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The coherence of the precessional switching was compared in planar spin-valves comprising either
an additional simple perpendicular polarizer or a synthetic antiferromagnet perpendicular polarizer.
A significant improvement in the precession coherence was observed experimentally in the second
type of samples. Micromagnetic simulations were performed to study the effect of the stray field
from the perpendicular polarizer. They provide an explanation for the gradual loss of coherence of
the precession in terms of vortex formation, which occurs much faster when a simple perpendicular

polarizer is used. © 2011 American Institute of Physics. [doi:10.1063/1.3597797]

The spin transfer torque (STT) was predicted by Slonc-
zewski and Berger.l’2 When a spin-polarized current flows
through a ferromagnetic layer, it exerts a torque on its mag-
netization. This effect can be used as a write scheme in
memories or to generate steady magnetic excitations in fre-
quency tunable RF nano-oscillators.’ STT-magnetic random
access memory (STT-MRAM) is a very promising candidate
for future memories thanks to its energy-efficiency, scalabil-
ity, and high write speed. Switching has been studied in in-
plane magnetized structures® by reversing the free layer (FL)
magnetization with short current pulses (100 ps—10 ns). Sto-
chastic variations in the switching time were observed in
structures where the equilibrium directions of magnetization
of the storage layer and of the reference layer lie along the
same direction. Indeed the STT is zero as long as the mag-
netizations in the storage layer and the reference layer re-
main parallel or antiparallel. Therefore, the reversal is trig-
gered when the angle of the FL magnetization is sufficiently
large. This angle strongly depends on thermal fluctuations.
Several solutions were proposed to decrease or suppress this
so-called incubation delay: applying a dc current’ or a
microwave-frequency pulse’ before a s%uare current pulse,
applying a small in-plane hard-axis field, 0 or changing the
equilibrium angle between the free and the pinned layer.llf13
Using a double-pulse was also proposed to achieve a more
reliable switching on the subnanosecond time scale.'

Another strategy to avoid these stochastic effects con-
sists in adding to the planar magnetic tunnel junction a per-
pendicular polarizer (PL).lS*17 When the current is applied,
the FL magnetization is pulled out-of-plane and precesses
about the out-of-plane axis, due to the STT from the perpen-
dicular polarizer. If the current is stopped, the magnetization
returns rapidly (<400 ps) into the plane and relaxes in one
of its two in-plane equilibrium states. Depending on the
pulse duration, it is thus possible to switch the magnetization
or bring it back to its initial state. If the magnetization
achieves a half precessional cycle, it switches in a very short
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time of the order of 100-300 ps varying as the inverse of the
current density amplitude.lg_20 Moreover, the reversal starts
as soon as the current is applied, without incubation delay. A
100 ps switching was thus experimentally demonstrated.”**!
It is a great step forward in the context of ultrafast memories
or logic devices. Nevertheless, when using a single perpen-
dicular polarizer, a rapid loss of coherence in the preces-
sional motion was observed with an associated risk of irre-
producibility in the magnetization switching. Indeed, when
increasing the pulse duration to perform several precessional
cycles, a very fast decay in the amplitude of oscillations of
the switching probability was observed.”! This observation
could be ascribed to the role of thermal fluctuations, Oersted
field, or stray field from the perpendicular polarizer.

In this letter, we report on experiments which show a
strong improvement in the coherence of the precessional mo-
tion when the stray field from the perpendicular polarizer is
reduced by using a synthetic antiferromagnet (SAF) for the
perpendicular polarizer. We compare these results to micro-
magnetic simulations in order to understand the effect of the
stray field on the FL. magnetization dynamics.

The structure of the investigated samples was
PL,/Cu4/FL/Cu4/AL, where the  perpendicular
polarizer PL, is Pt15/(Co0.5/Pt0.4),;/Col/Ru 0.9/
(Co0.5/Pt0.4)y5/Co 1/Cu0.3/Co 1, the FL is Co 0.5/
NigyFe,; 1.5/C0 0.5, and the analyzing layer (AL) is
Co 0.5/CoFeByy1.5/Ru 0.9/Co 2/IrMn 7 (all thicknesses
are in nanometers). The PL and the AL are both compensated
SAFs. The sample has an almost circular cross section of
100 nm diameter. Its current-perpendicular-to-plane magne-
toresistance is 0.3% due to the large serial resistance of the
buffer and capping layers. All measurements were performed
at room temperature, with no applied magnetic field. The
experimental setup is the same as the one described in
Ref. 21.

The rise time of the current pulse was 50 ps and the fall
time was 100 ps. The static resistance was measured imme-
diately after the end of the pulse. It was always very close to
either Rp or R,p, indicating that, at the end of the switching,

© 2011 American Institute of Physics
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FIG. 1. (Color online) Switching probability as a function of pulse width.
Squares: the initial state is parallel. Open circles: the initial state is antipar-
allel. The current density is 8.3 10'" A/m?.

the FL magnetization is uniform and aligned along the easy
axis. The switching probability is plotted in Fig. 1 as a func-
tion of the pulse duration. Each point is averaged from 120
measurements. This plot must be compared with Fig. 3 in
Ref. 21. With the SAF-PL, more than five oscillations in
switching probability are observed before settling at 50%
probability corresponding to equal probability of ending up
in the P or AP configurations. In contrast, when a single-layer
perpendicular polarizer was used, barely two oscillation pe-
riods could be observed. Furthermore, the first “peak” almost
reaches unity here, indicating an improved reproducibility in
the switching.

The symmetry of the oscillations around P =0.5 indi-
cates that the magnetization dynamics is dominated by the
spin transfer from the perpendicular polarizer PL and that the
in-plane pinned layer AL has a negligible influence on the
switching dynamics likely due to a higher current polariza-
tion from the PL.

In order to understand the difference of coherence in the
precessional motion between a single-layer PL and a SAF
PL, micromagnetic simulations were performed. For simplic-
ity the STT from the analyzer was neglected, which is con-
sistent with the experimental observations. The dynamics
was therefore modeled as being driven solely by the spin
torque from the out-of-plane polarizer. Micromagnetic simu-
lations were performed using Finite Difference method with
our own software: ST_GL-FFT.22 In the simulations, the FL
was an ellipse of dimensions 100X 90X 2.5 nm?, providing
a slight in-plane uniaxial anisotropy such that the system has
two single domain equilibrium states. The FL is discretized
in a mesh with cells of 1.6 X 1.4X2.5 nm?. All the simula-
tions were performed at zero temperature. Therefore, the sys-
tem is totally deterministic: when a simulation is performed
several times, the same result is always found. P has then
only two possible values: 0 and 1.

Two systems were simulated: (i) the FL experiences only
the STT from the polarizer (SAF-polarizer case); (ii) the FL
experiences the STT and the stray field from the polarizer
(single-layer polarizer case).”! No stray field from the ana-
lyzer was introduced since in Ref. 21 a compensation field
was applied in the plane. Moreover, in the recent experi-
ments, the analyzer is a compensated SAF. The stray field
from the single layer polarizer was numerically calculated. It
ranges from 60 to 150 kA/m in the FL, which is fairly large.
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FIG. 2. (Color online) Switching probability as a function of pulse width
and current density for a SAF-polarizer (a) and a single-layer polarizer (b).
Black: P,=0 (the final state is the same as the initial state). White: P,=1
(the final state is opposite to the initial state). Gray: the final state is a vortex.
The current density ranges from 1.17X10'"'-3Xx 10" A/m? by 0.17
X 10" A/m? step. The pulse width ranges from 50 to 1990 ps by 20 ps
step.

The mean value of the Oersted field is 1.5-4 kA/m in the
range of current considered and was therefore neglected.
The material parameters are saturation magnetization M,
=1040 kA/m, exchange constant A,=1.3X10"" J/m,
magnetocrystalline anisotropy K,=0 J/m?, and damping pa-
rameter a=0.02. The FL magnetization dynamics obeys the
Landau-Lifshitz—Gilbert—Slonczewski equation

M (MXH )+i<Mx@)
o Yo eff. M ot
+ Y, [M X (M X P)], (1)

where 7, is the gyromagnetic factor and Hg is the effective
field. ay depends on the angle between the FL. magnetization
M and the spin polarization vector P, as explained in
Ref. 22.

Results of the micromagnetic simulations are plotted in
Figs. 2 and 3. Due to the slight in-plane shape anisotropy, the
critical current I, for the onset of the precessional motion of
the FL magnetization is finite'® and, respectively, equal to
1.2x10" A/m?> in case (i) [Fig. 2(a)] and 1.1
X 10" A/m? in case (ii) [Fig. 2(b)]. In Fig. 2(a), when the
current is increased, the precession frequency reaches a
maximum and then starts decreasing slightly. This is ex-
plained by a change in the micromagnetic configuration of
the FL.** At moderate current density (1.2—2.10"" A/cm?),
the switching probability diagram is consistent with the in-
verse proportional relationship between switching current
and pulse duration expected from macrospin behavior.'®
For twice the critical current I, the magnetization switches
in less than 100 ps, which is a very promising result for
ultrafast MRAM or logic complementary metal-oxide
semiconductor/magnetic devices implementing this preces-
sional STT switching. Fig. 3(a) shows snapshots of the FL
micromagnetic configuration at various stages of its preces-
sional motion. Some magnetic distortions are observed but
the overall behavior remains close to macrospin over the
whole duration of the pulse. It is interesting to note that even
after switching off the current, the FL. magnetization keeps
on precessing for at least one period since it takes time for
the FL. magnetization to return into the plane of the layer. In
case (ii), at high current density (>21.,), a vortex forms after
a few (~4) precessional cycles for both positive [Fig. 3(b)]
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FIG. 3. (Color online) Simulations for a current density J

app
polarizer (b). The color scale represents the out-of-plane component of the magnetization. In (b), when the current is off, the vortex describes a spiral around

the FL center. The system is at static equilibrium when the vortex reaches the center.

and negative (not shown) currents. It means that the coher-
ence of the FL magnetization dynamics is strongly affected
by the PL stray field. When the current is switched off, the
vortex core keeps on rotating at much slower frequency on a
trajectory of gradually decreasing radius. Its direction of ro-
tation is determined by the surrounding in-plane spins which
“drag” it.”> The vortex is then static when it reaches the
center. Experiments show that the final state is one of the two
in-plane equilibrium state and cannot be a vortex. In fact, the
vortex state is an energy minimum, but not a global mini-
mum. At room temperature, thermal fluctuations are ex-
pected to overcome the energy barrier, such that the system
would end up in one of the two in-plane equilibrium states
(global minima) with equal probability. Therefore, for I
>21, the coherence is lost for long pulses, and the switch-
ing probability goes to 0.5. This is in good agreement with
the experimental observation of a much faster damping of
the oscillation of probability when using a single layer per-
pendicular polarizer.

In conclusion, we have carried out experiments in
PL, /Cu/FL/Cu/AL spin valves, and we have shown that
the coherence of the precessional motion of the FL. magneti-
zation is strongly enhanced when the perpendicular polarizer
is a SAF. Micromagnetic simulations were performed dem-
onstrating the effect of the stray field from the perpendicular
polarizer on the FL. The coherence of the magnetization dy-
namics is affected by the dipolar field, and leads to a rapid
damping of the oscillations in switching probability as a
function of pulse duration. Therefore, the use of a SAF po-
larizer improves the switching reproducibility in these ul-
trafast switching MRAM cells. It is interesting to note that
the improved coherence of the precession likely means a
correlative narrower linewidth when using this type of struc-
tures as frequency tunable RF oscillators.

The authors thank Benjamin Seguret for his help with
Perl scripts. This work was supported by the European Com-
mission through the ERC-2009-AdG 246942 HYMAGINE.
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