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ABSTRACT 

The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque 

were numerically solved using a finite element method in complex non-collinear geometry 

with strongly inhomogeneous current flow. As an illustration, spin-dependent transport 

through a non-magnetic nanoconstriction separating two magnetic layers was investigated. 

Unexpected results such as vortices of spin-currents in the vicinity of the nanoconstriction 

were obtained. The angular variations of magnetoresistance and spin-transfer torque are 

strongly influenced by the structure geometry. 
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Since the discovery of Giant Magnetoresistance (GMR) in 19881, the field of spin 

electronics has steadily expanded, stimulated by both fundamental breakthrough discoveries 

(tunnel magnetoresistance (TMR) at room temperature2,3, spin transfer torque4,5 (STT), 

voltage controlled magnetic devices6) and a strong synergy between basic research and 

industrial developments (magnetoresistive heads for hard disk drives7, Magnetic Random 

Access Memories (MRAM)8, logic devices9, RF oscillators10). Several theories were proposed 

to explain the essence of the observed spintronic phenomena. The GMR was explained in 

terms of interplay of spin-dependent scattering phenomena taking place at the interfaces 

and/or in the bulk of neighboring magnetic layers1,7,11. In particular the concept of spin 

accumulation and spin diffusion length were successfully introduced to describe the diffusive 

transport in current-perpendicular-to-plane (CPP) metallic multilayers. These concepts 

initially developed in collinear magnetic geometry12 have been subsequently generalized to 

non-collinear case13-16. At the same time TMR was first explained by simple quantum 

mechanical tunneling of spin-polarized electrons17,18. Later on, another mechanism of spin-

filtering through crystalline tunnel barrier was proposed based on the symmetry of the 

electron wave-functions in the magnetic electrodes and barrier19. Finally STT was predicted to 

result from exchange interaction between spin polarized conduction electrons and those 

responsible for the local magnetization4,5. However, all these theoretical models have been 

applied so far only for very simple geometries with homogeneous current flow. In contrast, 

most spintronic devices under research or development such as point contacts20,21, low 

resistance tunnel junctions22 or GMR CPP magnetoresistive heads7 with current crowding 

effects, and current confined path (CCP) structures23,24 involve inhomogeneous current flows. 

The purpose of the present numerical study was to investigate the peculiar effects 

which may arise in spin-dependent transport when the charge current flow is highly non-

uniform for geometrical reasons. To illustrate this point, we focused this study on the case of 
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nanoconstricted spin-valves, i.e. structures formed of two extended magnetic layers separated 

by a non-magnetic nanoconstriction. Using a finite element solver, we fully calculated the 

spatial dependence of the spin accumulation vector, charge current vector, spin current tensor, 

in-plane and perpendicular components of the spin-transfer torque as a function of the angle 

between the magnetizations of the two layers. This study illustrates that unexpected 

phenomena such as vortices of spin current may appear as a result of the system geometry and 

associated current non-uniformity. These phenomena can strongly influence the 

magnetization dynamics and must be properly taken into account when designing spintronic 

devices. 

The formalism that we used was proposed by Zhang et al13 and is based on a generalization 

of Valet and Fert theory12 in the diffusive limit. Each material constituting the system of 

arbitrary shape and composition is described by local transport parameters (C0−conductivity, 

β−spin asymmetry of C0 ,  D0−diffusion constant related to C0 via Einstein relation13, β′−spin 

asymmetry of D0 , N0−density of state at Fermi level). 

For this study, we assumed β=β′. Furthermore, we only took into account bulk spin-

dependent scattering. In the present approach, interfacial scattering could also be introduced 

by describing each interface as a thin layer having bulk properties matching the interfacial 

spin-dependent scattering properties12,25. Taking into account interfacial scattering would not 

change the qualitative description of the phenomena presented in this paper.  

All transport properties are then described by 4 local variables: the scalar electrostatic 

potential ϕ~ and the 3 components of spin accumulation in spin space ),,( zyx mmm . The local 

charge current vector is then given by:  
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and the spin current is described by a tensor with 3 coordinates for both spin and real space 

as: 
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where Mu  and e represent a unit vector parallel to the local magnetization and electron 

charge, h  and Bµ are Planck constant and Bohr magneton.  

The 4 variables are then calculated in steady state everywhere in space by solving the set of 

fundamental equations of spin-dependent diffusive transport:  
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where sdJ  and sfτ represent s-d exchange interaction constant and spin relaxation time, 

respectively. Eq. (3) expresses the conservation of charge while Eq. (4) states that the spin 

polarization of the current is not conserved. It can vary either due to spin relaxation or local 

spin-transfer torque given by )( M
sdJ

umT ×=
h

. The constant Jsd and time τsf are related to 

spin-reorientation length sdJ JD /2 0h=λ and spin-diffusion length sfsf Dl τβ 0
2 2)1( −= , 

respectively13. 

Using this formalism, the spin-dependent transport was investigated in the two dimensional 

nanoconstricted spin-valve represented in Fig. 1. It consists of two 3nm thick magnetic layers 

(M1,M2) separated by a non-magnetic metallic nanoconstriction of 2nm thick and variable 

diameter. The nanoconstriction acts as a non-magnetic conducting pinhole connecting the two 

magnetic metallic electrodes across an insulating spacer. This central magnetic system is 

sandwiched between two 400nm thick non-magnetic metallic electrodes. We assume that the 

relative orientation of the magnetizations in the two magnetic layers can be varied in the plane 

perpendicular to x–axis. Voltage of Vin 0=ϕ ( mVout 50=ϕ ) is uniformly applied on the left 
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(right) surface of the left (right) electrode, respectively. At these boundaries current flow is 

perpendicular to the surface whereas it is tangent to the other edges.  

Using a finite element technique, we solved the system of equations 1−4 and obtained the 

spatial distribution of the spin accumulation and charge current vectors, spin current tensor, 

in-plane and perpendicular components of the spin-transfer torque as a function of the angle 

between the magnetizations of the two layers. 

We used the following bulk parameters to represent the various materials of the system26: 

C0=0.005Ω-1nm-1, β=0.6, lsf=20nm, λJ=1nm, D0=1.7·1015nm2/s for magnetic layers and 

C0=0.02Ω-1nm-1, lsf=50nm, D0=6.9·1015nm2/s for outer electrodes and nanoconstriction. These 

bulk parameters are representative for Co and Cu, respectively25. The density of states value 

N0 corresponds to the Fermi level of Co close to 7eV. Under these assumptions, the resistance 

of the stack with continuous Cu spacer per 1nm of depth in parallel (antiparallel) magnetic 

configuration is RP=209Ω (RAP=210Ω), yielding a magnetoresistance ratio (RAP-RP)/RP=0.5%. 

Fig.2 shows the charge current (arrows) and electrostatic potential distribution (color map) 

throughout the structure in antiparallel magnetic configuration. As expected, the current 

converges towards the constriction and diverges afterwards, the voltage gradient being 

maximum within the constriction. It is interesting to note at this point that due to the 

convergence (divergence) of the current towards (away from) the constriction, a significant 

in-plane component of the charge current exists within the magnetic layers.  

In Fig. 3 we present the spin current distribution of the component parallel to the y-axis 

(arrows), i.e. parallel to the magnetization of the reference layer (the layer on the left of the 

constriction), and the corresponding spin accumulation component (color map). Figs. 3(a)-(c) 

respectively correspond to parallel, perpendicular and antiparallel configurations of the 

magnetizations of the two ferromagnetic layers. 
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In parallel configuration (Fig.3(a)), the spatial distribution of the y-component of spin 

current looks very similar to the charge current distribution (Fig.2). Its amplitude gradually 

increases towards the constriction due to the increase of both current polarization (over length 

scale lsf) and charge current density. A symmetric decrease occurs on the other side of the 

constriction. In this symmetric structure, the spin accumulation is zero in the middle of the 

constriction. On the left side of the constriction, there is an excess of spins antiparallel to 

magnetization (due to spin accumulation at the interface between the left electrode and 

reference layer) and an excess of spins parallel to magnetization on the right side. 

At 90° orientation (Fig.3(b)), the y-component of spin current drops rapidly to zero when 

the electrons penetrate into the right magnetic layer. This is due to a reorientation of the 

electron polarization which takes place over the length scale Jλ  (~1nm) much shorter than lsf 

(~50nm). This explains why the gradient of y-component of spin current is much steeper on 

the right than on the left of the constriction.  

The situation of antiparallel alignment (Fig.3(c)) is particularly interesting because it 

unexpectedly reveals the formation of spin current vortices on both sides of the constriction. 

This vorticity can be understood according to the following picture. As it was pointed out 

previously, due to the convergence (divergence) of the charge current towards (away from) 

the constriction, a significant component of the current flows in the plane perpendicular to x-

axis within the magnetic layers on both sides of the constriction and acquires a quite large 

spin polarization. Thus positive spins (pointed in positive y-direction) travels towards the 

constriction on the left side in the plane perpendicular to x-axis and negative spins flows away 

from constriction on the right side in the plane perpendicular to x-axis. The latter is also 

equivalent to the convergence of positive spins towards constriction on the right side. As a 

result, a large flow of electrons with spins aligned in positive y-direction converges towards 

the constriction from both sides, yielding a very intense spin accumulation within the 
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constriction. Then, due to the fact that spin accumulation is very large inside the constriction 

and rapidly vanishes away from it, additional diverging flow of positive spins away from the 

constriction appears on both sides along x-axis. The combination of the converging spin 

current flowing perpendicular to x-axis with the diverging spin current flowing along x-axis 

gives raise to spin current vortices on both sides of the constriction. These vortices are better 

visualized in the inset of Fig.3(c) where the y-component of spin current lines are plotted with 

uniform density. 

We also computed the dependence of the CPP resistance (CPP-R(θ)) of the structure as a 

function of angle θ between the magnetizations of ferromagnetic layers (Fig.4). Two cases are 

compared: the CPP-R(θ) in presence of a constriction of 5nm diameter and without 

constriction (i.e. the constriction is replaced by a continuous Cu spacer). The presence of the 

constriction clearly affects the shape of the CPP-R(θ) variation. Interestingly both variations 

can be very well fitted with the expression proposed by Slonczewski in the frame of transport 

model combining ballistic and diffusive features 27: 122 )2/cos1)(2/cos1( −+−= θχθr , where 

r is the reduced resistance defined by 1))0()())(0()(( −−−= RRRRr πθ . The χ values in the 

above expression, however, are quite different in the two situations being equal to 15.86 and 

4.24 for the continuous spacer and nanoconstriction, respectively. This result points out that 

the device geometry can strongly impact the angular variation of CPP-GMR, an effect 

certainly important to take into account in the design of CPP-GMR devices, particularly GMR 

heads for hard disk drives.  

As a further step, we calculated the STT exerted by the spin polarized current on the right 

magnetic layer as a function of the angle between the two magnetizations (Fig.5). In the 

general case, STT has two components: a component in the plane formed by the 

magnetizations of the two magnetic layers (sometimes called Slonczewski’s term4) and a 

component perpendicular to it (also called field-like term13). In metallic CPP spin-valves, it is 
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generally argued that the field-like term is weak as a result of averaging over all incidences of 

conduction electrons penetrating in the ferromagnetic layer15 In contrast, in magnetic tunnel 

junctions, the perpendicular torque amplitude can represent up to 30% of the in-plane torque 

value as a result of the strong decrease of transmission probability through the tunnel barrier 

when the incident electron momentum departs from the normal to the barrier28.  

 Fig.5 (a) and (b) show the angular variation of the two components of STT integrated 

over the whole volume of the free layer assuming various diameter of the constriction (2nm, 

5nm or continuous spacer). Our results confirm that in this diffusive approach, the 

perpendicular component of STT is two orders of magnitude lower than the in-plane torque. It 

is interesting to note that the shape of the angular variation of STT is quite similar for the two 

components. Actually, these shapes can also be very well described by the expression 

proposed by Slonczewski for the reduced torque27:  

1212 ))2/(sin)2/(cos(sin)( −−Λ+Λ= θθθθτ  both for the in-plane and perpendicular 

components. However, as for the angular variation of GMR, the Λ fitting parameter strongly 

depends on the constriction diameter (Λ respectively equals to 1.75, 2.19, 4.09 for 2nm, 5nm 

and continuous spacer). Note that the equality27 12 +=Λ χ  is verified quite well for the case 

of laterally homogenous electron current, i.e. in the case of the continuous spacer. It should be 

emphasized that the formula for reduced torque was obtained in the case of “standard” (or 

“symmetric”) metallic structure where both magnetic layers have close physical parameters 

(for example, Co/Cu/Co type structures). This is also the case in our numerical study. We find 

that the agreement of our calculations with Slonczewski’s formula is quite reasonable in this 

case. The diffusive scattering13 does not modify the form of Slonczewski expression but is 

indirectly hidden in the Λ  parameter. In the case of strongly asymmetric structures ( for 

example so-called “wavy” structures29) one should rather use more general expression for 

reduced torque proposed in Ref.30. 
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Fig.5(c) shows a map of the in-plane STT amplitude for 90° magnetic orientation in the case 

of a constriction of 10nm diameter. Clearly, the STT is most important in the immediate 

vicinity of the constriction where the current density is the largest. Actually the gradient of 

STT is quite large since the charge current density drops very quickly around the edges of the 

constriction. That points out that new length scales may emerge in these confined geometries 

due to a balance between spin torque gradient and exchange stiffness. In micromagnetic 

simulations, traditionally only two length scales are considered: the Bloch wall width (balance 

between anisotropy and exchange stiffness) and exchange length (balance between 

magnetostatic energy and exchange stiffness). It is likely that additional length scales will 

have to be considered in structures wherein strong current gradients are imposed by the 

system geometry. Such new length scales imposed by the system geometry has already been 

introduced for instance in the context of domain walls confined in magnetic 

nanoconstrictions31. 

In conclusion, a finite element numerical approach has been developed to compute the 

charge and spin current in magnetic structures of arbitrary shape and composition. The case of 

2D nanoconstricted symmetric spin-valves was treated as an illustration. Charge and spin 

current clearly behave very differently as demonstrated for instance by the formation of spin 

current vortices. The approach can be straightforwardly extended at three dimension and 

taking into account interfacial scattering. This type of approach could be helpful in the design 

of functional spintronic devices as well as for the quantitative interpretation of experimental 

data in devices with non uniform or non-local currents such as lateral spin-valves32. 

This project has been supported in parts by the European RTN “Spinswitch” MRTN-CT-

2006-035327, the ERC Adv grant HYMAGINE and by Chair of Excellence Program of the 

Nanosciences Foundation (Grenoble, France). NS, AV and NR are grateful to RFBR for 

partial financial support. 
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FIGURES CAPTIONS 

 

FIG. 1. (color online) Model system used for the finite element calculation of CPP spin 

transport through a nanoconstricted spin-valve. The metallic pinhole (PH) connecting the two 

ferromagnetic layers is 2 nm thick and of variable diameter. Note, that in the case of 2D 

model all quantities are calculated per 1nm depth. Thus the cross-section surface of the stack 

with continuous Cu spacer is 100nm×1nm and the volume of the free magnetic layer is 

3nm×100nm×1nm. 

 

FIG. 2. (color online) Zoom around the nanoconstriction showing the charge current flow 

(arrows) through the constriction and electrostatic potential (color mapping) corresponding to 

the antiparallel state.  

 

FIG. 3. (color online) Zoom around the nanoconstriction: y-component of spin current (black 

arrows) and y-component of spin accumulation (color mapping) for three magnetic 

configurations: (a) parallel, (b) 90°, (c) antiparallel. In Fig.3(c), the white arrows remind the 

charge flow and the grey closed arrows indicate the formation of spin current vortices which 

are better evidenced in the inset. 

 

FIG. 4. Angular variation of the CPP reduced resistance for the constriction of 5 nm diameter 

and continuous spacer. The dots are the calculated values and the lines are fits according to 

Slonczewski’s expression (see text). 

 

FIG. 5. (color online) (a) In-plane and (b) perpendicular components of averaged spin-transfer 

torque over the whole volume of the “free” (right) magnetic layer as a function of the angle 
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between the magnetizations. (c) Mapping of the amplitude of the in-plane torque for 90° 

magnetic configuration in the presence of nanoconstriction with 10 nm diameter.  
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