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We propose a model that describes current-in-plane tunneling transport in double barrier magnetic tunnel
junctions in diffusive regime. Our study shows that specific features appear in double junctions that are
described by introducing two typical length scales. The model may be used to measure the magnetoresistance
and the resistance area product of both barriers in unpatterned stacks of double barrier magnetic tunnel
junctions.

Because of their applications in MRAM and hard disk
drive read-heads, magnetic tunnel junctions have been
extensively studied. In particular, double barrier mag-
netic tunnel junctions (DBMTJs) have been of partic-
ular interest due to high TMR ratios1 and significantly
slower TMR decay rates as a function of voltage, com-
pared to single MTJs2. Furthermore, it has been shown
that, in such structures, spin transfer torque (STT) ex-
erted on the magnetization of the central free layer can be
enhanced3, correlatively yielding a decrease in the criti-
cal current for STT magnetization switching4,5. Finally,
if the thickness of the central layer is small enough and
its roughness sufficiently low, quantum well states may
appear6,7 and spin diode effect can be observed8–10. In
this letter, we adress the case of DBMTJs developped for
low consumption MRAMs where electrons are submitted
to diffusive transport in all metallic layers.
The electrical transport in multilayered thin films

having anisotropic in-plane and perpendicular-to-plane
conductivities has been investigated in the context
of metal/oxide multilayers11. Magnetic tunnel junc-
tions constitute a particular case in this family of
(metal/oxide) multilayered systems. For single barrier
tunnel junctions, the barrier properties can be assessed
just after deposition by measuring electrical transport in
full sheet samples. Such measurements are performed
with a multi-contact probe with various spacing between
contacts. The resistance area product (RA) and magne-
toresistance ratio (MR) can be extracted from the volt-
age variations versus probe position on the sample sur-
face using current-in-plane-tunneling (CIPT) technique12

implemented in Capres set-up. The CIPT technique
leads to a significant gain of time since it allows assess-
ing the good quality of the stack prior to microfabrica-
tion of the DBMTJ pillars. In this work, we developped
an analytical model which allows extending this tech-
nique to double barrier diffusive stacks and provide a
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method to determine the junctions parameters for both
junctions (RA1, RA2 and MR1, MR2) just after depo-
sition. Our study shows that specific features appear in
DBMTJs that are described by introducing two typical
length scales.
We start with a simple description of double mag-

netic tunnel junctions as a network of resistors (toy
model). It corresponds to the situation where two elon-
gated contacts of length L separated by a distance x are
placed on the surface of the wafer. Ferromagnetic lay-
ers are modeled by their sheet resistances RT , RB and
RM as well as the two barriers by their resistance area
products RA1 and RA2. Thus, longitudinal conduction
through each ferromagnetic layer is described by a re-
sistance Rix/L (with i = L,M,B) while perpendicular
conduction through the tunnel barriers is characterized
by RAj/xL (j = 1, 2) (see inset of Fig.1). The equivalent
resistance (Eq.(1) and (2)) of the network is calculated
by using basic electrokinetics.

Rtot(x) =
x

L

RTR
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RT +R′(x)
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where R′(x) is given by :
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(
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λ2
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)

(2)

with λ2
1 = RA1/(RT+RM ) and λ2

2 = RA2/(RB+RM ).
Fig.1a shows the sheet resistance for simple and dou-

ble junctions. When the probes are close to each other
(small x), simple and double barrier cases are equivalent.
In this case, electrons travel only through the top layer.
At large x, in contrast, the current flows through the
whole structure, either in two or three layers in parallel:
the calculated resistance is then equivalent to 2 or 3 sheet
resistors in parallel. Let us now consider the magnetore-
sistance calculation (Fig.1b). A high (resp. low) value of
RAj corresponds to an antiparallel (resp. parallel) con-
figuration around the jth barrier. MRcip is defined as
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FIG. 1. Sheet resistance (a) and magnetoresistance (b) cal-
culated in the toy model for single barrier (red, thin) and
double barrier (blue, thick). RT = RM = RB = 50Ω/�;
RA1 = RA2 = 1000Ωµm2 ; MR1 = MR2 = 100%.

MRcip = 100(Rhigh − Rlow)/Rlow, considering that the
magnetization of the two ferromagnetic external layers
are pinned parallel and that only the central magnetiza-
tion can switch. MRcip shows a maximum for a contact
spacing that corresponds to the distance over which elec-
trons must travel to reach the bottom layer. The max-
imum of MRcip in the double barrier case is therefore
shifted towards larger x values compared to the simple
barrier case.

Even though the model gives relevant information
about the transport in the double junction, it does
not take into account the geometry of realistic contact
probes. The exact problem of the current flow in double
barrier stack connected at its top surface by two ponc-
tual current probes can be solved considering the current
probes as a source and a sink of electrons and apply-

ing the superposition theorem12. Since the probe spac-
ing x is always much larger than the layer thicknesses
ti (i = T,M,B), one may assume that the voltage drop
in the vertical direction only appears across the barriers.
Current conservation is applied to an infinitesimal cylin-
der around the current probe and then to a shell between
r and r + dr:

I = 2πr (JT (r)tT + JM (r)tM + JB(r)tB) (3)

J
(1)
Z (r) + tT

∂JT (r)

∂r
+

1

r
JT (r)tT = 0 (4)

J
(2)
Z (r)− J

(1)
Z (r) + tM

∂JM (r)

∂r
+

1

r
JM (r)tM = 0 (5)

where Ji, i = T,M,B are the longitudinal current den-

sities through the ferromagnetic layers and J
(j)
Z , j = 1 or

2 are the current densities across the barriers. We fi-
nally apply the mesh rule to the loop around the top and
bottom barriers:
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∂J
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= 0 (6)
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(2)
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= 0 (7)

By combining equations (3) to (7), we get the following
fourth-order differential equation.
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where ET (r) = tTRTJT (r) has the dimension of an
electric field and 1

λ
2 = 1

λ2

1

+ 1
λ2

2

, Λ4 = RA1RA2

RTRM+RMRB+RBRT

As the double tunnel junction problem can be seen
as the interweaving of two simple junction ones, one can
successively apply the differential expression found in the
simple junction case12.
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Eq.(10) exactly gives the left member of Eq.(8) pro-

vided that λ± =
[

Λ4

2

(

1

λ
2 ±

√

1

λ
4 − 4

Λ4

)]
1

2

. Thus the

problem can be solved by successively integrating two
well-known second-order differential equations. The volt-
age drop is then calculated by integrating the electric field
ET between the two central probes. If we consider four
equally spaced probes, we obtain the sheet resistance13

given by R� = π
ln(2)R:
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FIG. 2. (a) CIPT resistance for various RM with RT =
55Ω/�, RB = 50Ω/� and RA1 = RA2 = 1000Ωµm2 .
(b) CIPT magnetoresistance for various RA2 with RA1 =
1000Ωµm2 , RT = RM = RB = 50Ω/� and MR1 = MR2 =
100%. For (a) and (b), the red circles correspond to the single
barrier model.

where K0 is the Bessel function of the second kind of
order zero, R = RTRMRB

RTRM+RMRB+RTRB

is the sheet resis-
tance of the three ferromagnetic layers in parallel, and
R± is given by:

R± =
λ±

ln(2)

RT

(

1− RT

RT+RM

(

λ∓

λ1

)2
)

−R

λ2
± − λ2

∓

(12)

Compared to the single barrier case12, we notice that
there are now four Bessel functions characterized by two
different length scales λ+ and λ−. In the following, an in-
terpretation of these two length scales is proposed. Nev-
ertheless it is crucial to first validate Eq.(11) by consider-
ing some limit cases. For large probe spacing, we recover
the sheet resistance R of the three layers in parallel since
K0(x)−K0(2x) rapidly converges to zero for x ≥ 5. For
small probe spacing, the current flows only through the
top layer. Considering that lim

x→0
K0(x) −K0(2x) = ln(2)

and R++R− = (RT−R)/ ln(2), Eq.(11) exactly gives the
expected resultR� = RT . Let us further check our model
by considering two specific situations. If the width of the
central magnetic layer tends to zero (ie RM → +∞), the
two barriers become closer and closer until forming a sin-
gle barrier junction with RAeff = RA1 +RA2 (Fig.2a).
Second, by reducing RA2 to zero, the structure also con-
verges toward the single barrier case with a bottom layer
thickness equal to tM + tB (Fig.2b). Using these two
examples, we checked the validity of the model by recov-
ering the simple junction curves (red circles in Fig.2).
Let us now discuss the physical meaning of the two

length scales λ+ and λ− by considering a situation where
the top barrier has a much lower resistance than the bot-
tom one (RA1 << RA2). For that purpose, a DBMTJ
was deposited by sputtering with the following composi-
tion: Ta 5/Ru 7/Ta 5/PtMn 20/CoFe 2/Ru 0.8/CoFeB

FIG. 3. (a) Comparison of Capres data with our model us-
ing RA1 = 700Ω.µm2 , RA2 = 12.6kΩ.µm2 , MR1 = 160%,
MR2 = 50%, RT = 36Ω/�, RM = 69Ω/�, RB = 13Ω/�
(the dashed line is a guide for the eye); on top a sketch of
the current flow (black) through the structure compared to
the two length scales λ+ and λ

−
; (b), (c) λ+ and λ

−
as a

function of RA1 and RA2.

2/MgO 3.3/CoFeB 20/MgO 2.2/CoFeB 2/NiFe 3/FeMn
12/Ru 5 (nm). Two successive annealings under mag-
netic field at 300◦C and 180◦C align in parallel the
magnetizations of the layers above and below the free
layer. Then a small magnetic field in the opposite direc-
tion (during Capres measurement) switches the middle
free layer in order to obtain the antiparallel configura-
tion. Capres measurement of the MRcip shows an origi-
nal trend (Fig.3a), that is perfectly fitted by our model.
There are now two maxima, each of them related to a
characteristic length scale : the first maximum (at small
x) is controlled by λ− while the second one is governed by
λ+. Thus both characteristic lengths can be interpreted
as sketched in Fig.3. Electrons cross the top tunnel bar-
rier on a length scale equal to λ−, leading thereby to
a magnetoresistance maximum. When x becomes larger,
MRcip decreases since the current flows mostly in parallel
through the two upper ferromagnetic layers. The second
maximum corresponds to the distance λ+ at which elec-
trons tunnel through the second barrier. Finally, at large
x, MRcip goes back to zero since current flows through
three ferromagnetic layers in parallel.

Dependances of λ+ and λ− as a function of both RA1

and RA2 are given in Fig.3b and c. We primarily no-
tice that both λ− and λ+ are symmetric with respect
to RA1 and RA2. Moreover both length scales increase
with RA1 and RA2. However the surface shapes repre-
senting λ− and λ+ are clearly different. λ+ is large when
only one barrier has a large RA value, thus indicating
that the transport is governed by the thickest barrier.
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Moreover λ+ becomes even larger when both RA1 and
RA2 increase. These observations are consistent with
our interpretation of λ+ as the length over which elec-
trons travel through the whole structure. In contrast
to λ+, the length scale λ− evolves quite differently. It
stays small as long as at least one barrier has a small
RA value, thus leading us to interpret λ− as the char-
acteristic length scale for transport through the thinnest
barrier of the DBMTJ. Consistently with this interpre-
tation, we observed that λ+ = 2λ− along the symmetry
line RA1=RA2.

In conclusion, we have developed an analytical model
that describes in-plane diffusive transport in DBMTJs
and shown that these structures may present original fea-
tures such as a magnetoresistance with two maxima as a
function of probe spacing. Our results are interpreted by
introducing two length scales λ+ and λ−. Finally, this
model can be used to extract the four fundamental char-
acteristics of DBMTJs (RA1, RA2, MR1 and MR2) by
implementing our fitting procedure on Capres set-up.
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