
HAL Id: cea-00853763
https://cea.hal.science/cea-00853763

Submitted on 17 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eddy current effects in plain and hollow cylinders
spinning inside homogeneous magnetic fields:

Application to magnetic resonance
G. Aubert, J.-F. Jacquinot, D. Sakellariou

To cite this version:
G. Aubert, J.-F. Jacquinot, D. Sakellariou. Eddy current effects in plain and hollow cylinders spinning
inside homogeneous magnetic fields: Application to magnetic resonance. The Journal of Chemical
Physics, 2012, 15, pp.154201. �10.1063/1.4756948�. �cea-00853763�

https://cea.hal.science/cea-00853763
https://hal.archives-ouvertes.fr


J. Chem. Phys. 137, 154201 (2012); https://doi.org/10.1063/1.4756948 137, 154201

© 2012 American Institute of Physics.

Eddy current effects in plain and hollow
cylinders spinning inside homogeneous
magnetic fields: Application to magnetic
resonance
Cite as: J. Chem. Phys. 137, 154201 (2012); https://doi.org/10.1063/1.4756948
Submitted: 13 July 2012 . Accepted: 18 September 2012 . Published Online: 15 October 2012

G. Aubert, J.-F. Jacquinot, and D. Sakellariou

ARTICLES YOU MAY BE INTERESTED IN

Torque induced on a conducting cylinder by a slowly rotating magnetic field
Journal of Applied Physics 54, 1135 (1983); https://doi.org/10.1063/1.332133

A slowly rotating hollow sphere in a magnetic field: First steps to de-spin a space object
American Journal of Physics 84, 181 (2016); https://doi.org/10.1119/1.4936633

Eddy current loss calculation and thermal analysis of axial-flux permanent magnet couplers
AIP Advances 7, 025117 (2017); https://doi.org/10.1063/1.4977702

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/340425340/x01/AIP/HA_JCP_PDF_EditorsChoice_2019/JCP_18Banners_Digital_728x90.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.4756948
https://doi.org/10.1063/1.4756948
https://aip.scitation.org/author/Aubert%2C+G
https://aip.scitation.org/author/Jacquinot%2C+J-F
https://aip.scitation.org/author/Sakellariou%2C+D
https://doi.org/10.1063/1.4756948
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4756948
https://aip.scitation.org/doi/10.1063/1.332133
https://doi.org/10.1063/1.332133
https://aip.scitation.org/doi/10.1119/1.4936633
https://doi.org/10.1119/1.4936633
https://aip.scitation.org/doi/10.1063/1.4977702
https://doi.org/10.1063/1.4977702


THE JOURNAL OF CHEMICAL PHYSICS 137, 154201 (2012)

Eddy current effects in plain and hollow cylinders spinning inside
homogeneous magnetic fields: Application to magnetic resonance

G. Aubert,1 J.-F. Jacquinot,2,a) and D. Sakellariou3,4

1CEA Saclay, DSM, IRFU, F-91191 Gif-sur-Yvette, France
2CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif-sur-Yvette, France
3CEA Saclay, DSM, IRAMIS, UMR CEA/CNRS no 3299-SIS2M, Laboratoire Structure et Dynamique par
Résonance Magnétique, F-91191 Gif-sur-Yvette, France
4Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Received 13 July 2012; accepted 18 September 2012; published online 15 October 2012)

We present a thorough analysis of eddy currents that develop in a rectangular cross section toroid
rotating in a uniform magnetic field. The slow rotation regime is assumed. Compact expressions for
the current density, the total dissipated power, and the braking torque are given. Examination of the
topology of current lines reveals that depending upon the relative dimensions of the side and length
of the toroid two different regimes exist. The conditions of existence of the two regimes are analyti-
cally established. In view of nuclear magnetic resonance (NMR) applications, we derive the angular
variation of the magnetic field created by eddy currents and lay down the formalism necessary for
calculating the effect of this field on the NMR spectra of the conductor itself or of a sample co-
rotating with the conductor, a situation encountered when dealing with rotating detectors. Examples
of calculations for cases of practical interest are presented. The theory is confronted with available
data, and we give guidelines for the design of optimized rotating micro-coils. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4756948]

I. INTRODUCTION

When a conductor C is subject to a magnetic field �B0,
a motion of C or a time dependence of �B0 leads to the gen-
eration of Foucault or eddy currents. Such circulating elec-
tronic or ionic currents can be used for levitation, for metal de-
tection and identification, for position sensing and structural
non-destructive testing, as well as for electromagnetic brak-
ing and heating. In this article we treat the specific case of a
conductor rotating inside an ultra-uniform magnetic field, like
the ones usually present in magnetic resonance (MR) studies.
However, the closely related cases of a conductor subject to
a rotating magnetic field or subject to an oscillating magnetic
field can be similarly treated.

There are several instances where eddy currents can play
an important role in nuclear magnetic resonance (NMR): In
NMR spectroscopy of conductive samples where the sample
must be spun, as in magic angle spinning (MAS), eddy cur-
rents can lead to unwanted heating effects.1 The influence of
the magnetic fields they induce should also be considered. In
the recently introduced magic angle coil spinning (MACS)
technique,2 a tuned coil is spun together with the sample in-
side a rotor; even if the sample is non-conductive, localized
but intense currents can develop inside the coil: they pro-
duce heating as well as induced magnetic fields. Heating ef-
fects have been reported and a simplified model to account
for the experimental findings was described without in-depth
analysis;3 they can be minimized by a good thermal contact
with the surface of the rotor, but this does not reduce the ef-
fect of induced magnetic fields that should be dealt with by

a)Author to whom correspondence should be addressed. Electronic mail:
jjacquinot@cea.fr.

other means. Rotating detectors have also been introduced in
magnetic resonance imaging in order to perform a kind of par-
allel imaging.4 Additionally, the use of eddy current heating
has been proposed as a convenient means to vary the temper-
ature of a sample in a NMR rotor inside which electronically
conductive parts are judiciously placed.1

As a prerequisite for the study of the eddy currents ef-
fects in the field of MR we need a quantitative description of
these currents and of the fields they produce. Generation of
eddy currents resulting from rotation of a conductor has been
studied for a variety of conductor shapes: for a sphere,5 for
a very long cylinder,6 and for a very thin disk.7 The case of
plain and hollow cylinders8, 9 has also been dealt with. How-
ever, the focus in these articles was placed on the power (P)
dissipated inside the conductor. No detailed study of the cur-
rent distribution ( �J ), or of the magnetic fields generated by
eddy currents, has been presented.

Here we give a new treatment that leads to explicit for-
mulae for �J and P that are more adapted to a complete study
of eddy currents effects. They allow us to establish general
important results concerning the topology of the current lines
and the symmetry of the fields induced by eddy currents. Use-
ful approximate formulae for particular geometries are de-
rived. Finally, we lay down the formalism necessary for cal-
culating NMR spectra of samples under MAS in the pres-
ence of eddy currents effects. We apply our results to discuss
eddy current heating in rotating coils, in particular, its varia-
tion with the coil dimensions, and give guidelines for the de-
sign of optimized rotating micro-coils. We re-examine Fou-
cault heating observations from the literature and finally we
predict the effects of the magnetic fields created by eddy cur-
rents in NMR experiments involving rotation of a conductive
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sample or rotation of the sample together with the detection
coil.

II. GENERALITIES AND LAYOUT OF THE PROBLEM
IN THE SLOW ROTATION REGIME

We consider a conductor of largest dimension L placed
in a uniform magnetic field �B0 and rotating about axis �z at
angular velocity ωr = 2πνr. The angular velocity vector is
��r = ωr �uz, where �uz is the unit vector along �z.The material
has an isotropic conductivity σ , and is assumed non-magnetic
(μ = μ0). Eddy currents originate from the fact that a free
carrier of charge q with local velocity �v experiences a Lorentz
force q �v× �B0. This is equivalent to an internal electromotive
field �E′ = �v× �B0 which drives eddy currents circulation in-
side the conductor. As shown below the field �E′, which we
term the exciting field, appears naturally when transforming
to a frame rotating with the conductor. Two factors are impor-
tant to determine how eddy currents develop and distribute
themselves inside the conductor:

• The orientation of �E′ at the bounding surface of the
conductor; if �E′ has a non-zero normal component,
one may anticipate that surface charges will appear
and create an extra field �E′

ch that adds to �E′ and tends
to cancel the current flowing perpendicularly to the
surface.

• The value of the rotation period T = 2π /ωr, which
should be compared to the characteristic times τ 1, τ 2,
and τ 3, defined below, in order to define the regime to
which the problem belongs and treat it at the correct
level of approximation.

A. Time constants and rotation regimes

The first time constant to consider, τ 1 = L/c, is the prop-
agation time of an electromagnetic wave over the distance L.

Time τ 2 is the equilibration time of the volumic and sur-
face charges in the conductor. By combining Maxwell’s equa-
tion �∇ · �E = ρ/ε0 with Ohm’s law, �J = σ �E, and the equation
for charge conservation, �∇ · �J = − dρ

dt
, one obtains

dρ

dt
+ σ

ε0
ρ = 0.

This equation indicates that no volumic charges exist at
equilibrium, and that equilibrium is reached in a time of the
order of τ 2 = ε0/σ .

Time τ 3 is the threshold value of the rotation period be-
low which eddy currents become so strong that the fields they
create are not negligible compared to the applied field �B0: the
value of τ 3 can be estimated by using the fact that according
to Lenz’ law eddy currents prevent penetration of the mag-
netic field in a direction perpendicular to the rotation axis.
As in the case of rf penetration this effect occurs over a dis-
tance δ, the so called skin depth, related to the period T by
δ = √

2/(μσωr ) = √
T/(πμσ ). Time τ 3 corresponds to the

period for which δ is of the order of the characteristic dimen-
sion L⊥ of the conductor perpendicular to the rotation axis.
We thus have τ3 ≈ πμσL2

⊥.

The regime is said to be quasi-static if T � τ 1. Un-
der this condition, the electric and magnetic fields �B and �E
at a given time t can be determined from the distribution of
charges and currents at the same time t.

The regime is said to be quasi-stationary if T � τ 1, τ 2.
The surface charges distribution and the currents have time to
reach their equilibrium values at each angle during rotation
under the influence of the fields present inside the conductor.

The slow rotation regime is defined by the condition

T � τ1, τ2, τ3 or equivalently : T � τ1, τ2 and δ � L⊥,

(1)
which we assume valid from now on. It introduces consider-
able simplification since the value of the magnetic field inside
the conductor can be taken equal to �B0 to a good approxima-
tion. It is most appropriate for the determination of eddy cur-
rents to use a frame rotating with the conductor. In this frame
we can use Ohm’s law to derive the current density from the
electric fields present in the conductor.

A numerical application with the following values will
prove useful in the later discussion. For L = 10 mm, σ Cu

= 6 × 107 S/m, and μ = μ0, we find τ 1 = 3.3 × 10−11 s
and τ 2 = 1.5 × 10−19 s. For L⊥ equal to 5 mm and 100 μm,
we obtain τ 3 = 5.9 ms and τ 3 = 2.4 μs, respectively. τ 1 and
τ 2 are always very short for practical purposes and only τ 3

can be comparable to the spinning period.

B. Electric field in the rotating frame

Taking the origin of coordinates on the axis of rotation,
each point �r of the conductor has an instantaneous velocity �v:

�v = ��r × �r.
Assuming |�v| 	 c in all the conductor, the electric field

�E = 0 in the laboratory frame is transformed in the rotating
frame into10

�E′ ≈ �E + �v × �B0 = �v × �B0. (2)

From the previous discussion (Secs. II A and II B) we can
describe qualitatively in the rotating frame the steps of eddy
currents generation. Under the influence of field �E′ eddy cur-
rents start to develop; except for particular geometries of the
conductor, �E′ has non-zero components perpendicular to the
surface(s) of the conductor so that surface charges appear with
a time constant of the order of τ 2. They create an additional
field �E′

ch, which adds to �E′, modifies the current trajectories,
and prevents them from escaping from the conductor. If con-
dition τ 2 	 T is fulfilled, the fields and charge distributions
do not change appreciably on time scale τ 2 	 t 	 T. On this
time scale, we are faced with a electrostatic problem, which
is to find the electric field �E′

ch.

C. Alternative choices for the electric field in the
rotating frame

Equation (2) for the exciting field leads to the correct
value of the eddy currents and surface charges distributions.
Since we are not interested in the latter we can choose another
field expression that gives the same current distribution: this
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will be the case if we superimpose on �E′ an arbitrary gradi-
ent �E′′ = �∇f (�r). Such a field induces additional unphysical
surface charges on a time scale τ 2, but it does not produce
eddy currents since it is not associated with an electromotive
field: indeed, the circulation of �E′′ on any closed loop is zero.
The field produced by the additional charges will thus cancel
�E′′. The actual surface charges at the boundaries of the con-

ductor remain, however, important for the calculation of the
potentials at the surface of the conductor.

D. General scheme for the determination of �E ′
ch

and of the current distribution

The current flowing inside the conductor is induced by
the resultant of the exciting field �E′ (complemented, if con-
venient, by an additional field �E′′ of the form �E′′ = �∇ · f (�r))
and of the field �E′

ch created by surface charges. The latter de-
rives from a potential, which is the solution of Laplace’s equa-
tion with the boundary condition that the normal component
of the total electric field �E′ + �E′

ch is zero on the surface of
the conductor. Once �E′

ch has been determined, the current �J
is deduced by application of Ohm’s law:

�J = σ ( �E′ + �E′
ch).

E. Stationarity of the eddy currents distribution
in the case of a cylinder

Although the problem is of electrostatic nature only in
the rotating frame, we may note that the exciting field �E′ (see
Eq. (2)) viewed from the laboratory frame is stationary. The
same is true for the boundary condition if the conductor has
cylindrical symmetry about the z axis. The solution of the
electrostatic problem and, in particular, the current distri-
bution in this case will thus appear static in the laboratory
frame.

III. CURRENT DISTRIBUTION IN THE CASE OF A
HOLLOW CYLINDER

From now on, we restrict ourselves to the case of a con-
ductor shaped as a toroid of rectangular cross section. It is
spun about its axis of symmetry �z in the presence of a static
magnetic field �B0 applied at an angle θ of �z (see Fig. 1). The
slow rotation regime (Eq. (1)) is assumed. The dimensions of
the conductor are: internal radius a1, external radius a2, and
length 2b. As shown in Fig. 1 we use at a given time two in-
stantaneous Cartesian and cylindrical sets of coordinates x, y,
z and ρ, ϕ, z with the origin placed on the plane of symme-
try of the conductor. �ux, �uy, �uz and �uρ, �uϕ, �uz denote the unit
vectors of the two coordinate systems. The direction of �y is
chosen such that �B0 lies in the yz plane.

Because the equations are linear, we can examine sepa-
rately the effects of the components of �B0 parallel and per-
pendicular to �z. Let

�B0 = B0 cos(θ )�uz + B0 sin(θ )�uy.

z

x

y

B0

M

ϕ ρ
z

θ

ωr

a2 a1

2b

FIG. 1. Sketch of the hollow cylinder rotating inside a magnetic field �B0.
The Cartesian frame and cylindrical coordinates used in the calculation are
also shown.

The first term produces in the rotating frame an electric
field:

�E′ =cos(θ )�v × �B0 =cos(θ )( ��r × �r) × �B0 =cos(θ )ωrB0ρ �uρ.

This field is radial. By a mechanism similar to the Hall effect,
charges of opposite sign develop on time scale τ ∼ τ 2 on the
inner and outer surfaces of the conductor; the electric field
they create cancels field E′ and no eddy currents are induced
in the conductor after the equilibration period. We notice that
in this case �E′ ∝ �∇(B0ωrρ

2), and as seen in Sec. II C, such a
field cannot create eddy currents; this property is independent
of the cylindrical shape assumed for the conductor.

From now on, we consider only the perpendicular com-
ponent (second term) that produces in the rotating frame an
electric field:

�E′ = −B0ωrsin(θ )y �uz. (3a)

We can also use the alternative form (see Sec. II C)

�E′ = −B0ωr sin(θ )y �uz + �∇ · (B0ωr sin(θ )yz)

= B0ωr sin(θ )z�uy. (3b)

Equation (3a) has been used in Refs. 8 and 9. We found
that Eq. (3b) leads to more compact and tractable formulae
that enabled us to make a thorough study of the eddy currents
and related effects; we shall thus use this form from now on.

We define the reduced fields �e′ = �E′/(B0ωr sin(θ )) and
�e′
ch = �E′

ch/(B0ωr sin(θ )). In cylindrical coordinates

�e′ = z sin(ϕ)�uρ + z cos(ϕ)�uϕ.

Our task is to find �e′
ch. It derives from a potential v′

ch

which obeys Laplace’s equation with the boundary condition
that the normal component of �e′ + �e′

ch is zero at the surface of
the conductor.

v′
ch can be decomposed as the sum of two solutions

v′
ch1 and v′

ch2. v′
ch1 is obtained with the following boundary
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conditions (BC’s):

∂v′
ch1

∂ρ
= 0, ρ = a1,∀z ∈ [−b, b],∀ϕ ∈ [0, 2π ], (BC1)

∂v′
ch1

∂ρ
= z sin(ϕ), ρ = a2,∀z ∈ [−b,b],∀ϕ ∈ [0, 2π ],

(BC2)

∂v′
ch1

∂z
= 0, z = ±b,∀ρ ∈ [a1,a2],∀ϕ ∈ [0, 2π ]. (BC3)

The second solution is obtained by permuting a1 and a2.
The general method for solving Laplace’s equation in

cylindrical coordinates is given in standard textbooks11, 12 It
relies on variable separation: one looks for solutions that can
be written as the product R(ρ)Q(ϕ)Z(z) of functions of ρ, ϕ,
z, for which three differential equations are obtained; here we
note that (BC2) imposes that Q(ϕ) = sin(ϕ) and that Z(z) is
an odd function of z. We may choose Z(z) = sin(mz) or Z(z)
= sinh(m′z) where m and m′ are non-integer indexation pa-
rameters to be determined from the boundary conditions; the
first choice leads to a solution for our problem of the form

v′
ch1 =

∑
m

[A1mI1(mρ) + B1mK1(mρ)] sin(mz) sin(ϕ),

where I1 and K1 are modified Bessel functions of first order
and

m = (2n + 1)π

2b
, n = 0, 1, . . . ,

which ensures that (BC3) is verified; (BC1) immediately
gives for each value of m

A1m[I0(ma1) + I2(ma1)] − B1m[K0(ma1) + K2(ma1)] = 0.

(4)
Equation (BC2) gives∑

m

m

2
{A1m[I0(ma2) + I2(ma2)] − B1m[K0(ma2)

+K2(ma2)]} sin(mz) = z,∀z ∈ [−b, b].

By identification with the Fourier development of z:

z = 8b

π2

∞∑
n=0

(−1)n

(2n + 1)2
sin

[
(2n + 1)

π

2

z

b

]
,

one obtains for each value of m

A1m[I0(ma2) + I2(ma2)] − B1m[K0(ma2) + K2(ma2)]

= (−1)n
4

m3b
. (5)

By solving Eqs. (4) and (5) for A1m and B1m one obtains
the solution for v′

ch1. The corresponding solution for v′
ch2 is

obtained by permutation of a1 and a2. The final result for v′
ch

is

v′
ch =

∑
m

[AmI1(mρ) + BmK1(mρ)] sin(mz) sin(ϕ)

with

Am = (−1)n+1 4

bm3

K0(ma2) + K2(ma2) − [K0(ma1) + K2(ma1)]

[I0(ma2) + I2(ma2)][K0(ma1) + K2(ma1)] − [I0(ma1) + I2(ma1)][K0(ma2) + K2(ma2)]
, (6a)

Bm = (−1)n+1 4

bm3

I0(ma2) + I2(ma2) − [I0(ma1) + I2(ma1)]

[I0(ma2) + I2(ma2)][K0(ma1) + K2(ma1)] − [I0(ma1) + I2(ma1)][K0(ma2) + K2(ma2)]
, (6b)

and

m = (2n + 1)π

2b
, n = 0, 1, . . . .

Defining:

�j = �J/σB0ωr sin(θ ), (7)

Ohm’s law gives �j = �e′ − �∇v′
ch, whence we obtain for the

three components of �j

jρ =
{
z − 1

2

∑
m

m{Am[I0(mρ) + I2(mρ)]

−Bm[K0(mρ) + K2(mρ)]} sin(mz)

}
sin(ϕ), (8a)

jϕ =
{

z − 1

ρ

∑
m

[AmI1(mρ) + BmK1(mρ)] sin(mz)

}
cos(ϕ),

(8b)

jz =
{

−
∑
m

m[AmI1(mρ) + BmK1(mρ)] cos(mz)

}
sin(ϕ).

(8c)

The three components of �j have much simpler expres-
sions in the case of a plain cylinder (a1 = 0). They are ob-
tained by substituting in Eqs. (8a)–(8c) Bm = 0 and

Am = (−1)n
4

bm3

1

[I0(ma2) + I2(ma2)]
. (9)

A. Symmetry of the solution

Inspection of Eqs. (8a)–(8c) reveals how symmetry op-
erations with respect to the three planes xOy, xOz, and yOz
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affect the three components of �J , namely:

x → −x ↔ Jx → −Jx, Jy → Jy, Jz → Jz,

y → −y ↔ Jx → −Jx, Jy → Jy, Jz → −Jz,

z → −z ↔ Jx → −Jx, Jy → −Jy, Jz → Jz.

IV. CALCULATION OF THE EDDY CURRENT LOSSES
P AND OF THE BRAKING TORQUE �Z

The power dissipation P can be calculated from Joule’s
formula, which according to our notation (Eq. (7)) and to the
symmetry of the current distribution �J , can be written

P =8σ (B0ωr sin(θ ))2
∫ a2

a1

∫ π/2

0

∫ b

0

(
j 2
ρ + j 2

ϕ + j 2
z

)2
ρdρdϕdz.

(10)
The calculation is possible (see supplemental material13)

but complex since the function to integrate is quadratic in
�J ; furthermore, it does not lead to a simple formula. It is

much simpler to use the relation P = −ωr�z between the
power P and the braking torque �z = �� · �uz, whose direction
points along the rotation axis �z. The general expression for ��
is: �� = ∫∫∫

V
�r × �Fdv, where �Fdv = �J × �B0dv is Laplace’s

force acting on volume dv. The contribution to �z of the par-
allel component B0z of �B0 is the sum of −B0z

∫∫∫
V

xJxdv

and −B0z

∫∫∫
V

yJydv. These two terms are zero by symme-
try (see (III A)). We just need to consider the contribution of
the perpendicular component B0x = B0sin(θ ) which is found
equal to

�z = B0 sin(θ )
∫ ∫ ∫

V

yJz(x, y, z)dv

or in cylindrical coordinates

�z = 8B2
0ωrσ sin2(θ )

∫ a2

a1

∫ π/2

0

∫ b

0
jzρ

2 sin(ϕ)dzdϕdρ,

where use has been made of Eq. (7) and of the symmetry of
the current distribution.The function to integrate is linear in
jz. Substitution of jz by its value given by Eq. (8c) leads to

�z = −8B2
0ωrσ sin2(θ )

∑
m

∫ a2

a1

∫ π/2

0

∫ b

0
m[AmI1(mρ)

+BmK1(mρ)]ρ2 cos(mz) sin2(ϕ)dzdϕdρ.

Using
∫ π/2

0 sin2(ϕ)dϕ = π/4 and
∫ b

0 cos(mz)dz = (−1)n

m
, we

get

�z = −2πB2
0ωrσ sin2(θ )

∑
n

(−1)n
∫ a2

a1

ρ2[AmI1(mρ)

+BmK1(mρ)]dρ.

For the last integration we use
∫

u2I1(u)du = u2I2(u) and∫
u2K1(u)du = −u2K2(u) and get

P = −ωr�z = 2πB2
0ω2

r σ sin2(θ )
∑

n

(−1)n

×
∣∣∣∣ρ2

m
[AmI2(mρ) − BmK2(mρ)]

∣∣∣∣
a2

a1

(11)

with m = (2n+1)π
2b

, n = 0, 1, . . . (the notation |f (x)|ba stands
for f(b) − f(a)).

Case of a plain cylinder: The formula for a plain cylin-
der (a1 = 0) is obtained from Eq. (11) taking Am as given by
Eq. (9), Bm = 0, and dropping out the ρ = a1 contribution in
the ||ρ=a2

ρ=a1 term. One obtains in this case

P = 128

π3
B2

0ω2
r σ sin2(θ )a2

2b
3

×
∑

n

1

(2n + 1)4

I2(ma2)

I0(ma2) + I2(ma2)
.

A. Variation of P with shape dimensions

We have studied the variation of P with cylinder dimen-
sions for two geometries, which have been previously studied
in Ref. 8. The comparison is shown in Fig. 2: the left part cor-
responds to a plain cylinder of radius a2 and the right part to
a hollow cylinder with b/a2 = 1. Although our formulae are
quite different from those of Ref. 8, the results are in perfect
agreement.

B. Case of a small cross section toroid

Let

a1 = (1 − ε/2)a,

a2 = (1 + ε/2)a,

b = βa

(12)

with ε 	 1, β 	 1.
We obtain an approximate value of P by developing P in ε

and β. The starting point of the development is an alternative
formula for P demonstrated in supplemental material.13 The

FIG. 2. Comparison of our results (red curves) with those of Ref. 8 (black
curves) for a plain cylinder (left) and a hollow one (right). The figure from
Ref. 8 was scanned and used as the background on the top of which we plotted
our data on the same scale. The coincidence is almost perfect. The power P
was expressed as P = πσ (B0ωr sin θ)2a5

2f (λ, μ) with λ = a1/a2, μ = b/a2,
and f(λ, μ) being plotted. Reprinted with permission from R. Schäfer and C.
Heiden, Appl. Phys. 9, 121–125 (1976). Copyright 1976 Springer Science
and Business Media.
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result to lowest order is

P

σ (B0ωr sin(θ ))2
= 4π

3
a5β3ε−8πa5β4

∑
k

1

k5
tanh

(
1

2
k

ε

β

)
,

(13)
k = (2n + 1)

π

2
, n = 0, 1, . . . .

For arbitrary values of the ratio β/ε, P does not follow a
power law P ∝ a5εuβv . It is easily shown that if β/ε � 1,
P ≈ 2π

3 a5β3ε and if β/ε 	 1, P ≈ 4π
3 a5β3ε.

To illustrate the different dependences of P upon α and
β, we calculated P according to Eq. (13) when the ratio ε/β
departs from the value ε0/β0 = 2 corresponding to a square
cross section. The variation of P is compared to its upper and
lower limits P = 4π

3 a5β3ε (for β/ε 	 1) and P = 2π
3 a5β3ε

(for β/ε � 1). It can be seen that although P does not follow a
strict power law variation, the influence of β is more critical,
and this point should be kept in mind for the design of coils of
rectangular cross section. Experimental data from lithograph-
ically manufactured coils would be highly valuable to confirm
these predictions, which are important for the design of opti-
mized spinning micro-coils.

C. Other particular geometries

We give in Appendix A formulae valid for cylinders hav-
ing one of their dimensions infinitely large or small. This is
the case for infinitely long tubes, infinitely thin tubes of finite
length, and infinitely thin disks with or without a concentric
hole. We also give for the case examined in Sec. IV B a more
extended development of P.

D. Two examples taken from the literature in the field
of NMR

1. Aguiar et al.

These authors3 have used finite elements calculations to
evaluate eddy currents losses in rotating micro-coils. Their
starting point was the calculation of losses inside a rotating
circular loop of rectangular cross section. The result was then
extended with some approximation to helicoidal coils and
with a further approximation to helicoidal coils made of a
wire of circular cross section.

The model presented here allows checking the validity of
their initial numerical calculation. This was done for a loop
rotating at magic angle at frequency νr = 15 kHz in a field B0

= 11.7 T. The loop has an average radius a = (a1 + a2)/2
= 0.35 mm and a square cross section of side a2 − a1

= 2b = 25 μm. We find the same result P = 2.4 mW with
the fem software Flux3d,14 with the analytical expression (11)
and with the approximate expression (13).

In Ref. 3 the authors empirically fitted the variation of P
for a limited set of values of a, a2 − a1, and b, with (a2 − a1)/b
centred on the value 2 and found a power law with non-integer
exponents. A similar result is found from the calculation dis-
played in Fig. 3 which indicates P ∝ α1.3β2.7 in the vicinity
of ε/β = 2.

10
0

10
−2

10
−1

10
0

10
1

10
2

P
/P

0

ε/ε0 or β/β0

FIG. 3. Variation of the power (P) with side lengths for a small rectangu-
lar cross-section toroid as a function of ε (dashed-dotted curve) or β (plain
curve); ε and β are related to b and (a2 − a1) by Eq. (12). P is normalised
with respect to its value P = P0 for ε0/β0 = 2, the value corresponding
to a square cross section. The upper and lower limits of P, correspond-
ing to ε/β � 1 and ε/β 	 1, respectively, are shown as red and green
curves.

The slow regime condition was met in this simulation
since the skin depth δ in copper at νr = 15 kHz is equal to
540 μm, which is much larger than the lateral dimension of
the wire.

2. Yesinowski et al.

These authors1 have observed NMR effects linked to a
temperature elevation of their CuI conductive sample in the
course of MAS rotation. Their theoretical treatment is based
on a simple form of the currents flowing in the cylindrical
sample which they take as

�J (r) = σ �v(r) × �B0, (14)

where �v(r) is the velocity at point r.
As shown in Sec. II B this amounts to neglecting the sur-

face charges at the ends of the sample. This could possibly
be a valid approximation if T < τ 2, since in this case sur-
face charges do not have time to accumulate at the end of the
cylinder. For the realistic case T > τ 2, Eq. (14) can only give
an approximate value for the case of a long cylinder. For the
geometry of sample used in Ref. 1, diameter 2a2 = 2.9 mm,
length 2b = 14 mm, Eq. (14) leads to an overestimation of P
by a factor of 1.13. We have checked this result by numeri-
cal simulation, using the commercial software Flux3d and the
values of the experimental parameters of Ref. 1.

The slow regime condition was met in this experiment
because of the low conductivity of the conducting material
studied. For a conductivity σ = 83 S/m, δ at νr = 10 kHz is
equal to 550 mm which is much larger than the diameter of
the sample.
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E. Discussion: Improving performances of rotating
micro-coils

In this section we consider the potential limitations of
micro-coils due to eddy current heating. Limitations associ-
ated with the fields induced by eddy currents will be examined
in Sec. VI.

Two cases are of special interest for improving spinning
micro-coils detectors. The first concerns miniaturizing further
the detector in order to spin as fast as possible with limited
heating. We have seen that micro-solenoids can be manufac-
tured down to 50 μm in diameter, using a 10 μm diameter
wire.15 Such micro-coils can be used to detect pico-liter vol-
umes. Using Eq. (11), we can estimate the dissipated power P
in an ultra-small micro-coil having the following characteris-
tics: diameter of the coil = 50 μm, number of turns = 5, and
side of the square cross section copper wire = 10 μm. We
find: P = 150 μW for a coil rotating at magic angle in a field
B0 = 11.7 T at frequency νr = 40 kHz. This estimate is much
smaller than the values previously reported2, 3 and indicates
that further miniaturisation would allow very high spinning
frequencies.

The second case aims at estimating the heat generated
when spinning slowly for sensitive samples like biopsies.
Diamagnetic susceptibility broadening effects upon 1H NMR
spectra can be averaged even at moderate spinning frequen-
cies. Furthermore, sideband suppression sequences can be
successfully applied leading to pure isotropic spectra.16, 17 In
such cases we consider a micro-solenoid of 5 turns, 500 μm
coil diameter wound using a 50 μm square cross section cop-
per wire and spinning at 200 Hz oriented at the magic angle
inside a 11.7 T magnet. The estimated power dissipation us-
ing Eq. (11) is P = 50 μW. This estimate after modelling of
the temperature distribution3 indicates that, even in the pres-
ence of a very poorly thermally conductive insert made of
KelF, the increase in sample temperature would not exceed
0.05 ◦C. Using the relatively large temperature dependence of
the water (HDO) chemical shift18 (−11.9 ppb/◦C), one ex-
pects that such heating would lead to a maximum 1H fre-
quency shift of ∼0.25 Hz at 500 MHz Larmor frequency. In
metabolomics studies this will not be an issue for metabo-
lite identification. Furthermore, the line-width increase due to
temperature gradients is not expected to exceed ∼20% of this
value.

V. EDDY CURRENTS TRAJECTORIES

In this section we examine the eddy current lines patterns
in plain and hollow cylinders. We show that for certain aspect
ratios b/a2, there is a cross-over when a1 is varied from the
topology characteristic of a plain cylinder to a new topology
where two types of lines coexist: one type that extends over
one half of the hollow cylinder and another one that is local-
ized in one quarter of the hollow cylinder. The condition of
existence of this topology is analytically established.

We begin the discussion by a numerical calculation of the
current lines pattern in plain and hollow cylinders. Introduc-
ing the curvilinear variable h, a current trajectory starting at
point ρ0, ϕ0, z0 can be calculated point by point using the

o
o

y

z

z

x x

FIG. 4. Current trajectories (presented in the laboratory frame) in a plain
cylinder with length/diameter = 2 seen from two directions. Only half of the
trajectories are shown, the other half being obtained from mirror symmetry
along the yOz plane. Data obtained using the 3D numerical electromagnetics
software Flux3D. The values of the parameters used for the calculation are: a
= 1 mm, b = 2 mm, B0 = 9.6 T, νr = 1 kHz, and σ = 5.8 107 S/m (copper).
The magnetic field is applied perpendicular to the axis of the cylinder, which
coincides with the rotation axis. This would correspond to a cylinder spun
at the magic angle inside a magnetic field of B0 = 11.7 T. The cylinder and
surrounding volume was meshed with 360 000 volumic elements.

relation of recurrence:

ρn+1 = ρn + hJρ(ρn, ϕn, zn),

ϕn+1 = ϕn + h
Jϕ(ρn, ϕn, zn)

ρn

,

zn+1 = zn + hJz(ρn, ϕn, zn).

This procedure gives the correct trajectory in the limit
h → 0; better convergence is obtained with higher order
“tracking” methods. We have used a fourth order Runge-Kutta
algorithm.

A. Case of a plain cylinder

Figure 4 shows the trajectories in the case of a plain cylin-
der of radius a, with b/a = 2. They are of oval shape and
symmetrical with respect to the xz plane. Except in the yz
plane the trajectories are not planar: they bend away from
the yz plane in their upper and lower parts. For the two cases
b/a → 0 and b/a → ∞ we recover the known results that in
the first case the currents trajectories are roughly rectangular
with their long sides parallel to the y axis (Ref. 7) and that
in the second case the trajectories consist mainly of straight
lines parallel to the z axis (Ref. 6); indeed in this case we
can use for �E′ Eq. (3a) and neglect surface charges at both
ends of the cylinder. Then to a good approximation we have
�J = −σ �B0ωr sin(θ )y �uz. It should be mentioned that the case

of trajectories consisting of straight lines parallel to the z-axis
is exactly the situation assumed in Ref. 1 corresponding to an
infinite cylinder.

B. Case of a hollow cylinder

The situation is more complex in this case. For some
values of b/a2 and a1/a2 as in Fig. 5(a) the current lines are
very similar to those found for a plain cylinder: they are sim-
ply “pushed” outwards by the presence of the hole. For other
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z

x y

(a) (b)

FIG. 5. Current trajectories calculated analytically using Eqs. (8a)–(8c). (a) a1 = 0.75, a2 = 1.25, b = 1 (a.u.); (b) a1 = 0.75, a2 = 1.25, b = 0.25 (a.u).

values of b/a2 and a1/a2, as in Fig. 5(b), a new type of trajec-
tory appear: they are located nearby the yz plane and consist
of more confined loops that do not cross the xz plane. Each of
these loops has a symmetrical counterpart on the other side of
the xz plane.

C. Condition of existence of a 2-type of trajectory
topology

The difference in the two types of behavior represented in
Fig. 5 is reflected on the maps of Jz in the xy plane, as shown
in Fig. 6.

One can see that in case (a), Jz has a constant sign in the
half-plane y > 0 (ϕ > 0) and reverses sign for y < 0 (ϕ < 0).
In case (b), there are two regions of positive and negative sign
in the half-plane y > 0; they are separated by a circular line
where Jz = 0. From Eq. (8c), condition Jz = 0 in the xy plane
corresponds to∑

m

m[AmI1(mρ) + BmK1(mρ)]= 0. (15)

The analytical condition of existence for a 2-type of tra-
jectory topology is thus that Eq. (15) has a solution ρ0 that
satisfies a1 < ρ0 < a2. For a given value of a1/a2 there is

a threshold value bt of b/a2 above which only one type of
trajectory exists. The variation of bt with a1/a2 is shown in
Fig. 7. The highest value of bt is ∼0.89; above this value of
aspect ratio, a hollow cylinder has the same topology of cur-
rent lines as a plain cylinder.

VI. FIELDS CREATED BY EDDY CURRENTS

As already mentioned, in a cylindrical conductor eddy
currents are stationary. They produce a static field �Bf , which
can modify the NMR spectrum. We thus examine now the
intensity of this field, its spatial variation, and how it alters
the NMR spectrum. We are interested in two configurations
of the NMR sample and of the rotating conductor:

(1) The sample is placed inside a hollow conductor and ro-
tates with it. This is the situation encountered in MACS.
Although the solenoidal coil used for this type of exper-
iments does not have cylindrical symmetry it can be re-
placed for the purpose of calculating the effects of eddy
currents by a stack of planar circular loops. If the pitch
of the coil is small, the small tilting of the wire should
not modify significantly the current trajectories, which
will remain very close to those displayed in Fig. 5(b). If

ϕ ϕ

FIG. 6. Map of Jz in the xy half-plane (x > 0) for the two cases displayed in Fig. 5.
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FIG. 7. Plot showing the domains of existence of the two topologies of cur-
rent lines: on the right hand side of the plot the current lines are similar to
those of a plain cylinder. On the left hand side a new type of trajectory ap-
pears as shown in the inset.

the coil is made by metal deposition it will usually have
a rectangular cross section, and our formula will apply.
If the coil is made from a wire of circular cross section,
one crude approximation is to consider that the coil is
equivalent to a coil made with a wire having a square
cross section of the same area. A case to be mentioned is
intentional heating of the sample by a surrounding con-
ductive material.1 Various geometries of the conductor
can be considered with the constraint that the rf field
must not be shielded by the conductor. A metallic cylin-
der does not meet this requirement unless it is very thin.
If this is not the case one has to introduce cuts; if the cuts
are vertical our treatment does not apply, but it does, at
least approximately for a helicoidal cut.

(2) A second configuration is when the sample is the con-
ductive material itself and is studied by MAS-NMR
(Ref. 1). The shape of the sample placed inside the MAS
rotor is close to a cylinder. In this case also our formu-
lae can be applied for the computation of the induced
magnetic field.

A. Angular variation of the fields generated by eddy
currents

Since the expressions for eddy currents are complex, one
might expect a very complex spatial variation of �Bf itself. It
turns out, however, that in the frame x, y, z defined in Fig. 1,
the three components of �Bf : Bfx, Bfy, and Bfz, have remark-
ably simple variations as a function of the azimuthal angle ϕ.
They can be written (see Appendix B) as

Bf x = h1(ρ, z) + h2(ρ, z) cos(2ϕ),

Bfy = h2(ρ, z) sin(2ϕ), (16)

Bf z = g3(ρ, z) cos(ϕ).
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FIG. 8. Field coefficients h1, h2, and g3 plotted as a function of ρ for a copper
loop of dimensions a1 = 0.36 mm, a2 = 0.41 mm, b = 0.025 mm spun at
magic angle, at frequency νr = 10 kHz in a field B0 = 11.7 T. Symbols used:
z = 0 (blue -), z = 0.5b (red -.), z = b (magenta - -), z = 1.5b (green ..).

The field coefficients h1, h2, and g3 are proportional to
σB0ωrsin (θ ). As a consequence of the known angular vari-
ation of �Bf one just needs to compute the values of h1, h2,
and g3 for a set of ρ and z values representative of the volume
where one wants to evaluate the effects of �Bf .

B. Case of a sample placed inside a hollow conductor

1. Spatial variation of field

We consider here the field created by a single turn coil in
order to visualize the intensity and location of �Bf in this sim-
ple case. The case of a multi-turn coil simply requires adding
the fields from the individual turns. A realistic example of a
multi-turn coil will be examined in Sec. VI B 2.

For the calculation of the field coefficients h1, h2, and
g3, we use Biot and Savart’s law applied to �J as given by
Eqs. (8a)–(8c). For each value of the pair ρ, z, we compute
�Bf (ϕ = 0) and �Bf (ϕ = π /4). The field coefficients h1(ρ, z),
h2(ρ, z), and g3(ρ, z) are deduced from these two values. The
ring considered for calculation is made from copper and its
dimensions are a1 + a2 = 0.77 mm, a2 − a1 = 0.05 mm,
and b = 0.025 mm. The variation with ρ of the three coeffi-
cients h1, h2, and g3 is shown in Fig. 8. Four values of z (0,
b/2, b, 3b/2) have been considered and a rotation frequency νr

= 10 kHz is assumed.
From Fig. 8 it can be seen that �Bf is mainly located in the

vicinity of the loop. For a small cross section loop, numer-
ical calculations show that as for the power dissipation (see
Eq. (13)), the field parameters h1, g2, and g3 have very differ-
ent dependences upon the side lengths b and a2 − a1 of the
cross section. They increase much more rapidly with b than
with a2 −a1. As already mentioned, they are proportional to
B0 and to the rotation angular velocity, as do the eddy currents
from which they originate.
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2. Influence on the NMR spectrum

The NMR frequency is sensitive only to the projection
Bf

′ of �Bf on the direction of the applied magnetic field �B0.
Spinning of the sample produces a harmonic modulation of
the field Bf

′ seen by one nucleus and thus of its resonance fre-
quency. The problem is quite analogous to MAS-NMR of a
powder sample with chemical shift anisotropy19 (CSA) where
it is known that such a modulation gives rise to sidebands
at frequencies +/−Nνr from the nuclear Larmor frequency
νI = ωI/2π = γ B0/2π , where γ is the gyromagnetic ratio of
the nuclei.

Assuming �B0 applied at the magic angle θm = 54.7◦, the
resonance of a nucleus is shifted by an amount

δωI (t) = γB ′
f (t) = − sin(θm)γBfy(t) + cos(θm)γBf z(t),

(17)
that is,

δωI (t) = − sin(θm)γ h2(ρ, z) sin(2ϕ(t))

+ cos(θm)γg3(ρ, z) cos(ϕ(t)).

During rotation ϕ, whose initial value for a particular spin
is denoted η, varies as cos(ωrt + η). We assume that the sam-
ple has cylindrical symmetry so that all values of η between 0
and 2π are represented with equal weight. δωI(t) can be writ-
ten as

δωI (t) = C1 cos(ωrt + η) + S2 sin(2ωrt + 2η)

with

C1(ρ, z) = γ cos(θm)g3(ρ, z)

and S2(ρ, z) = −γ sin(θm)h2(ρ, z).

We have used the same notation as in Ref. 19 and follow-
ing the same lines as in Ref. 19, we derive the expression for
the intensity IN = FNFN* of the sideband at distance Nνr from
the Larmor frequency. FN is given by19

FN = 1

2π

∫ 2π

0
e
i
[
−N�+ C1

ωr
sin(�)− S2

2ωr
cos(2�)

]
d�,

and can be easily computed with a modern mathematical soft-
ware. Although there is a great similarity with the problem of
chemical shift anisotropy, two differences should be outlined:

• the time variation of δωI(t) contains only a cos(ωrt
+ η) and a sin(2ωrt + 2η) term and no sin(ωrt + η)
and cos(2ωrt + 2η) as in the general CSA case. As a
consequence the +N and –N sidebands have equal in-
tensity.

• C1 and S2 are proportional to ωr so that Fn does not
depend on ωr. This gives a convenient means to distin-
guish sidebands created by eddy currents from those
originating from CSA or other anisotropy sources. It
also means that if sidebands are present they cannot
be removed by an increase of the spinning frequency.
They can only be reduced by an adequate dimension-
ing of the coil; for example, one can reduce the cross
section of the wire and increase the number of turns
when this does not lead to excessive inductance of
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FIG. 9. Contour lines of the central peak intensity I0 of the NMR line inside
a 5 turn coil, modeled as a five-ring stack. Only the first quadrant of the
ρ-z plane has been represented; the other ones are obtained by symmetry
about the ρ and z-axis. The internal diameter of the coil is ϕ = 0.72 mm and
its overall length 0.75 mm. The 9 levels of the contour lines going toward
the axis of the coil are equally spaced between 0.1 and 0.9. The wire cross
sections are shown as square brown blocks.

the coil; if the number of turns cannot be increased,
one can in the case of a rectangular cross-section play
on the values of b and a2 – a1. From the results of
Sec. VI B 1 obtained for a single turn coil, one can
predict that a reduction of the length b and to a lesser
extent of width a2 − a1 will decrease the intensities of
the sidebands; it will also increase the rf resistance of
the coil in a non-trivial way that should be correctly
appreciated.20

For high resolution MACS experiments it is important
that sidebands are kept at a negligible level. This can be
checked by mapping the intensity of the central peak (N = 0)
inside the coil. We performed this calculation for a coil
suitable for proton MACS experiments at 500 MHz. The
characteristics of this coil are: 5 turns, loop separation:
0.175 mm, loop dimensions: a1 = 0.36 mm, a2 = 0.41 mm,
b = 0.025 mm.

The results (independent of νr) are shown in Fig. 9.
For a cylindrical sample of diameter = 0.58 mm and length
0.62 mm, the central peak intensity is everywhere higher than
0.9. The filling factor of such a sample with respect to the in-
ternal volume of the coil is 60%; this dimensioning of coil and
sample would be suitable for high resolution magic angle coil
spinning experiments.

C. Field inside a plain cylinder

The calculation of the induced field �Bf at a point M
inside the conductor requires some care because one needs
to evaluate an integral that contains in the case of the vector
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FIG. 10. Angular variation of the 3 components Bfx, Bfy, and Bfz expressed in ppm of B0 (1st, 2nd, and 3rd row) of the field induced by eddy currents in a
cylinder of diameter = 2.9 mm, length = 2b = 14 mm. Conductivity is 83 S/m and rotation frequency νr = 10 kHz. Three altitudes z = 0, z = 0.35b, and
z = 0.7b have been considered (1st, 2nd, and 3rd columns). On each plot the data for 3 radii (a/4, a/2, and 3a/4) are superimposed. The highest amplitude
modulation corresponds to the largest radii.

potential �A an 1/PM term (P is the running point inside the
conductor, see Appendix B) that can cause divergences in
numerical calculations. However, it is easily shown that the
integral is absolutely convergent. The same is true for the
Biot and Savart integral that gives �Bf . Our procedure to
insure convergence is the following: we discretize the current
distribution at points ρ = (p + 1/2)dρ, ϕ = (q + 1/2)dϕ, z
= (r + 1/2)dz (p, q, r integers), and we compute the field at
the points of coordinates ρ = pdρ, ϕ = qdϕ, z = rdz by the
Biot and Savart formula. We then scale down the values dρ,
dϕ, dz of the mesh size. The computed values of �Bf converge
toward the exact value.

As a case of interest we consider again the experiment
of Yesinowski et al.1 on a rotating CuI cylindrical sample
of dimensions: diameter = 2.9 mm and length = 14 mm.
We take for the conductivity the value σ = 83 S/m, which
corresponds to one of the samples studied in which impor-
tant effects due to eddy currents were observed. The spec-
tra were recorded in a field of 11.7 T on a sample spun
at magic angle at spinning frequencies ranging between 0
and 10 kHz.

The values of Bfx, Bfy, and Bfz are displayed in Fig. 10
for three values of ρ and three altitudes z. A rotation fre-
quency νr = 10 kHz is assumed and the results are given
in ppm since �Bf is proportional to B0. The angular varia-
tions displayed in Fig. 10 are in agreement with Eq. (16);

this can be considered as a test of consistency of our
calculation.

The resonance frequency inside the conductor given by
Eq. (17) is spread by an amount of the order of the am-
plitude of variation of Bfy and Bfz, i.e., about 1 ppm at νr

= 10 kHz. This is an order of magnitude less than broad-
ening expected from temperature gradients originating from
eddy current heating. The data from Ref. 1 indicate a temper-
ature gradient of 40 K at νr = 10 kHz which translates for
CuI into a broadening of 10 ppm. Furthermore, in the case
of the induced fields effects, the resonance frequency shifts
should be efficiently averaged by magic angle rotation and
give rise to very small rotational sidebands. Indeed for cop-
per nuclei at 11.7 T a 1 ppm spread corresponds to 0.13 kHz
which is small compared to the assumed rotation frequency
νr = 10 kHz. For this reason we did not reproduce the cal-
culation developed in Sec. VI B 2 since it is expected to pre-
dict a negligible effect on the intensity of the central peak’s
intensity.

In conclusion we have shown, in this case at least,
that the fields created by eddy currents inside a conduc-
tive sample have only a small effect on the MR spec-
trum. Samples with higher conductivity would exhibit
larger induced fields but they would also be very diffi-
cult to spin. One would furthermore be faced with the
problem of rf penetration inside the sample since even
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with σ = 83 S/m the skin depth at 100 MHz is equal
to δ = 5.5 mm.

VII. CONCLUSION

Spinning conductive samples is a very common case in
MR studies and the effects of eddy currents are often taken
into account in a qualitative manner, by claiming a temper-
ature increase and degradation of line-width. Since the case
of coil spinning has also become increasingly important, an
explicit treatment of such effects seemed necessary, in order
to establish a good understanding of the phenomena and to
obtain quantitative formulae that allow for experiment opti-
mization.

Here, we have established exact analytical solutions for
the 3D problem of a plain or hollow cylinder spinning at an
angle inside an ultra-uniform strong magnetic field. The re-
sults allow us to calculate the power dissipation and the cur-
rent trajectories, and thus the additional magnetic field gener-
ated by these currents. Our results (in particular, the current
lines) being exact could serve as benchmarks for 3D numer-
ical software. Furthermore, they can be used for obtaining
easily the power dissipation levels without the use of soft-
ware, for the case of conductive samples, and they provide
information also about the magnetic field distortions and in-
homogeneities that will be present in the NMR spectrum. Our
analysis takes into account also the presence of a coil spinning
and predicts extremely small eddy current effects on the NMR
spectra of samples spinning at the magic angle and detected
by a spinning coil detector. Such effects are difficult to be ob-
served in common experiments, and here we have chosen the
appropriate conditions in order to observe these effects and
validate further our claims.

We believe our analysis could be not only used for im-
proving spinning samples, spinning detectors, or even spin-
ning magnets for magnetic resonance but also for analyzing
the MR response of conductive samples of technological in-
terest such as battery materials, ionic conductors, or of bio-
logical interest such as bio-solids or tissues.
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APPENDIX A: APPROXIMATE FORMULAE FOR
CASES OF PARTICULAR GEOMETRIES

As in Sec. IV B we define ε and β by

a1 = (1 − ε/2)a,

a2 = (1 + ε/2)a,

b = βa,

and examine in turn the cases ε,β 	 1, β = ∞, ε 	 1and β

finite, and β 	 1 and ε finite.

1. Small cross section toroid (ε,β � 1)

A more extended development of P than the one given in
Sec. IV B yields

P

σ (B0ωr sin(θ ))2
= 4π

3
a5β3ε − πa5β4

∑
k

1

k5

×
[ (

8 − β2

k2
+ . . .

)
tanh

(
1

2
k

ε

β

)

+7

2

βε

k cosh2

(
1

2
k

ε

β

) + ε2

sinh

(
k

ε

β

) +. . .

]
,

k = (2n + 1)
π

2
, n = 0, 1, . . . . (A1)

2. Infinitely long tube (β = ∞)

In this case it is convenient to use for the exciting field
the form �E′ = −B0ωr sin(θ )y �uz = −B0ωr sin(θ )ρ sin(ϕ)�uz.

This field produces surfaces charges at z = ±∞ that can
be neglected. We can write directly

�J = σ �E′ = −σB0ωr sin(θ )ρ sin(ϕ)�uz.

The power dissipated per unit length is straightforwardly
deduced as

1

σ (B0ωr sin(θ ))2

dP

dz
= π

4
(a4

2 − a4
1). (A2)

It is known5 that a cylindrical sheet of current flowing in
the z direction with a sin(ϕ) azimuthal variation produces a
homogeneous internal field pointing in the x direction. In the
present case integration of the fields produced by the cylindri-
cal layers of current between a1 and a2 yields a uniform field
of value

Bx = −μ0

4
ωrσB0 sin(θ )

(
a2

2 − a2
1

) = −B0 sin(θ )

(
a2

2 − a2
1

)
2δ2

.

3. Very thin tube of finite length (ε � 1
and β finite)

Using the approach described in supplemental material,13

one can derive approximate values of m, of the coefficients
Am and Bm, and of the corresponding value of P. The calcu-
lation will not be reproduced here. The final result to lowest
order is

P

σ (B0ωr sin(θ ))2
= 2πa4ε(b − a tanh(b/a)). (A3)

Formulae (A2) and (A3) agree in the limit a2 − a1 → 0 and b
→ ∞.



154201-13 Aubert, Jacquinot, and Sakellariou J. Chem. Phys. 137, 154201 (2012)

4. Very thin annular disk (β� 1 and ε finite)

For small values of b/a2 one can show that the develop-
ment of P is

P

σ (B0ωr sin(θ ))2

= 2π

3
b3

(
a2

2 − a2
1

) − π
∑

k

{
4b4

k5 sinh(u)
[(a2 + a1) cosh(u)

− 2
√

a1a2] + 7b5

k6 sinh2(u)

a2 − a1

a1a2

×
(√

a1a2 cosh(u) − a2 + a1

2

)
+ . . .

}
,

where

u = k
a2 − a1

b
,

k = (2n + 1)π

2b
, n = 0, 1, . . . .

Development (A1) is recovered in the limit a1 → a2.

APPENDIX B: ANGULAR VARIATION OF THE FIELD
GENERATED BY EDDY CURRENTS

The symmetry properties of the field induced by eddy
currents are related to those of the vector potential �Af whose
expression is

�Af = μ0

4π

∫ a2

a1

∫ π

−π

∫ b

−b

�J (ρ, ϕ, z)

|PM| ρdρdϕdz,

where M(ρ0,θ0,ϕ0) is the point where �Af is calculated and
integration is performed on the coordinates (ρ,θ ,ϕ) of the run-
ning point P inside the current distribution.

1. Case of a hollow conductor

If condition ρ0 < ρ holds for all points P inside the con-
ductor we can develop 1/PM. Starting from

1

|PM| = 1√
ρ2

0 + ρ2 + (z − z0)2 − 2ρ0ρ cos(ϕ − ϕ0)
,

we let

ρ = c sin α,

z − z0 = c cos α,

ϕ − ϕ0 = ψ,

which gives

1

|PM| = 1

c

√
1 − 2

ρ0

c
sin α cos ψ +

(ρ0

c

)2

= 1

c

[
1 +

∞∑
n=1

(ρ0

c

)n

Pn(sin α cos ψ)

]
.

We have used the well known definition of Legendre
polynomials Pn(x) from the generating function (1 − 2xt

+ t2)−1/2. Pn(sin αcos ψ) itself can be developed using the ad-
dition theorem

Pn(sin α cos ψ) = Pn(0)Pn(cos α) + 2
n∑

m=1

(n − m)!

(n + m)!

×P m
n (0)P m

n (cos α) cos(mψ).

Using the fact that when n − m is odd P m
n (0) = 0 and when

n − m is even P m
n (0) = (−1)

n−m
2

(n+m−1)!!
(n−m)!! , we obtain

1

|PM| = 1

c
+ 2

∞∑
p=0

(−1)pρ
2p+1
0

c2p+2

p∑
q=0

(−1)q
(2p − 2q − 1)!!

(2p + 2q + 2)!!

×P
2q+1
2p+1 (cos α) cos(2q + 1)ψ

+
∞∑

p=1

(−1)pρ
2p

0

c2p+1

[
(2p − 1)!!

(2p)!!
P2p(cos α)

+2
p∑

q=1

(−1)q
(2p − 2q − 1)!!

(2p + 2q)!!
P

2q

2p (cos α) cos(2qψ)

]
.

(B1)

The components of �J are proportional either to sinϕ

or to cosϕ. The integrals to be considered in the cal-
culation of �Af are thus

∫ π

−π
sin ϕ cos m(ϕ − ϕ0)dϕ and∫ π

−π
cos ϕ cos m(ϕ − ϕ0)dϕ; they are equal to zero except for

m = 1 where one has
∫ π

−π
sin ϕ cos(ϕ − ϕ0)dϕ = π sin ϕ0

and
∫ π

−π
cos ϕ cos(ϕ − ϕ0)dϕ = π cos ϕ0. In the development

(B1), one can just keep the terms with q = 0, that is,

2
∞∑

p=0

(−1)pρ2p+1

c2p+2
(2p−1)!!
(2p+2)!!P

1
2p+1(cos α) cos ψ ; this leads to com-

ponents of �Af of the form

Aρ = f1(ρ0, z0) sin(ϕ0),

Aϕ = f2(ρ0, z0) cos(ϕ0),

Az = f3(ρ0, z0) sin(ϕ0).

In cylindrical coordinates the components of �Bf = �∇
× �Af are of the form

Bρ = g1(ρ0, z0) cos(ϕ0),

Bϕ = g2(ρ0, z0) sin(ϕ0),

Bz = g3(ρ0, z0) cos(ϕ0),

which yield for the Cartesian components of �Bf :

Bx = h1(ρ0, z0) + h2(ρ0, z0) cos(2ϕ0),

By = h2(ρ0, z0) sin(2ϕ0),

Bz = g3(ρ0, z0) cos(ϕ0)

(B2)

with

h1(ρ0, z0) = 1

2
[g1(ρ0, z0) − g2(ρ0, z0)],

h2(ρ0, z0) = 1

2
[g1(ρ0, z0) + g2(ρ0, z0)].
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2. General case

If point M lies inside the conductor, we can decompose
the latter in two regions: one for which ρ0 < ρ and the other
for which ρ0 > ρ. For this region one can make a development
in ρ/ρ0. The same angular variation is found for this second
region. Equation (B2) is thus valid in the general case.
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