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Today, light fields of controlled and measured waveform can be used to guide electron motion

in atoms and molecules with attosecond precision. Here, we demonstrate attosecond control of

collective electron motion in plasmas driven by extreme intensity (≈ 1018 W/cm2) light fields.

Controlled few-cycle near-infrared light waves are tightly focused at the interface between vac-

uum and a solid-density plasma, where they launch and guide subcycle motion of electrons from

the plasma with characteristic energies in the multi-kiloelectronvolt range - two orders of magni-

tude more than what has been achieved so far in atoms and molecules. Basic spectroscopy of the

coherent extreme ultraviolet radiation emerging from the light-plasma interaction allows us to

probe this collective motion of charge with sub-100-attosecond resolution. This is an important

step towards attosecond control of charge dynamics in laser-driven plasma experiments.

Two major trends can nowadays be identified in the interaction of ultrashort laser pulses with matter. On

the one hand, ultrahigh light intensities provided by multi-terawatt femtosecond lasers can be used to drive

collective electron motion in plasmas up to the 0.1-1 gigaelectronvolt energy range [1], opening the way to very

compact laser-based particle accelerators for nuclear and medical applications [2]. On the other hand, con-

trolled few-cycle light waves can be used at moderate intensities to drive and probe the attosecond dynamics

of few-electron motion in atoms [3, 4, 5, 6], molecules [7, 8] and condensed matter [9, 10] - with typical energies
∗These authors contributed equally to this work.
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ranging between tens to a few hundred electronvolts [11].

Merging these two trends, i.e. using tailored waveforms of extreme intensity light to steer the collective

motion of high-energy plasma electrons, will open brand new perspectives for imaging ultrafast charge dynam-

ics during extreme intensity laser-plasma interactions. First experiments have already highlighted the need for

waveform control when trying to reproducibly guide attosecond electronic processes in plasmas with intense

few-cycle light fields [12]. For the first time, we use fully controlled few-cycle near-infrared (NIR) light fields of

extreme intensity (1018 W/cm2) to reproducibly launch and probe collective electron motion at the interface

between vacuum and a solid-density plasma with attosecond precision (Fig. 1a-b).

Light-driven plasma mirrors

When an intense femtosecond laser pulse interacts with a solid, its rising edge strongly ionizes the surface atoms,

creating a layer of plasma with near-solid electronic density (∼ 1023 cm−3), which becomes highly reflective -

a so-called plasma mirror - for light at wavelengths greater than a few tens of nanometers [13, 14, 15, 16, 17].

During the interaction with the pulse, the plasma layer can only expand by a small fraction of the optical laser

wavelength, λL, which leads to the formation of a very sharp interface with vacuum extending over a distance

� λL (Fig. 1b), typically of the order of a few tens of nanometers. At this steep plasma-vacuum interface, the

laser field behaves like in the usual case of light reflection at a metallic surface. The total electric-field inside

the plasma is zero due to screening by the dense conducting plasma.

On a macroscopic scale, the boundary conditions on the oscillating electromagnetic field at the interface

imply that the component Et of the laser electric field parallel to the surface is continuous and therefore

vanishes. In contrast, its component En normal to the surface can exhibit a discontinuity : it has an oscillation

amplitude that jumps from 0, in the conducting medium, to a maximum of 2EL sin θ, where θ is the incidence

angle of the laser with respect to the target normal. At light intensities close to 1018 W/cm2, the amplitude

of the laser electric-field normal to the plasma-vacuum interface can thus exceed the teravolt per meter and

therefore accelerate electrons from the plasma up to very high kinetic energies on the time scale of a single

optical cycle.

On a microscopic scale, there is of course no such field discontinuity. Electrons at the plasma surface are

periodically dragged in and out of the target by the En component of the oscillating laser field, while the much

heavier ions of the plasma are left behind. This creates a charge separation field on the time scale of the laser

cycle, which screens En over a finite length. For everyday light intensities, this screening length is very small,

typically on the Angström scale, hence justifying the usual boundary condition at conductor surfaces. In the

intense laser field, however, the excursion of surface electrons into vacuum can reach several tens of nanometers

(Fig. 1b) - a significant fraction of the laser wavelength - with kinetic energies of the order of the pondero-

motive energy Up = e2E2
n/4mω2

L (e and m electron charge and mass, ωL laser angular frequency) in the light
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field - typically several tens of kiloelectronvolts (keV) for light intensities in the range 1017 to 1018 W/cm2. In

our experiment, we probe this large-amplitude collective motion of charge with sub-100-as resolution. This we

achieve by recording the laser waveform-dependent emission of extreme-ultraviolet (XUV) light triggered by

the subcycle motion of the surface electrons within the solid plasma layer.

Coherent wake emission

As shown in Fig. 1b, electrons at the plasma surface are pulled out into vacuum when, during each laser

cycle, the force −eEn exerted by the laser electric-field points toward vacuum. Later in the laser cycle, as En

decreases in magnitude, some of the electrons involved in the screening are pushed back towards the dense

plasma because the space charge field they experience from other electrons exceeds the laser field En. Finally,

when En changes sign, all the electrons are accelerated back towards the plasma layer. Once they pass the

region of the plasma above critical density Nc, where the laser light is screened by the high electronic density,

they escape the grip of the laser field and travel field free. For 800nm light, this occurs at a depth x in

the plasma, where the local density is n(x) > Nc = mε0 ω
2
L/e

2 = 1.7 × 1021cm−3 (Fig. 1b). During this

process, electrons carry away the energy they acquired in the light field: this is the so-called Brunel absorption

[18, 19]. The combined effect of both the laser and space charge fields is to make faster electrons return to

the plasma surface at later times during the laser cycle. In the overdense region of the plasma, however, faster

electrons can now freely catch up with slower moving electrons that returned earlier during the cycle: as a

result, Brunel electrons pulled out of the plasma around the same time in the laser cycle eventually bunch

together to form a local electron density peak of a few Nc inside the plasma [20]. Lower energy electrons bunch

earlier at lower electronic densities closer to the plasma surface and higher energy electrons bunch later at

higher electronic densities deeper inside the plasma layer. This electron density peak has a typical duration

of the order of 100 as and travels across the plasma at typical velocities ranging from 0.1 to 0.3 times the

speed of light for the laser intensities considered here [20]. In its wake, it pushes the background plasma

electrons that collectively oscillate at the local plasma frequency ωp(x) =
√
n(x)e2/mε0. In the steep plasma

density gradient, these plasma oscillations, which are initially longitudinal electrostatic modes, can couple to

transverse electromagnetic modes and thus radiate light at the plasma frequency ωp(x) [21]. This can be seen

as the time-reverse of resonant absorption [22], where laser light is partially converted into collective electron

oscillations in a gradient of plasma density (both effects correspond to linear mode conversion mechanisms

[22, 23]). This emission, known as coherent wake emission or CWE [24], consists of a sub-femtosecond burst

of coherent radiation, superimposed with the laser light reflected at the plasma surface [25], with a spectrum

extending into the extreme ultraviolet (XUV) up to ωmax =
√
Nsolid/Nc ωL, emitted from the region of solid

plasma density Nsolid (Fig. 1b). Experimentally, the measured CWE spectrum results from the interference
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in time of successive light bursts triggered by the attosecond bunching of returning Brunel electrons inside the

plasma with each laser cycle (Fig. 1c-d). The total emission spectrum can therefore be expressed as :

S(ω) =

∣∣∣∣∣
N∑
j=1

sj(ω)eiωτj

∣∣∣∣∣
2

(1)

where sj(ω) is the complex spectrum emitted in the jth laser cycle, corresponding to an attosecond pulse

centered at time τj . When driven by a laser pulse containing many wave cycles, CWE consists of a long train

of attosecond pulses - one per laser cycle - and a measured XUV spectrum made up of odd and even harmonics

of the laser frequency ωL. In our experiment, we measure the CWE spectrum generated by a laser waveform

containing only a few controlled oscillations of NIR light. We exploit the fact that the waveform-driven collec-

tive dynamics of Brunel electrons are directly mapped onto the time structure of the emitted attosecond pulse

train or APT (Fig. 1b-c) and that even subtle changes in the subcycle charge dynamics induced by different

NIR waveforms can lead to dramatic changes in the measured XUV spectrum (Fig. 1d)[12].

Waveform-dependent emission spectra

In the experiment, we use p-polarized 5-femtosecond (FWHM), 0.8-micron wavelength laser pulses focused

at oblique incidence down to 1.7µm spot size onto a moving optically polished glass surface [26] at peak

light intensities close to 1018 W/cm2 (more details in supporting online materials). The waveform of the laser

electric-field can be written in complex form as EL(t) = E0 aL(t, α)e−i((ωL+αt/2τ2
0 )t+φ0), where E0 is the peak

electric-field strength, aL(t, α) is the normalized amplitude envelope, α the linear frequency chirp of the pulse,

τ0 the Fourier-transform limited pulse duration, φ0 its carrier-envelope (CE) phase (defined on Fig. 1c) and

ωL the carrier wave frequency (the variation of the pulse temporal width τ with α is detailed in supporting

online materials). The CE phase drift of the laser system can be stabilized down to 200-milliradian (rms),

corresponding to a sub-100-as jitter of the few-cycle NIR light waveform with respect to the pulse envelope.

Fig. 2b shows the measured CWE spectra in the 7ωL-10ωL spectral range as a function of the relative

CE phase of Fourier-transform limited 5-fs laser pulses, i.e. with zero frequency chirp. Peaks separated by

ωL are clearly observed, as one would expect in experiments using a many-cycle laser waveform. However, as

the CE phase of the pulse changes, the positions of these harmonic-like peaks no longer correspond to integer

multiples nωL of the laser frequency, but instead linearly drift with a slope of ≈ ωL/2π. Fig. 2 a-c-d display

the same measurements performed for different frequency chirps, both positive and negative. These results

show that the effect of the CE phase on the CWE spectrum also depends on the frequency chirp of the NIR

waveform. For α < 0, the peaks are slightly narrower and their position still drifts linearly with relative CE

phase, while just changing the sign of the chirp (α > 0) almost suppresses the effect of the CE phase on the

measured position of the peaks in the spectrum. The reproducible changes in the plasma emission spectrum
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induced by only π/10 changes in the CE phase of the driving laser field show that we control the collective

plasma electron dynamics underlying CWE with sub-200 attosecond precision.

Collective attosecond electron dynamics

The spectroscopy of CWE provides information on the collective attosecond dynamics of Brunel electrons. To

demonstrate this, we developed a simple model, inspired from the one developed in [18] and similar to the one

described in [12], which gives direct insight into the measurements of Fig. 2. This model consists in solving

the relativistic equation of motion for a collection of electrons, assuming one-dimensional motion along the

target normal. In this equation, the only forces taken into account, when the electrons are in vacuum, are

the one exerted by the laser electric-field En normal to the target and by the space charge field induced by

the collective plasma response to the laser. Once in the plasma, electrons are considered to experience no

force at all. From the obtained set of electron trajectories, illustrated in Fig. 1b, we determine the crossing

times of electron trajectories inside the plasma layer for each laser cycle (more details in supporting online

materials). This collection of subcycle crossing times in turn dictates the relative timing of pulses in the APT

emitted by the background plasma oscillations. Because in CWE, the shape of the attosecond pulse is almost

independent of the amplitude of the light wave, the time structure of the APT is almost exclusively determined

by the relative timing of XUV emission from one wave cycle to the next (Fig. 1c), and this model allows us to

reconstruct the temporal structure of CWE with attosecond resolution.

Fig. 3d to f show the temporal intensity profile of the APTs predicted by our model as a function of the

CE phase φ0 of the three different NIR waveforms (Fig. 3a to c). The intensity of the APTs are plotted as

a function of t/TL + φ0/2π (horizontal axis): a vertical line in this plot therefore corresponds to an event

that drifts linearly in time with changing CE phase. Fig. 3 shows that the main effect of the CE phase is

to shift the temporal position of APT relative to the pulse envelope. This is because the subcycle motion of

the electrons is temporally locked to the NIR waveform, and a change of ∆φ in the CE phase thus delays the

electron trajectory crossing times inside the plasma by ≈ ∆φ/ωL, which is directly mapped onto the APT

structure. More generally, by controlling the waveform of the NIR driving light, we can control the electron

crossing time, and thereby the timing of emission of XUV light by the plasma, with sub-100-as precision.

Moiré patterns

Measuring the sensitivity of CWE spectra (Fig.2) to the waveform of the driving light provides a measure of

how accurately we can control the ultrafast charge dynamics unfolding within the plasma. The sensitivity of

the harmonic generation process to the CE phase results from the combination of two effects. First, due to the

global temporal drift of the APT it induces, a change in the CE phase changes the intensities at which each

individual attosecond XUV burst in the APT is generated. Second, a change in intensity modifies the subcycle
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emission time of each XUV burst because it changes the time it takes for the returning Brunel electrons to

reach the dense part of the plasma where they cross and trigger CWE [27, 28]. For a few-cycle pulse envelope,

the combination of these two effects leads to a dependence of the APT time structure on the CE phase of the

pulse. This effect is clearly visible in Fig. 3d-e, where the temporal spacings between individual attosecond

pulses (i.e. the distances between vertical stripes) vary with the CE phase of the driving waveform. Using our

model, we can calculate the whole CWE spectrum (from 2ωL to ωmaxp ), i.e. the Fourier transform of the APT

of Fig. 3e , as a function of CE phase. The outcome of this calculation, displayed in Fig. 4a, is compared to

the results of a much more comprehensive simulation, carried out using a 2D particle-in-cell (PIC) code (more

details in supporting online materials), in Fig. 4b, showing a remarkable agreement. In both cases, spectra

exhibit a central portion consisting of well-resolved harmonic-like peaks whose position in frequency linearly

drifts with CE phase. This central portion corresponds to our experimental spectral detection window and

here our model perfectly matches the experiment (Fig. 2b).

Another feature revealed by our model is that outside the experimental detection window, at both ends

of the spectrum, the harmonic-like structure of CWE becomes blurred but still exhibits the same periodic

dependence on the CE phase of the laser pulse. This global structure corresponds to a moiré pattern, a well-

know interference effect ubiquitously observed in nature [29]. Indeed, a pair of attosecond pulses spaced by

∆ti = τi+1 − τi = TL + δti (with TL the laser period) in the APT produces a sinusoidal interference pattern in

the frequency domain of periodicity ∆ωi = 2π/∆ti. The total spectrum originates from the superposition of

such interference patterns between all the different pairs of attosecond pulses generated during the light-plasma

interaction. It is only when these sinusoidal patterns are in phase that well-contrasted harmonic-like peaks

occur in the spectrum. In our case, considering the simple spectral interference pattern created by the beating

of the three most intense XUV light bursts in the APT for different values of CE phase (Fig. 4c-d) is enough

to qualitatively understand the complex features of the whole CWE spectra of Fig. 4, as well as the drift

of the harmonic-like peaks with the CE phase, observed experimentally for a Fourier-transform limited laser

waveform (5-fs laser pulse). This phenomenon also explains why the well-contrasted peaks in the spectrum

cannot be strictly interpreted as harmonic of the driving laser frequency.

In the harmonic spectra, the positions of the harmonic-like peaks corresponding to contrast revival in the

moiré pattern, which depend on the temporal spacings between different pairs of attosecond pulses in the APT

are therefore directly determined by the waveform of the laser light. This is how our experiment probes the

temporal drift of the APT as a function of CE phase. Experiments carried out for different frequency chirps

support this interpretation. For a non-chirped laser waveform, the time spacing between neighboring attosec-

ond pulses naturally increases in time during the laser pulse, regardless of the CE phase value (Fig. 3e). This

effect can be compensated by using a positively chirped laser waveform, for which the linearly decreasing light

period from one wave cycle to the next balances the increasing delay between successively generated attosecond
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pulses induced by the temporal variation of the pulse envelope. Under these conditions, an almost perfectly

periodic train of evenly spaced attosecond pulses can be generated (Fig. 3f). Here, as the CE phase changes,

the position of the whole APT still drifts with respect to the pulse envelope as before but this drift no longer

leads to changes in its temporal structure. This is why for a positively chirped waveform, the experimental

CWE spectrum exhibits very little dependence on the CE phase (Fig. 2g and h). In contrast, a negative

frequency chirp in time throughout the pulse will increase the uneven time spacing between pulses in the

APT (Fig. 3d). The dependence of the CWE spectrum on the CE phase is therefore similar to the case of a

non-chirped laser waveform, except that the harmonic-like peaks become narrower due to the greater number

of attosecond pulses interfering in time during the longer frequency-chirped pulse envelope (Fig. 2a).

Controlling laser-driven plasmas

In summary, our experiment is the first demonstration of attosecond control of collective electronic processes

in laser-driven plasmas and with it the successful extension of attosecond optical techniques to plasma physics.

Simply by spectrally resolving the coherent XUV radiation emitted by a solid illuminated by an intense few-

cycle laser field of controlled waveform, we get an accurate temporal picture of the field-driven motion of charge

through the thin layer of plasma formed at the surface. These experiments open the door to direct attosecond

probing of the collective electronic response of a plasma to ultra-intense laser fields. As few-cycle laser pulses

with orders of magnitude more peak-power will become accessible in the near future, our work is the first step

towards controlling attosecond electronic processes in plasmas at relativistic light intensities, which is the key

to developing ultrafast plasma-based particle accelerators and X-ray sources for applications.
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from the spectral interference of all the XUV bursts produced during the laser pulse.
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Figure 2: Waveform-dependent plasma emission spectra. Experimental (top row) and modeled (bottom
row) CWE spectra obtained for different few-cycle NIR light waveforms (CE phase and linear frequency chirp)
with 0.8micron central wavelength. The experimental setup allows us to record XUV photon energies ranging
from 11 and 15.5 eV, corresponding to harmonics 7 to 10 of the central frequency ωL of the NIR laser. The
relative CE phase scale of the experimental scans is calibrated against the absolute CE phase values used in
the model assuming an exponentially decaying plasma density gradient of λL/100 at the target surface and a
peak intensity for a non-chirped pulse of 4 × 1017 W/cm2.
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Figure 3: Attosecond metrology of the plasma emission. Attosecond pulse emission time for controlled
two-cycle (5-fs Fourier limit) NIR light waveforms with different frequency chirps. The waveforms corresponding
to different frequency chirps are displayed in (a),(b) and (c), where for clarity only the positive values of the
NIR light wave oscillations are shown. Both the NIR electric-field and corresponding temporal intensity profiles
of the generated attosecond pulse trains displayed in ((d) to (f)) are plotted as a function of t̄ = t/TL+φ0/2π,
where φ0 is the CE phase of the light field with respect to the few-cycle pulse envelope. This representation
shows how the whole attosecond puse train shifts in time as the CE phase is swept. A negative chirp (a and
d) increases the naturally uneven spacing between the attosecond pulses (subcycle emission time) in the APT
observed for zero chirp (b and e). In contrast, a positive chirp (c and f) leads to an evenly spaced APT with
weak CE phase dependence.

12



CEP=π/2

CEP=

0 2 4 6 12 14

0 2 4 6 8 10 12 14

Frequency (in ω
L
)

2 4 6 8 10 123 5 7 9 11 13

2 4 6 8 10 123 5 7 9 11 13
Frequency (in ω

L
)

−π

0

π

−2π

2π

C
E

P
 (

ra
d)

−π

0

π

−2π

2π
C

E
P

 (
ra

d)

Model

PIC

c

d

a

b

Peak drift

-E(t)

-E(t)

Figure 4: Moiré patterns in plasma emission spectra. (a) 1D model and (b) 2D PIC simulation of CWE
spectra as a function of the CE phase of a two-cycle (5-fs Fourier limit) NIR pulse in the same conditions as
described in Fig. 2B. The spectrum consists of a region with well-contrasted harmonic-like peaks surrounded
by intervals with lower contrast but still a periodic CE phase dependence. This corresponds to the moiré
pattern produced by the spectral interference between the unevenly spaced attosecond pulses displayed in (c)
and (d) left, for two different CE phase values. The moiré pattern resulting from the interference between
the three most intense pulses in the APT is displayed in (c) and (d), right. The beating of the sinusoidal
waves with slightly different frequencies resulting from the different timing between adjacent attosecond pulses
leads to a blurring of the overall signal except when waves happen to be in phase. Moreover, as the CE
phase is decreased from (c) to (d), the spacing between the attosecond pulses increases, thereby shifting the
constructive interference pattern to lower harmonic frequencies and giving rise to the linear drift observed in
the experiment.
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