Guy Aubert, Dimitris Sakellariou

To cite this version:
Cedric Hugon, Guy Aubert, Dimitris Sakellariou. An expansion of the field modulus suitable for
the description of strong field gradients in axisymmetric magnetic fields: Application to single-sided
magnet design, field mapping and STRAFI. Journal of Magnetic Resonance, 2012, 214, pp.124 - 134.
�10.1016/j.jmr.2011.10.015�. �cea-00853993�

https://cea.hal.science/cea-00853993v1
https://hal.archives-ouvertes.fr


Journal of Magnetic Resonance 214 (2012) 124–134
Contents lists available at SciVerse ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
An expansion of the field modulus suitable for the description of strong field
gradients in axisymmetric magnetic fields: Application to single-sided magnet
design, field mapping and STRAFI

Cedric Hugon a, Guy Aubert b, Dimitris Sakellariou c,⇑
a École Normale Supérieure, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France
b CEA, DSM, IRFU, CEA Saclay F-91191 Gif-sur-Yvette, France
c CEA, DSM, IRAMIS, SIS2M, LSDRM CEA Saclay F-91191 Gif-sur-Yvette, France
a r t i c l e i n f o

Article history:
Received 10 August 2011
Revised 18 October 2011
Available online 9 November 2011

Keywords:
Portable NMR
Permanent magnets
Static field gradient
Spherical harmonics expansion
1D profiling
Single-sided magnets
Ex situ magnets
STRAFI
Stray field imaging
1090-7807/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.jmr.2011.10.015

⇑ Corresponding author.
E-mail addresses: cedric.hugon@ens.fr (C. Hugon), g

dsakellariou@cea.fr (D. Sakellariou).
a b s t r a c t

Mapping (or plotting) the magnetic field has a critical importance for the achievement of the homoge-
neous magnetic field necessary to standard MR experiments. A powerful tool for this purpose is the
Spherical Harmonic Expansion (SHE), which provides a simple way to describe the spatial variations of
a field in free space. Well-controlled non-zero spatial variations of the field are critical to MRI. The res-
olution of the image is directly related to the strength of the gradient used to encode space. As a result,
it is desirable to have strong variations of the field. In that case, the SHE cannot be used as is, because the
field modulus variations are affected by the variations of all components of the field. In this paper, we
propose a method based on the SHE to characterize such variations, theoretically and experimentally,
in the limit of an axisymmetric magnetic field. Practical applications of this method are proposed through
the examples of single-sided magnet design and characterization, along with Stray-Field Imaging
(STRAFI).

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Nuclear Magnetic Resonance (NMR) is a very versatile tech-
nique with broad and diverse fields of application ranging from
protein structure analysis (through spectroscopy) to medical imag-
ing (MRI). It requires a complicated instrumentation involving a
spectrometer, RF components, RF amplifiers, coils or antennas,
and a magnet providing a static magnetic field. This magnet is crit-
ical as the requirements on the static magnetic field are extremely
stringent. The field must indeed be controlled spatially (homoge-
neity) and temporally (limited field drift) to an extreme precision,
usually ppb (part per billion) for spectroscopy and ppm (part per
million) for imaging. The design of such a magnet can be done most
efficiently using the Spherical Harmonic Expansion (SHE) to
describe the spatial variations of the main component of the field.
This technique was first extensively described for coil systems in
the 1980s [1] and further developed in the context of permanent
magnets lately [2,3]. This is not an intuitive approach as NMR is
sensitive to the magnitude of the field, j~Bj, which cannot be
ll rights reserved.
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described by a SHE (j~Bj does not satisfy the Laplace equation).
However, as long as the field variations are small compared to its
nominal value, the modulus can be considered dominated by the
variations of the main component of the field, usually named Bz

and found at the origin, defined here as the center of the Region
of Interest (RoI). Thus, the SHE approach is an approximation
where only one cartesian component of the field is considered.
But it is highly accurate when dealing with homogeneous fields.
Therefore, it becomes inappropriate when dealing with rapid spa-
tial variations of the field. While NMR always requires a very
homogeneous background field, MRI makes use of superimposed
field ‘‘gradients’’ to encode the space.1 As a result, three gradients
are necessary to obtain 3D images. The best achievable resolution
is roughly given by 2

cGT2
, where G is the applied field gradient, T2 is

the transverse relaxation time of the observed nucleus, and c is its
gyromagnetic ratio [4]. T2 is intrinsic to the object to be observed
and cannot be changed.2 The increase of resolution can therefore
be obtained only through an increase of the gradient strength. This
1 In this case, the word ‘‘gradient’’ refers to a well-controlled linear variation of the
eld modulus in a given direction of space. While non-linear variations can be used
r the encoding, linear ones are often preferred.
2 In many cases, the resolution will be limited by T�2 and not T2. However, T�2 can be
fi
fo
modified by various techniques [4] but T2 remains the absolute limit.
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is one of the goals of stray-field imaging (STRAFI), where the sample
is placed in the stray-field of a powerful NMR magnet so that field
gradients of the order of 10–100 T m�1 can be obtained [5]. Intense
gradients can also be obtained with single-sided permanent magnets
[6–9]. In such cases, the SHE approximation cannot be used any-
more: the field modulus variations are not dominated by only one
Cartesian component but involve all of them. This issue is well
known in MRI under the name ‘‘concomitant fields (or gradients)’’
[10], or ‘‘Maxwell terms’’.

This problem has been the object of diverse studies, trying to
cancel out the deleterious effect of these mandatory imperfections
induced by the gradient systems [11–13], or hardware systems
compensating these fields [14,15]. However, to our knowledge,
nothing has been proposed to describe the variations of the mod-
ulus in a condensed fashion similar to the SHE, in order to perform
efficient field mapping, and efficient design of the gradient-gener-
ating system. We introduce in this paper a general theoretical
framework to describe a strong, axially symmetric, gradient of
field. This approach is focused on the modulus of the field. We then
apply this method to the design and characterization of a single-
sided permanent magnet. Finally, we present a few elements based
on this description in the context of STRAFI.

2. The origin of concomitant fields, or Maxwell terms

While the physics underlying concomitant fields have been cov-
ered many times in the past [10,11], it is worthwhile to start from
the beginning. These so-called ‘‘Maxwell terms’’ are simply due to
the Maxwell’s equations imposing relationships between the spa-
tial derivatives of the magnetic field. We have indeed in free space

~r�~B ¼ 0; ~r �~B ¼ 0;

which implies for the Cartesian components the following relations:

@Bz
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¼ @By

@z
;

@Bx

@z
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@x
;
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� @Bz

@z
:

The first-order field variations can be written as
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Using the previous relations we can note3 Gx ¼ @Bz
@x ; Gy ¼ @Bz

@y ;

Gz ¼ @Bz
@z ; g ¼ @By

@x ¼
@Bx
@y and setting �aGz ¼ @Bx

@x , we have
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This last equation shows clearly the inevitable coexistence of
gradients of the different Cartesian components. The effect of these
gradients in the modulus can be assessed by the following consid-
erations. If we consider the field~B0 at the origin (center of the RoI),
we can set ~B0 ¼ B0~uz. Let us now consider a small perturbation of
the field~bðx; y; zÞ which satisfies the previous discussion, implying
that its components are all of the same order of magnitude. We can
write

~Bðx; y; zÞ ¼ ~B0 þ~bðx; y; zÞ; ð3Þ

which yields for the modulus
3 We use here the usual notations in MRI [11]. Another description can be found in
[16].
Bðx; y; zÞ ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

bz

B0
þ
~b2

B2
0

vuut : ð4Þ

Expanding in Taylor series gives

Bðx; y; zÞ ¼ B0 1þ 2
bz

B0
þ O

~b2

B2
0

 ! !
; ð5Þ

which shows that when the three components of ~b are of the same
order of magnitude, the one along the main field dominates (i.e. the
main field truncates the other components). Thus, when we con-
sider a field along Oz, we only have to care about the third line in
the tensor seen in Eq. (2). However, if the gradient strength and
the extent of the object are sufficient (i.e. we do not have
B0 � DB ¼ ~G �~r), it is necessary to consider all components.

In the case of homogeneous fields, the field is dominated by the
main component, so that the design and characterization of the field
profile can be done using the SHE of the main component. It is not as
straightforward when we start considering a strong gradient.
3. SHE-based framework for axially-symmetric strong 1D
gradients

This section focuses on results published earlier in [9,17] and
presented here for convenience. We consider here a situation
where the distribution of field sources (currents, poles) is axially
symmetric. In that case, it is obvious that everywhere in space,
the field can only be radial or longitudinal, or a combination of
both. For convenience, we can express the magnetic field in cylin-
drical coordinates (q,/,z), with its two components Bq and Bz. Fol-
lowing the notation we introduced in [2,3] and using spherical
coordinates (r,h,/) for the calculation point, we can write the gen-
eral form of the SHE of Bz as

Bz ¼ Z0 þ
X1
n¼1

ZnrnPnðcos hÞ: ð6Þ

It is also possible to show (see Appendix A) that Bq can be writ-
ten as the following expansion

Bq ¼
X1
n¼1

� 1
nþ 1

ZnrnP1
nðcos hÞ: ð7Þ

This result shows once more how the different components of the
magnetic field are linked: in free space, the knowledge of one com-
ponent is sufficient to gain knowledge of all of them. We can thus
derive the full spatial variation of the modulus of the field based on
the SHE of one component. To simplify calculations, we will work
with B2 instead of the modulus. We have indeed

j~Bj2 ¼ B2
q þ B2

z ¼ R0 þ
X1
n¼1

RnðhÞrn; ð8Þ

where Rn(h) can be obtained based on the expansion of Bq and Bz. As
a result, the square of the modulus of the field can be expressed
only based on the terms of the SHE of Bz.

The Rn terms are not of great interest as their expression be-
comes rapidly complicated when n increases, and do not provide
an intuitive description of the field variations. It seems preferable
to convert the expansion in Eq. (8) to an expansion in cylindrical
coordinates. It is simple matter to carry out this transformation
and obtain

j~Bj2 ¼
X1
n¼0

X1
m¼0

Sm
n qmzn; ð9Þ
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where Sm
n can be obtained by transforming the Rn terms. We can

give a few Sm
n as
Sm
n ¼

njm 0 2 4
0 Z2
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4 Z2
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4 Z2
2 þ 2ðZ1Z3 þ Z0Z4Þ � 3

4 Z2
3 þ 3Z2Z4 þ 15

2 Z1Z5 þ 15Z0Z6

� �
15
4 Z2

4 þ Z2Z6 þ 3
2 Z3Z5 þ 7

2 Z1Z7 þ 14Z0Z8

� �

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
: ð10Þ
All odd terms in q are null due to symmetry.
It is in fact possible to establish analytical formulae giving di-

rectly any Sm
n terms. While the general equation is quite heavy

and difficult to use, we can give here formulae for special cases,
namely S0

n and S2m;mP1
0 . We have indeed

S0
0 ¼ Z2

0; ð11Þ

S0
n ¼ 2Z0Z2 þ

Xn�1

j¼1

ZjZn�j; ð12Þ

ð�1ÞmS2m;mP1
0 ¼ 2Z0Z2m

ð2m� 1Þ!!
ð2mÞ!!

�
Xm

q¼1

Z2q�1Z2m�2qþ1
ð2q� 1Þ!!ð2m� 2qþ 1Þ!!
ð2qÞ!!ð2m� 2qþ 2Þ!!

þ
Xm�1

q¼1

Z2qZ2m�2q
ð2q� 1Þ!!ð2m� 2q� 1Þ!!
ð2qÞ!!ð2m� 2qÞ!! ; ð13Þ

ð�1ÞmS2m;mP1
1 ¼2Z0Z2mþ1

ð2mþ1Þ!!
ð2mÞ!!

þ
Xm

q¼1

ðZ2qZ2m�2qþ1�Z2q�1Z2m�2qþ2Þ

�ðm�2qþ1Þð2q�1Þ!!ð2m�2qþ1Þ!!
ðm�qþ1Þð2qÞ!!ð2m�2qÞ!! : ð14Þ

The great advantage of such an expansion is that it involves only
terms of the SHE of Bz and is completely adapted to a separate
treatment of the longitudinal and transverse directions. In addi-
tion, the Sm

n matrix shows right away that it is strictly impossible
to achieve a ‘‘perfect’’ gradient of the field strength. We mean by
‘‘perfect’’, a pure linear variation of the modulus along one direc-
tion and no variations in other directions over an extended volume.
For example, S0

2 and S2
0 involve Z0, Z1, and Z2 in an independent

manner, so that both cannot be canceled if Z1 – 0. This results in
either a quadratic variation of the field in the radial direction, or
a quadratic variation in the longitudinal direction, superimposed
over the gradient.

We can identify two main types of useful field profiles featuring
a strong gradient. One consists in a perfectly linear variation of the
field along Oz, tolerating significant variations of the field in the
transverse direction. We will call this a ‘‘straight’’ gradient. Such
a profile can be useful when dealing with samples with very small
lateral extent but requiring very high resolution.

In that case, we can simply work with Bz only and obtain a
highly linear variation of the field on-axis by canceling as many
terms other than Z0 nor Z1 as possible. It is interesting to note that
this implies the cancelation of all terms in the Sm

n matrix, but
S0

0; S0
1; S0

2; S1
0, and S2

0. In the perfect case (all Zn–0,1 canceled), it is
only because of the S2
0 term that the field is not uniform in the

transverse direction.
The other type of profile privileges the uniformity of the field in
the transverse direction. We will call such a profile a ‘‘flat’’ gradi-
ent. In that case, we need to consider the Sm

n matrix. The priority
is to cancel the Sm

0 coefficients. This implies undesired values of
the S0

n coefficients, resulting in a non-linear variation of the field
along the axis. Cancellation of cross-terms such as S2

1; S4
1 and oth-

ers might also be obtained in the process. We can give the exact
values of the first SHE terms of Bz necessary to provide such a field
profile. These values can be given in terms of the desired field
strength (Z0) and the desired gradient strength (Z1):

Z2 ¼
1
4

Z2
1

Z0
;

Z3 ¼ 0;

Z4 ¼ �
1

48
Z4

1

Z3
0

;

Z5 ¼ 0:

ð15Þ

As usual, conditions on the lower degrees should be satisfied in
priority. Conditions on higher degree terms can be obtained in the
same manner but were not written here for the sake of space. The
control of higher degrees allows to increase the extent of the uni-
form region in the transverse direction but also increases the ex-
tent along Oz where the isofields are ‘‘flat’’. These results were
given in the past [17] and the condition on Z2 was more recently
proposed by an independent team [18]. In most cases, the distor-
tion introduced by the non-linearity of the variation of the field
along Oz is tolerable, because the strong gradient and the band-
width of the NMR receptor limits the extent of the observable
sample.

We think this mathematical framework can be useful in many
cases and give three examples in the following section. As the term
‘‘field gradient’’ may be confusing, we would like to advise the
reader that, through the rest of this paper, this term refers to the
desired 1D linear spatial variation of the field magnitude.

4. Application of the Sm
n framework

4.1. Single-sided magnet design and shimming

A common drawback of single-sided systems is that the field
profile usually displays a very strong field gradient (anywhere
between 1 and 20 T m�1). It is of course possible to achieve a highly
homogeneous field in a given region but the price to pay is very
high in field strength [17]. Nevertheless, strong field gradients
are still of interest in various applications of NMR, for example
STRAFI, diffusion measurements, etc. However, one difficulty is to
have a ‘‘clean’’ field profile, with specific properties, such as an
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extremely constant gradient in a given region, or a uniform field in
directions transverse to the gradient. The discussion of the previ-
ous section, especially Eqs. 10 and 15, provides a direct mean to
design an axially symmetric single-sided magnet (based on coils
or permanent magnets) with a well-controlled field gradient.
While the usual method based on spherical harmonics [1,3,17]
consists in canceling as many terms as possible to achieve homo-
geneity, we will need here to get as many terms as possible to sat-
isfy the conditions provided in Eq. (15).

Because of their portability, permanent magnets are often cho-
sen to realize single-sided systems [7,9,19–21]. However, no real
systematic approach has been proposed until now to design such
magnet systems. We propose here to use the preceding framework
along with a building-block approach to devise axially symmetric
structures providing the desired field profile.

We define elementary magnet blocks from which we will com-
pose the final magnet system. A simple block is the hollow cylinder
magnetized along its axis. This hollow cylinder has its axis on Oz,
features an inner radius a1 and an outer radius a2 and is delimited
by two planes of elevation b1 and b2 with b1 < b2. The field gener-
ated by such a block can be determined analytically in the entire
space [22]. We can even go further by determining analytically
the SHE terms of such a block. Following the demonstration of
Appendix B also presented earlier in [17], we find

Z0 ¼
l0M

2
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p
" #a2

a1

2
4

3
5

b2

b1

¼ l0M
2
½cos a�a2

a1

h ib2

b1

; ð16Þ

ZnP1 ¼ �
l0M
2n

1
cn

sin aP1
nðcos aÞ

� �a2

a1

" #b2

b1

; ð17Þ

with

a ¼ c sin a;
b ¼ c cos a;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
:

ð18Þ

The brackets ½f ðsÞ�s2
s1

are a short notation for f(s2) � f(s1).
Based on these relations, it is ‘‘only’’ a matter of non-linear opti-

mization to find the correct parameters for a proper number of
rings (n + 1 to control n terms) and satisfy the different conditions.
We have designed magnet systems based on these considerations
generating gradient and homogeneous profiles [9,17]. Based on
these designs, we realized one prototype of a magnet (20 cm diam-
eter, 12 cm height, 35 kg) generating 0.3 T in the region of interest
located 2 cm above the surface of the magnet. The gradient
strength was 3.3 T m�1. While we have assumed until now that
the magnet blocks are perfect, the actual system features numer-
ous imperfections, which can be assessed statistically. Such a sen-
sitivity analysis was performed and described in [17] and will be
published in a subsequent paper. The outcome of this analysis
showed that a properly designed magnet can be expected to be-
have better than a simple magnet cylinder, despite imperfections.
The analysis of a shimming system was also performed. This shim
system was built in the magnet by design, leaving some parts of
the magnet adjustable. These parts are assembled at the theoretical
position and slid radially to adjust the magnet (see Fig. 1). Shim-
ming is done based on the measurements provided by the plotting
method described in Section 4.2.

This shimming procedure achieved high uniformity in trans-
verse planes (DB < 100 ppm over 1 cm diameter). Imaging of thin
slices of olive oil with a resolution of about 20 lm was possible
[9]. This resolution figure was obtained by computing the Point
Spread Function (PSF), as the derivative of the image of a sharp
edge. The FWHM of the PSF gives the instrument resolution (see
Fig. 2).

4.2. Field plotting of strong gradients using an NMR probe

We consider now a situation where we expect to find an axially
symmetric field gradient with a well-determined profile (for exam-
ple uniform in transverse planes). The magnet producing this field
profile is imperfect and needs to be adjusted, or shimmed. This re-
quires to characterize the field profile first. This is a well-known
problem in the design of homogeneous fields, where the field mag-
nitude is dominated by the main component (called here Bz). It is
usually necessary to retrieve the SHE terms Zn; Xm

n and Ym
n found

in the following general equation for the field in free space [3,17]:

Bzðr;h;/Þ¼Z0

þ
X1
n¼0

rn ZnPnðcoshÞþ
X1
m¼1

ðXm
n cosm/þYm

n sinm/ÞPm
n ðcoshÞ

 !
: ð19Þ

The general method to tackle this problem is well-known [1,3,17]
and consists in measuring the field modulus (equivalent to Bz) in
well-chosen points with a high precision typically in the range of
the ppm or better (usually, NMR itself is used to perform these mea-
surements). The SHE terms are then extracted from the set of field
values using discrete Fourier transform and polynomial
interpolation.

In the context of an axially symmetric strong gradient, we have
shown in Section 3 that the SHE of Bz is still sufficient to describe
the field modulus and control it. However, the measurement pro-
cedure cannot be the same as we do not have Bz � jBj anymore.
We show in this section how we can still access Bz with reasonable
precision, using NMR measurements.

Following Maxwell’s equations, we have

~r �~B ¼ 0: ð20Þ

In a rotationally symmetric system and in cylindrical coordi-
nates (q,/,z), we have @B/

@/ ¼ 0 and thus,

1
q
@ðqBqÞ
@q

¼ � @Bz

@z
; ð21Þ

which can be solved to obtain

@Bq

@q
¼ �1

2
@Bz

@z
ð22Þ

or,

BqðqÞ ¼ �
1
2
@Bz

@z
q: ð23Þ

We can use Eq. (23) to compensate NMR measurements and ob-
tain the value of Bz. We have indeed at a point of coordinate (q,/
,z),

j~Bj ¼ B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

z þ B2
q

q
: ð24Þ

As the sign of Bz does not change in the region of measurement,
we can write

Bz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � B2

q

q
: ð25Þ

Measurements along Oz are unaffected by Bq, so that we can
compute the axial SHE terms (Zn) of Bz. Thus, we can compute accu-
rately @Bz

@z on axis. Assuming this quantity does not vary much over
the measurement volume, we can compute Bq in any measurement
point with Eq. (23) and convert into Bz the field measured by NMR
through Eq. (25). Following this, we will be able to extract all SHE
terms of Bz using the usual measurement scheme [1,3]. It is



Fig. 1. View of the magnet, the shimming scheme and experimental outcome of the shimming method. Top left, 3D model of the magnet. All blocks are magnetized along the
axis of the system and the RoI is located 2 cm above the highest surface of the magnet. Top right, photograph of the actual magnet, with arrows showing examples of moving
parts for the shimming system. Bottom, effect of the shimming. Left, initial field profile along Ox. Right, field profile after shimming. The shimming scheme consists in
determining experimentally the SHE of Bz (see next section) and use these experimental values along with simulations of the correction matrix associated with the shimming
system. Simple calculations yield the necessary displacements of the different mobile parts. The final result is obtained in three iterations (less than 2 h).

Fig. 2. Computation of the Point Spread Function (PSF) of the imaging system. Left, a sharp edge is imaged by a simple CPMG acquisition of the signal. The image is shown as a
spectrum (frequency domain). Right, the derivative of the image is computed and frequency shifts are converted to distances based on the measured gradient strength. Due to
the geometry of the olive oil layer, the sharpest edge is the upper one (most positive position, lowest frequencies). The peak associated to the derivative of that edge features a
20 lm FWHM.

4 This first-degree correction is sufficient because transverse terms enter only in
second order in the modulus. In some extreme gradient cases, it might be necessary to
use higher degree corrections in the calculation, which is straightforward.
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however necessary to assess the error made on the value of Bz with
this approximation. We can distinguish the error DBBz due to
uncertainties DB on B, and the error DBq Bz due to uncertainties
DBq in Bq.

DBBz ¼
B
Bz

DB; ð26Þ

DBq Bz ¼
Bq

Bz
DBq: ð27Þ

In most cases, B
Bz
� 1. Considering the field generated by the mag-

net presented in Section 4.1, we can give an example of error estima-

tion. We have for a radius r = 6 mm, Bq
Bz
� 0:05. DBq is given by the

difference between the actual Bq and the one we predict based on
the gradient on-axis, using Bq ¼ � 1

2
@Bz
@z q. In the case of a perfectly

axisymmetric magnet, this difference can be estimated to be less
than 2.5 ppm of the nominal Bz at a radius of 6 mm. Thus, we have
DBq Bz ¼ 0:125 ppm. The total uncertainty on the calculated Bz being

given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDBBzÞ2 þ ðDBq BzÞ2

q
, if we assume the uncertainty on B (the

linewidth of the signal) is greater than ±1 ppm, we have DBz � DB.
Thus, for a perfect magnet, a Bz SHE calculation based on such mea-
surements features the same precision as for a homogeneous mag-
net with the same NMR signal linewidth.4

Until now, we have assumed the field profile perfectly axially
symmetric. However, as we said at the beginning of this section,
the magnet will feature imperfections and prove wrong the sym-
metry assumption. This induces larger discrepancies between the
actual Bz and the calculated one, with a high dependence on the
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field profile. This can be explained through the possible
compensation of variations of Bz by variations of Bq in the modulus
value seen by the NMR probe. B/ is negligible as inhomogeneities
in / are expected to be <1000 ppm (we assume that axial symme-
try is reasonably realized). Simulations based on the magnet of the
previous section show that for this extremity, the maximum error
on Bz is about 100 ppm (see Fig. 3). The average deviation from the
mean error is about 35 ppm. Of course, if the field profile has a bet-
ter axial symmetry (less variations in /), we gain accuracy and pre-
cision (less offset and smaller standard deviation). These errors are
not random and their effect on SHE term measurements is not
equivalent to the effect of a field noise with a matching standard
deviation. It is thus important to have an idea of the field profile
before plotting (through simulations).

Finally, a good way of estimating the relevance of such mea-
surements is to compare an experimental field map with a simu-
lated one, based on the extracted SHE terms. Taking the magnet
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Fig. 4. Experimental contour plots of B0 generated by the magnet of Section 4.1. Left, co
from cartesian mapping. The agreement between both is excellent, showing that the SHE
shimming. It is worth noting that the cartesian mapping is limited by the measuremen
suitable for NMR simulations.
of Section 4.1 as an experimental example, we performed both a
Cartesian field map and a SHE measurement, using a small NMR
probe providing a spectral resolution of 20 ppm [17]. We were able
to retrieve reliably all Zn; Xm

n and Ym
n terms up to degree four,

which were sufficient to describe the field in the RoI. Fig. 4 shows
a comparison between the experimental field profile in a trans-
verse plane obtained from the Cartesian measurements, and the
reconstructed from the measured SHE terms. The agreement is
excellent, proving the SHE measurements suitable as input values
for the shimming of the magnet. This allowed the accomplishment
of the performances shown in the previous section and previous
publications [9,17].

Thus, we have here a means of retrieving Bz from B with high
precision in the context of a field profile close to axial symmetry.
We can assess through SHE analysis the deviation from axial sym-
metry and correct it by compensating the Xm

n and Ym
n terms, while

the Zn terms can be used in the framework of Section 3 to charac-
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terize the gradient profile and possibly shim the system to obtain
the expected profile.
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plane is located outside of the coil, very close to its end, as it has been empirically
noticed on superconducting magnets.
4.3. Stray Field Imaging (STRAFI) NMR

A specific case where the discussion of Section 3 can be found
useful is STRAFI NMR [5]. While several studies provided a lot of
insight to the NMR aspects of STRAFI [23–25], it seems to us that
few have focused on the understanding of the behavior of the mag-
netic field in this context. A clear view of this aspect is crucial and
can lead to hardware improvement for this technique.

In most cases, a STRAFI experiment is conducted in the fringe
field of a superconducting magnet (usually axially symmetric),
and consists in placing a NMR probe at a location away from the
center of the magnet, but still on the axis. As a result, the magnetic
field points along Oz at the center of the new region of interest. We
can thus still use an expansion of the form of Eq. (6) for the field
on-axis. However, the strong gradient imposes to consider the
radial component of the field to account for the transverse varia-
tions of the field magnitude. This is were the Sm

n matrix and the pre-
vious results will come in handy.

It is well known that the achievement of high-resolution imag-
ing in a stray field requires to locate the sensitive slice at a partic-
ular spot along the axis, where the field is relatively homogeneous
in the transverse direction (cancelation of first order transverse
derivatives) [23–25]. We will call that spot the ‘‘sweet spot’’. It is
important to note that it corresponds to a region where uniformity
in the transverse direction is achieved for the field magnitude, but
not for the field direction.5

The ‘‘flat’’ sensitive slice is obtained when the radial (or trans-
verse) variations of Bz are compensating the radial variations of
Bq. Eq. (15) provides the values of the SHE of Bz necessary to satisfy
this condition. In the usual STRAFI situation, only one condition can
be satisfied at a time (unless the magnet is designed specifically for
it, which is rarely the case). Fig. 5 shows a plot of the evolution of
Z2 and 1

4
Z2

1
Z0

for a finite length solenoid with form factor b
a ¼ 3 (a

being the radius and b the half-length). The intersection of the
two curves corresponds to the satisfaction of the condition on Z2,
which in turn corresponds to the sweet spot. We can notice that
it is just after the inflection point (itself just after the end of the
solenoid). This fact is well known and has been noted empirically
in the literature several times [23–25].

Before we go any further, we should explicit some criteria to as-
sess the ‘‘quality’’ of a given plane in STRAFI. In what follows, we
will consider the ‘‘curvature’’ or ‘‘peak-to-peak’’ deviation of the
field from its value on-axis when going away from the axis in a
transverse plane. In order to consider quantities relevant to imag-
ing, we convert this field deviation to a position deviation. This is
based on the assumption that the position of a point P(q,z) in
the image is given by B0ðq;zÞ�B0ð0;0Þ

Gz
where Gz is the gradient at the ori-

gin. Thus, if the field profile is perfect (linear variation along Oz,
uniform in transverse directions), the image of a plane remains a
plane. Any defect in the field will show up as a ‘‘curvature’’ of
the image of a plane. We will also simply refer to the image of a
plane as the image-plane (even though it is most often not a plane)
and to the plane imaged as the object-plane.

A practical application of the results found in the previous sec-
tion is that the quality of the sweet spot can be improved by using
a shim stack in order to satisfy the conditions on higher degrees
such as Z3, Z4, and so on. This will have for effect to increase the
5 The latter varies actually quite a lot, which may need to be taken into account
when designing an excitation and detection device. Otherwise, the excitation and
detection efficiency decreases as we go away from the axis, though the B1 field is
homogeneous.
extent of the flat slice, or increase the available resolution for a gi-
ven size. We can again take the example of the thin solenoid. By
using a set of current loops, we can generate Z2, Z3 and Z4 indepen-
dently and match the conditions on these terms. In the sweet spot,
the condition on Z2 is already satisfied and only Z3 and Z4 need to
be adjusted. In the simulation used to produce Fig. 6, we have used
a solenoid of radius 100 mm and length 400 mm, producing a gra-
dient of 60 T m�1 with a field of 4.99 T in the sweet spot, located
221.01 mm away from the center of the solenoid. The simulated
shim coils are sets of simple loops (radius 100 mm) centered on
the sweet-spot and optimized following the methods found in
[1,3,17]. The currents in the loops were adjusted in order to satisfy
at the same time the conditions on Z2, Z3 and Z4 in the sweet-spot.
The improvement brought by the shim coils to the instrumental
resolution is about a factor ten, as seen in Fig. 6.

The improvement of the sweet spot takes another dimension
when considering the longitudinal extent of this region. It is first
of all interesting to consider the evolution of the image-planes
along Oz around the sweet spot (at elevation z0) in the ‘‘natural’’
case (i. e. without shimming). It is indeed worthwhile noting that
the satisfaction of condition Z2 ¼ 1

4
Z2

1
Z0

guarantees the highest reso-
lution only when the extent of the object considered is small
enough that the contribution of higher degree terms is negligible.
Otherwise, the combination of the different terms results in a com-
plicated variation of the image-plane shape. In some cases, the best
resolution can be found at a different location from z0 (see the evo-
lution of the image-planes with z in Fig. 6). We can go even further
by noting that the actual shape of the image-plane in a given loca-
tion is not as much relevant to the evaluation of the ‘‘slice-quality’’
(image-plane curvature) as its peak-to-peak amplitude. The latter
gives us the apparent thickness of an infinitely thin sample, or
the ultimate resolution (which could be called instrumental reso-
lution). Based on the previous solenoid configuration, we have
computed this instrumental resolution around the sweet-spot for
different sample extents, giving valuable quantitative information
about what can be expected (see Fig. 7). It is worth noting that
the resolution degrades rather quickly without correction. It is thus
critical to determine accurately the position of the sweet-spot.

We have only considered a solenoid until now. NMR supercon-
ducting magnets are obviously more complicated as they are
designed to generate a much more homogeneous field in their cen-
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Fig. 7. Simulated plots of the instrumental resolution around the sweet-spot in STRAFI conditions. The simulation is based on a solenoid producing a gradient of 60 T m�1

with a field of 4.99 T in the sweet spot (field at origin of 11.6 T). Simulations were carried for several sample sizes. The sample diameter is shown on the right of each plot, next
to the corresponding curve. Left, instrumental resolution in the sweet-spot, without corrections. Right, resolution with corrections. These corrections are induced by
simulated shim coils producing zonal harmonics which satisfy the conditions of Eq. (15). The improvement in resolution is at least a factor ten.
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ter. It is thus likely that the location of the sensitive slice will be
different, and that the harmonic content of Bz will vary differently
along Oz. In most cases, the geometry of the magnet is unknown, so
that it is impossible to compute a priori the different terms. Thus,
any STRAFI experiment requires a search for the natural sweet spot
of the magnet. This can present practical difficulties as the detec-
tion of a region where the sensitive slice is very flat requires to
have a very thin sample with a very well-controlled orientation.
In addition, we have just seen that it is critical to locate the
sweet-spot accurately (better than 1 mm). The previous discus-
sions and results provide an alternative way of locating this natural
sweet spot. We have indeed shown that it is sufficient to know the
Zn evolution along the axis to be able to locate the sweet spot. The
following measurement method provides this information.

The calculation of N Zn terms requires at least to measure the
field in N points of elevation zj located on the axis. This can be eas-
ily done by sliding a NMR probe with a small sample centered on
the axis. A simple polynomial interpolation of these measurements
will provide accurate values of N Zn terms (provided it is done
appropriately and uncertainties on the measurements are not too
great). The best results will be obtained by using the Chebyshev
nodes so that the Runge phenomenon is minimized (the zj corre-
spond to the zeros of the Chebyshev polynomial of degree N)
[26]. We can then use the following equation to compute the Z0n
at a different location on the axis (see demonstration in Appendix
C):

Z0n ¼
X1
k¼n

ZkCn
kzk�n

0 : ð28Þ

This formula provides a way to compute the terms at a location
O0 on the axis distant by z0 from the initial origin O, based only on
the measured terms in O. It is thus sufficient to perform the mea-
surements only once, provided enough measurements are taken.
The requirement on the number of measurements depends on
the convergence of the infinite sum. Here, the domain of conver-
gence corresponds to z0 < R0, where R0 is the radius of the largest
sphere centered on O that does not contain any source of magnetic
field. In that case, we can truncate the infinite sum in Eq. (28) and
compute the expansion coefficients in O0 with a finite number of
terms from the expansion in O. Obviously, the speed of conver-
gence of Z0n depends on z0

R0
. The smaller z0, the less terms are needed



Fig. 8. Estimation of accuracy and precision on the experimental computation of
the sweet spot position for STRAFI on the axis of a solenoid, according to the
method described in the text. 10,000 measurements were simulated (based on the
theoretical field of a solenoid) with uncertainty of 100 ppm on the field values and
0.01 mm on the point positions. The position is computed based on the coefficients
determined by polynomial interpolation of the sample points, Eqs. 28 and 15. The
average value is given in the table, along with the accuracy (difference between
average value and actual sweet spot position), and the precision (spread of the
distribution given by 3 sigma). The plot shows an example of sample points for
N = 10. The accuracy is almost entirely determined by the number of sample points
used. Precision is mostly determined by uncertainties on the quantities measured
directly (field values, positions) and is degraded by increased number of points. This
latter effect is due to the small number of points used. The effect on precision will
stabilize as the number of points grows. However, when using less than 20 points, it
appears important to make a compromise between accuracy and precision.
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to compute Z0n. In practice, it is thus more effective to perform the
initial measurements close to the region we are looking for. This is
not difficult as we have already noted that it is nearby the inflec-
tion point, a point relatively easy to locate. To give an idea of the
precision of this procedure, we performed simulations of such
measurements for a solenoid with radius 100 mm and length
400 mm, generating 11.6 T (see Fig. 7). It appears that for a resolu-
tion of 100 ppm on the measured field values and a resolution of
0.05 mm on the position of the measurement points, only 12 mea-
surements are necessary to obtain the position of the sweet spot
within 0.14 mm accuracy and 0.6 mm precision (see Fig. 8).6 The
accuracy of the position is determined by the number of points (it
is a matter of convergence), while the precision is determined by
the uncertainties on the field values and the positions. Precision de-
grades as the number of points increases for given uncertainties on
field values and positions. Of course, if the uncertainties on the field
values and the positions are better, the precision will also be im-
proved but accuracy will remain about the same (unless using many
more points, where the accuracy becomes limited by the precision
on the direct measurements). It is important to note that the field
resolution might be difficult to achieve, due to the gradient strength.
A solution is to use the smallest sample possible and implement a
simple gradient compensation coil that moves with the sample, as
proposed in [17]. From these estimations, and because the method
can be applied without prior knowledge about the magnet, it seems
this method is suitable to provide an estimate of the location of the
STRAFI sweet spot within 0.5 mm for any magnet. This method pro-
vides thus a direct way to position a 1 cm diameter sample and ob-
tain potentially micrometer resolution, according to Fig. 7.

While we have only considered the possibility of locating a nat-
ural sweet spot, we can go further and create a sweet spot in any
arbitrary point on the axis, using a shim system. We just need to
apply the appropriate amount of Z2, Z3, Z4, and so on, to satisfy
the conditions anywhere we choose. This operation can be guided
by the results of the previous measurement method (now centered
on the spot we are interested in). Let us take the example of the
previous solenoid one more time. We can, for example decide to
perform the experiment at z0 = 100 mm. The gradient is now about
20 T m�1 and the conditions from Eq. (15) are not satisfied at all.
This results in an important curvature of the sensitive slice,
degrading a lot the resolution. By applying the appropriate shims
and satisfying Eq. (15), we can improve the resolution by two or-
ders of magnitude, as seen in Fig. 9.

Obviously the arbitrary creation of a sensitive slice will be limited
by the strength of the shim system used. For example, the previous
example requires to be able to generate about 100 ppm of the main
field (at the center of the solenoid) of Z2 over a radius of 2.5 mm. It is
unlikely that any standard shim stack will be able to generate such
an amount of correction. It is probably necessary to combine a stan-
dard shim stack for fine adjustment with a set of passive shims which
can be calculated using the methods found in [27] for example.
5. Conclusions and perspectives

We have introduced a compact and practical framework to de-
scribe the variations of B2, which reflect the ones of B. This frame-
work is particularly suitable when the magnetic field modulus
cannot be approximated by only one component of the magnetic
field. This is specifically the case when dealing with strong gradi-
ents. This framework finds its roots in the usual one used for
6 In a measurement process affected by random noise, we designate the accuracy as
the difference between the mean of the measurement outcome and the actual, ‘‘true’’,
value. We call precision the interval span by three standard deviations of the
distribution resulting from a great number of measurement attempts (typically more
than 1000, until the distribution of results approaches a Gaussian distribution).
homogeneous fields so that it can be easily integrated with current
approaches and devices. We proposed three examples where this
framework finds an application, namely permanent magnet design,
field plotting, and STRAFI NMR.

While we demonstrated its effectiveness for the design of per-
manent magnets generating gradients, it is obvious that this meth-
od can be used to design axial coils generating @B

@z. However, the
assumption of cylindrical symmetry prevents from using this

framework for transverse gradients @B
@x ;

@B
@y

� �
unless the geometry

allows to keep cylindrical symmetry for these gradients (it is gen-
erally not the case). The framework could be generalized to arbi-
trary situations without symmetry but the resulting analytical
expressions become rapidly difficult to manage.

Though we focused on NMR applications, it is important to note
that strong gradients with well-controlled profiles can be used for
imaging modalities such as Magnetic Particle Imaging (MPI) instru-
ments [28], or for diamagnetic levitation in the design of magnetic
traps [29,30].

Another case where the results of this study may be useful is
STRAFI and STRAFI-MAS imaging, where the sample is rotated to
accomplish 3D images using only the stray field gradient [31]. In
that case, distortions due to the non-linearity of the field variations
are observed [32]. Here again, this approach could be used to cor-
rect for undesired field variations. Furthermore this approach
could lead to dedicated superconducting magnets where the sweet
spot conditions described in this paper could be satisfied by con-
trolling the cryo-shims, providing thus extended volume linear
gradient at the center of the magnet. This would be very useful
for all STRAFI experiments since the probe would not need to be
tuned to lower frequencies, an operation that can lead to subopti-
mal performance.
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Appendix A. Derivation of the expansion of Bq

Following the notation used in [2,3,9], we can write the general
form of the SHE for the scalar potential U⁄with cylindrical symme-
try around Oz, using spherical coordinates (r,/,h), as

U�ðr; hÞ ¼
X1
n¼0

ZnrnPnðcos hÞ ð29Þ

and for Bz

Bzðr; hÞ ¼
X1
n¼0

ZnrnPnðcos hÞ ð30Þ

with the Pn as the Legendre polynomials and

Zn ¼ �ðnþ 1ÞZnþ1: ð31Þ

We can in addition derive the one of Bq. We have indeed

Bq ¼ �
@U�

@q
; ð32Þ

and

@

@q
¼ sin h

@

@r
þ cos h

r
@

@h
: ð33Þ

If we take now only one term of degree n in the potential, we have

A ¼ @

@q
rnZnPnðcos hÞ
� �

¼ sin hnrn�1ZnPnðcos hÞ þ cos h
r

rnZn
dPnðcos hÞ

dh
: ð34Þ

In the meanwhile we have [33]

P1
nðxÞ ¼ sin h

dPnðxÞ
dx

: ð35Þ
Consequently,

A ¼ rn�1Zn n sin hPnðcos hÞ � cos hP1
nðcos hÞ

� �
: ð36Þ

We can now use a few well-known relations between Legendre
polynomials of different degrees and orders [1] so that we can write

@

@q
rnZnPnðcos hÞ
� �

¼ �Znrn�1P1
n�1ðcos hÞ: ð37Þ

Thus, using Eq. (31), we have

Bq ¼
X1
n¼1

� 1
nþ 1

ZnrnP1
nðcos hÞ; ð38Þ

Bz ¼ Z0 þ
X1
n¼1

ZnrnPnðcos hÞ: ð39Þ
Appendix B. Derivation of the analytical formulae of Zn for an
axially magnetized hollow cylinder

This ring is equivalent to the superposition of two solid cylin-
ders of radius a1 and a2 and delimited by the same planes as the
ring. Cylinder 2 is magnetized in the same direction as the ring
and cylinder 1 is magnetized in the opposite direction. Such cylin-
ders are equivalent to solenoids of same radii and height with sur-
face current density equal to M and �M respectively. The field
generated on the axis by a solenoid of finite length is well known
and can be written [22] as

Bzsol
ðr ¼ 0; zÞ ¼ l0M

2
b� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðb� zÞ2
q
2
64

3
75

b2

b1

: ð40Þ

The brackets ½f ðbÞ�b2
b1

are a short notation for f(b2) � f(b1). Hence, the
field generated by the ring is given by

Bzðr ¼ 0; zÞ ¼ l0M
2

b� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðb� zÞ2

q
2
64

3
75

a2

a1

2
64

3
75

b2

b1

: ð41Þ

Thus,

Z0 ¼
l0M

2
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p
" #a2

a1

2
4

3
5

b2

b1

¼ l0M
2
½cos a�a2

a1

h ib2

b1

; ð42Þ
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with

a ¼ c sin a;
b ¼ c cos a;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
:

ð43Þ

A term of degree N + 1 can be derived from the term of degree N
thanks to the following relation (simple differentiation)

Zn ¼ �
1
n

@Zn�1

@b

� �a2

a1

" #b2

b1

: ð44Þ

After applying this relation, we find

Z1 ¼ �
l0M

2
1
c

sin aP1
1ðcos aÞ

� �a2

a1

" #b2

b1

: ð45Þ

However, if we look at the derivative of 1
cn sin aP1

nðcosaÞ, we get

@

@b
1
cn

sinaP1
nðcos aÞ

	 

¼ � n

cnþ1 sinaP1
nþ1 ð46Þ

Thus, by induction, we find that

ZnP1 ¼ �
l0M
2n

1
cn

sin aP1
nðcos aÞ

� �a2

a1

" #b2

b1

: ð47Þ
Appendix C. Derivation of Eq. (28)

We simply need to note that the field on axis is a simple expan-
sion in powers of z. As a result, knowing the expansion at one point
of the axis, we can compute the expansion in any other point, pro-
vided we know enough terms. Let us define an origin O and another
one O0. They are both on axis and O0 is at position z0 compared to O.
We note z the position of the evaluation point relative to O and f
the position relative to O0. Thus z = f + z0. We have in O the
expansion

BzðzÞ ¼
X1
n¼0

Znzn; ð48Þ

We have thus

Bzðz; f; z0Þ ¼
X1
n¼0

Zn

Xn

k¼0

Ck
nzn�k

0 fk ð49Þ

which can be transformed into an expansion in terms of f

Bzðz0Þ ¼
X1
k¼0

X1
n¼k

ZnCk
nzn�k

0 fk; ð50Þ

where the Ck
n’s are the binomial coefficients.

If we write in O0,

BzðfÞ ¼
X1
p¼0

Z0pf
p; ð51Þ

we can identify the Z0p using Eq. (50), so that

Z0p ¼
X1
k¼p

ZkCp
kzk�p

0 : ð52Þ
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