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ABSTRACT

We consider M-theory and type IIA reductions to four dimensions with N = 2 and
N = 1 supersymmetry and discuss their interconnection. Our work is based on the frame-
work of Exceptional Generalized Geometry (EGG), which extends the tangent bundle to
include all symmetries in M-theory and type II string theory, covariantizing the local U-
duality group E7(7). We describe general N = 1 and N = 2 reductions in terms of SU(7)
and SU(6) structures on this bundle and thereby derive the effective four-dimensional
N = 1 and N = 2 couplings, in particular we compute the Kähler and hyper-Kähler po-
tentials as well as the triplet of Killing prepotentials (or the superpotential in the N = 1
case). These structures and couplings can be described in terms of forms on an eight-
dimensional tangent space where SL(8) ⊂ E7 acts, which might indicate a description
in terms of an eight-dimensional internal space, similar to F-theory. We finally discuss
an orbifold action in M-theory and its reduction to O6 orientifolds, and show how the
projection on the N = 2 structures selects the N = 1 ones. We briefly comment on new
orientifold projections, U-dual to the standard ones.
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1 Introduction

It has been a long-standing problem to understand more general flux backgrounds in
string theory. The most successful tool for this task has been supersymmetry, since it
reduces the second-order equations of motion to first-order supersymmetry equations
that are much simpler to solve and provides non-renormalization theorems for certain
sets of couplings. The simplest string backgrounds are Ricci-flat geometries that admit a
number of covariantly constant spinors. However, in the presence of fluxes, the first-order
supersymmetry equations become more involved, as all bosonic fields of string theory
appear in these equations. The global bosonic symmetries of the massless string spectrum
then can help to write these first-order equations in a simpler form. This is the approach
of generalized geometry. The introduction of a generalized tangent bundle covariantizes
these symmetries by combining the diffeomorphisms and gauge transformations of the
gauge fields into a single vector bundle. The metric on this bundle then includes, besides
the metric, the other massless bosonic fields. The idea was first applied to the T-duality
group that transforms the metric and the B-field into each other. This description goes
by the name of Generalized Complex Geometry [1].

More recently, the formalism was extended to the U-duality group of type II string
theory to also include its Ramond-Ramond fields and to M-theory, covariantizing its
three-form gauge field [2–5]. In both cases the covariantized symmetry group relevant to
compactify to four dimensions is E7(7), and the generalized tangent bundle of type IIA
is recovered from the one of M-theory by dimensional reduction. All possible supersym-
metric backgrounds of type II and M-theory can then be understood as (generalized)
G-structure backgrounds, where G is, depending on the number of supercharges, a sub-
group of SU(8) (the maximal compact subgroup of E7(7)).

1 The first-order supersym-
metry equations can then be written in a covariant way [6–8]. Furthermore, G-structure
backgrounds that solve the equations of motion but not the first-order supersymmetry
conditions can usually be understood as backgrounds with spontaneously broken super-
symmetry. In this sense, generalized geometry serves as an off-shell supersymmetric
formulation for general G-structure backgrounds.

Generalized G structures are characterized by fundamental objects (defined by bi-
spinors) in certain representations of E7(7) such that their common stabilizer is exactly
G. These fundamental objects determine the generalized metric (which is stabilized
by SU(8)) and thereby the entire bosonic supergravity background. The first-order
supersymmetry conditions are resembled by first-order differential equations on them.
Moreover, the couplings of the off-shell supersymmetric formulations are given in terms
of tensorial combinations of these fundamental objects into E7(7) singlets.

A major aim of this work is to understand SU(7) and SU(6) structures in M-theory
and type II, as they correspond to backgrounds with the off-shell structure of four-
dimensional N = 1 and N = 2 supergravity. SU(7) structures in M-theory have already
been discussed to some extend in [3], SU(6) structures in type IIA have already been
discussed in [4]. Of particular interest in our discussion will be the existence of an
eight-dimensional intermediate bundle between the tangent and the generalized tangent
bundle that admits the action of SL(8) ⊂ E7(7). This might indicate the existence of

1Often these are called generalized G-structures as they are structures on the generalized tangent
space, as opposed to usual G-structures on the tangent space.
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a twelve-dimensional theory (similar to F-theory) in which some of the charges will be
geometrized. SU(7) and SU(6) structures are related to Spin(7) and SU(4) structures
in SL(8).

After we briefly review the E7(7)-covariant formalism of exceptional generalized geom-
etry in Section 2, we will discuss SU(7) and SU(6) structures in M-theory in Section 3. In
particular, we will discuss all classical couplings in these backgrounds. Subsequently, we
will relate these results to the equivalent structures in type IIA string theory in Section 4.
While SU(6) structures descend in a straight-forward way, SU(7)-structures are related
to O6-orientifold backgrounds in type IIA. Moreover, SU(6) and SU(7) structures should
be related by involutions that project out half of the supersymmetry, such as orbifolding
and orientifolding in M-theory and type II string theory. In Section 5 we will show how an
SU(7) structure is obtained from an SU(6) structure via such involutions. In particular,
we will determine the N = 1 couplings in terms of the N = 2 parent theory. Finally, we
will identify the involutions given by standard orbifolding and orientifolding in M-theory
and type II string theory and discuss a few new involutions, for instance an involution
creating objects with tension and charge opposite to those of NS5-branes. We conclude
with a summary of the results and some outlook. Appendix A contains all the relevant
formuli concerning E7(7) representations, and Appendix B presents the details of some of
the calculations done along the paper.

2 Exceptional Generalized Geometry (EGG)

In this section we review the basic concepts of Exceptional Generalized Geometry (EGG),
emphasizing the role of the eight-dimensional intermediate tangent bundle T8. The idea
of EGG is to covariantize the U-duality group E7(7) in M-theory and type II compactifica-
tions to four dimensions. Though only torus compactifications admit globally the action
of the U-duality group, locally any background admits it, as the tangent space is isomor-
phic to R7 (R6). In EGG the internal seven- (or six-)dimensional tangent bundle of an
M-theory (type II) compactification to four dimensions is enlarged to a 56-dimensional
exceptional generalized tangent bundle such that the U-duality symmetry group E7(7)

acts linearly on it. Thereby, the U-duality group promotes to a geometric action on this
bundle. As the U-duality group maps all bosonic supergravity degrees of freedom into
each other, EGG gathers them all in a metric on this exceptional generalized tangent
bundle. The patching of the exceptional generalized tangent bundle [3] resembles the
global aspects of the compactification. More details can be found in [2–5].

2.1 An eight-dimensional tangent space T8

In the case of compactifications of type II, the exceptional tangent bundle combines the
string internal momentum and winding charges (6+6 elements), their magnetic duals
(another 6+6) as well as all the D-brane charges (32 elements). These together form the
fundamental 56 representation of E7. In M-theory, it is a result of combining momentum
and its dual (Kaluza-Klein monopole charge) (7+7) together with M2 and M5-brane
charges (21+21). These charges can be combined into SL(8,R) representations. We can
think of this group as acting on an 8-dimensional tangent bundle T8, which will be split

3



into 7+ 1 for M-theory, and further split into 6+ 1+ 1 for type IIA. Of course there is a
priori no eight-dimensional manifold with a tangent bundle T8 appearing in M-theory or
type IIA. Therefore, T8 should be seen as some kind of generalized tangent bundle. In
terms of SL(8,R) representations, the fundamental of E7 decomposes as

E =Λ2T8 ⊕ Λ2T ∗
8 ,

56 =28⊕ 28′ .
(2.1)

Similarly, for the adjoint we have

A =(T8 ⊗ T ∗
8 )0 ⊕ Λ4T ∗

8 ,

133 =63⊕ 70 ,
(2.2)

where the subscript 0 denotes traceless. We will also need the 912 representation, which
splits according to

N =S2T8 ⊕ (Λ3T8 ⊗ T ∗
8 )0 ⊕ S2T ∗

8 ⊕ (Λ3T ∗
8 ⊗ T8)0 ,

912 =36⊕ 420⊕ 36′ ⊕ 420′ ,
(2.3)

where S2 denotes symmetric two-tensors.

When we later consider spinors it is also useful to use the maximal compact subgroups
of the groups that are involved. The maximal compact subgroup of E7 is SU(8), and the
group-theoretical decompositions are completely analogous to the SL(8,R) case and are
given by (2.1-2.3). Note though that the SU(8) that transforms the spinors is not the
compact subgroup SU(8) of SL(8) that acts on T8. Nevertheless the two SU(8) subgroups
are related by some E7(7) transformation and the decomposition of E7(7) representations
is the same in both cases. More details can be found in Appendix A.2. When we then
consider SL(8,R), spinors transform under the corresponding spin group Spin(8) and its
maximal compact subgroup SO(8). Note that for Spin(8), we can impose a Majorana-
Weyl condition on the spinor. The Weyl-spinors are in one-to-one correspondence to
Spin(7) spinors that are considered in the M-theory compactification.

2.2 M-theory and GL(7) decompositions

For compactifications of M-theory on seven-dimensional manifolds, we should decompose
further the SL(8) into GL(7) representations, or in other words split the 8-dimensional
dual vector bundle T ∗

8 into a 7-dimensional one T ∗
7 , plus a scalar piece. Choosing an

overall power of the 7-dimensional volume form to get the correct embedding in SL(8)
(see more details in [3]), we get

T ∗
8 = (Λ7T ∗

7 )
−1/4 ⊗ (T ∗

7 ⊕ Λ7T ∗
7 )

8 = 7⊕ 1

ρa = (ρm, ρ8)

(2.4)

where ρ is some one-form, and a = 1, ..., 8, m = 1, ..., 7. Note that the eight-form
ρ1 ∧ · · · ∧ ρ8 is just one on T8. This fits nicely with the fact that only SL(8) acts on this
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bundle. This implies that the fundamental 56 representation (2.1) decomposes as

EM = (Λ7T7)
1/2 ⊗ (T7 ⊕ Λ2T ∗

7 ⊕ Λ5T ∗
7 ⊕ (T ∗

7 ⊗ Λ7T ∗
7 )) ,

56 = 7⊕ 21⊕ 21⊕ 7
(2.5)

corresponding respectively to momentum, M2- and M5-brane charge, and KK monopole
charge.

In turn, the adjoint (2.2) decomposes into

A = T7 ⊗ T ∗
7 ⊕ Λ6T7 ⊕ Λ6T ∗

7 ⊕ Λ3T7 ⊕ Λ3T ∗
7 ,

133 = 48⊕ 1⊕ 7⊕ 7⊕ 35⊕ 35
(2.6)

We recognize here the GL(7) adjoint (first term), and the shifts of the M-theory 3-
form potential A3 (last term) and its 6-form dual A6 (fourth term). These build up
the geometric subgroup of transformations that are used to patch the exceptional tan-
gent bundle. The other pieces correspond to “hidden symmetries”, very much like the
β-transformations in generalized geometry. Note that A3 and A6 come respectively from
the 70 and 63 representations of SL(8) in (2.2), i.e. they embed into the SL(8) repre-
sentations in (2.2) as

Ashifts =
(

Â⊗ ρ8, A4

)

, (2.7)

where we defined the four-form
A4 ≡ A3 ∧ ρ8 , (2.8)

and the vector
Â ≡ (vol7)

−1
xA6 , (2.9)

with x meaning the full contraction of A6 with (vol7)
−1.

3 Supersymmetric reductions of M-theory in EGG

In this section we review reductions of M-theory preserving N = 2 and N = 1 supersym-
metry in the language of Exceptional Generalized Geometry following [3,4]. In the N = 2
case, we show how an SU(4) structure on T8 emerges, and write the EGG structures in
terms of the complex and symplectic structures on this space.

To get a supersymmetric effective four-dimensional theory, there should exist nowhere-
vanishing spinors ηi on the seven-dimensional internal space such that the eleven dimen-
sional spinor can be decomposed as (for spinor conventions, see [3])

ǫ = ξi+ ⊗ ηci + ξi− ⊗ ηi , (3.1)

where ξi± are four-dimensional Weyl spinors, ηi are complex Spin(7) spinor and i = 1, .., N
determines the amount of 4D supersymmetry. When we embed Spin(7) into Spin(8), we
can choose ηi to be of positive chirality with respect to Spin(8), which means that we
can take ηi to transform in the 8 of SU(8). Note that there exists a Majorana condition
for Spin(7) (and also for Spin(8)) so that actually the real and imaginary parts of ηi
are independent spinors. Both the real and imaginary part of ηi are stabilized by a
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Spin(7) subgroup in SL(8,R), respectively. Therefore, inside SL(8,R) each complex
spinor ηi defines a pair of Spin(7) structures. Inside E7(7) though, each η transforms in
the fundamental of SU(8) and its real and imaginary parts are not independent any more,
as they transform into each other under SU(8). Consequently, a single η defines an SU(7)
structure [3], and in general N non-mutually parallel spinors define an SU(8−N) ⊂ E7(7)

structure.

3.1 N = 2 reductions and SU(6)× SU(6) structures

For reductions with N = 2 supersymmetry in four-dimensions, there should be a pair
of globally defined no-where vanishing (and nowhere parallel) SU(8) spinors η1, η2. As
explained above, each of these spinors can be complex so that Re ηi and Im ηi each define
an SU(6) structure. Without loss of generality, we can take them to be orthogonal and
having the same norm, namely

η̄iηj = e−KL/2δij , (3.2)

where i, j = 1, 2 is an SU(2)R index, and we introduced an arbitrary normalization factor
e−KL/2 which we will further discuss below. On the other hand, we have in general the
following inner products

ηTi ηj = cij , (3.3)

for some complex 2× 2 matrix C = (cij).
2

The scalar degrees of freedom of N = 2 theories, coming from vector and hypermulti-
plets, are encoded respectively in an SU(2)R singlet and an SU(2)R triplet of bispinors [4].
The former embeds in the 28 representation of SU(8), which appears in the fundamental
56 representation of E7, and in terms of the decomposition (2.1) reads

L̂(0) = 1
2
(ǫijηi ⊗ ηj, ǫ

ij η̄i ⊗ η̄j) , L̃(0) = 1
2
(− i ǫijηi ⊗ ηj, i ǫ

ij η̄i ⊗ η̄j) , (3.4)

where for later convenience we have defined two real bispinors in the 28 and 2̄8 that
are related to L by L = L̂(0) + i L̃(0). From L̂(0) we can define also the almost complex
structure JL that relates real and imaginary parts of L, given by

JL = 2 L̂× L̂ = L× L̄ = (e−KL/2δijηi ⊗ η̄j − 1
4
e−KL

1, 0) . (3.5)

where 1 is the identity matrix with Spin(8) spinorial indices, δαβ .

Furthermore, the SU(2)R triplet transforms in the 63 adjoint representation of SU(8),
which is embedded in the 133 adjoint representation of E7, and reads in terms of the
decomposition (2.2)

K(0)
a = (κ eKL/2σ i

a kδ
kjηi ⊗ η̄j , 0) (3.6)

where σa are the Pauli sigma matrices and we introduced another normalization factor
κ. Note that the product of L and K in the 56 vanishes, i.e.

K(0)
a · L(0) = 0 , (3.7)

2The matrix C is complex symmetric and in general not diagonalizable.
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which means that the stabilizers of L(0) (E6(2) ⊂ E7(7)) and K
(0)
a (SO∗(12) ⊂ E7(7))

intersect in SU(6). General L and Ka are then constructed by acting with the shift
matrix Ashifts in the adjoint of E7(7) on them, i.e.

L = eAshiftsL(0) , JL = eAshiftsJ
(0)
L , Ka = eAshiftsK(0)

a . (3.8)

The Kähler potential for the space of structures L and the hyper-Kähler potential
hyper-Kähler cone over the space of Ka has been given in [4]. The Kähler potential for
L is given by the moment map for the rotation of L by a phase (generated by JL) and
can be expressed by the logarithm of the quartic invariant of L̂ [4]

KL = − log
√

−1
4
(JL, JL) = − log

√

−q(L̂) = − log
(

− i
8
〈L(0), L̄(0)〉

)

. (3.9)

where (·, ·) refers to the trace in the adjoint, given in (A.7). The hyper-Kähler potential
of the hyper-Kähler cone over the moduli space of Ka is determined by [4]

κ =
√

−1
4
(Ka, Ka) . (3.10)

It determines the normalization of the Ka by

Ka · (Kb · ν) = −1
2
κ2δabν + κ ǫabcKc · ν , (3.11)

where ν is an arbitrary element in the 56 representation.

The supersymmetric couplings between the two objects L and Ka are given by the
Killing prepotentials [4, 8]

P a = ǫabc(DLKb, Kc) , (3.12)

and DL = 〈L,D〉 − L × D is the Dorfman derivative [5] along L, with D being the
standard differential operator.3 Inserting this, we get [8]

P a = ǫabc(〈L,D〉Kb, Kc) + 4κ(L,DKa) . (3.13)

3.2 N = 2 reductions and SU(4) structure on T8

In the last section we defined a general SU(6) structure with an arbitrary product (3.3).
Note that in general, the spinors ηi are complex, and real and imaginary part of each
spinor, if they are never parallel, already define an SU(6) structure, so in general we would
have “SU(6) × SU(6)” structures (and secretly, a theory with more supersymmetries).
In such a generic case, it is difficult to be more explicit as typically all SL(8) components
are present in L and Ka. The case of real (i.e. Majorana) spinors ηi simplifies the form
of L and Ka and gives rise to a natural interpretation in terms of the bundle T8. The
relation (3.3) reduces for real spinors to the normalization condition (3.2) so that

cij = e−KL/2δij . (3.14)

3〈L,D〉 is the symplectic invariant (A.6), and (L×D) is the projection onto the adjoint in the product
of two 56 elements, given in (A.8).
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We will express now both L(0) and K
(0)
a in (3.4) and (3.6) in terms of objects in

SL(8,R) representations. For this we define a pure spinor

χ = η1 + i η2 (3.15)

out of the real spinors ηi.
4 We then find for L(0) and K

(0)
a that

K
(0)
3 ± iK

(0)
1 =(χ⊗ χT , 0) ,

J
(0)
L ± iK

(0)
2 =(χ⊗ χ̄− 1

4
eKL/2

1, 0) .
(3.16)

On the other hand, the bispinors Φ1 = χ⊗ χ̄ and Φ2 = χ⊗ χT are a pair of compatible
O(8, 8) pure spinors that define an SU(4) structure on T8, given by [1]

Φ1 =
1
4
e−KL/2exp(− i eKL/2J

(0)
8 ) , Φ2 = Ω

(0)
4 , (3.17)

where we made the following definitions

J
(0)
8 =− i χ̄γabχ dx

a ∧ dxb = ǫij η̄iγabηjdx
a ∧ dxb ,

Ω
(0)
4 =− 1

4
κ eKL/2χTγabcdχ dx

a ∧ dxb ∧ dxc ∧ dxd

=− 1
4
κ eKL/2(η̄1 + i η̄2)γabcd(η1 + i η2)dx

a ∧ dxb ∧ dxc ∧ dxd .

(3.18)

In terms of the xm we find

J
(0)
8 = J + v(0) ∧ ρ8 , J = ǫij η̄iγmnηjdx

m ∧ dxn , (3.19)

Ω
(0)
4 = (ρ8 + i v(0)) ∧ Ω , Ω = ιρ̂8Ω

(0)
4 , (3.20)

where the one-form v(0) is defined by5

v(0) = ιρ̂8ǫ
ij η̄iγabηjdx

a ∧ dxb . (3.21)

The four-form Ω
(0)
4 defines a complex structure I

(0)
8 by

(I
(0)
8 )mn = 1

κ2 (∗8 ImΩ
(0)
4 )mpqr(ReΩ

(0)
4 )npqr

= 1
2κ2 ((v̂

(0))m(ρ8)n − ρ̂m8 v
(0)
n + (ImΩ)mpq(ReΩ)npq − (ReΩ)mpq(ImΩ)npq) .

(3.22)
In terms of these objects, the structure L(0) has the following SL(8,R) decomposition
(cf. (2.1))6

L(0) = L̂(0) + i L̃(0) =(−ρ̂8 ∧ v̂(0) + eKLvol−1
8 x(1

2
ρ8 ∧ v(0) ∧ J ∧ J), i(ρ8 ∧ v(0) − J))

=(eKLvol−1
8 x( 1

3!
J
(0)
8 ∧ J (0)

8 ∧ J (0)
8 ), − i J

(0)
8 )

=ei ρ8∧v
(0)∧J · (−ρ̂8 ∧ v̂(0), 0) ,

(3.23)

4A complex Spin(8) spinor χ is called pure if χTχ = 0.
5The hat denotes the vector dual to a one-form. In the special case that v is the one-form dy of a

circle, one can reduce the theory to type IIA, where vmγm8 then plays the role of chirality.
6For the generic case of complex spinors ηi, the form of L(0) is also given by Eq. (3.23), but in this

case J
(0)
8 is complex, given by

J
(0)
8 = ǫijηTi γabηjdx

a ∧ dxb ,

and similarly for J and v(0).
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where we have used (A.20) and vol−1
8 x means contraction with the eight-dimensional

volume form, i.e. with the numeric epsilon tensor (the 8-dimensional space has no volume
modulus). We see that L(0) can be understood as the shift of the bi-vector −ρ̂8 ∧ v̂ by
some imaginary four-form i ρ8∧v(0)∧J .7 The almost complex structure relating real and
imaginary part of L(0) given in (3.5) can be computed to be

JL(0) = (0, J8 ∧ J8) . (3.24)

Similarly, using (3.16) and (A.21), we can determine K
(0)
a for the decomposition (2.2) to

be
K

(0)
1 =(0, ImΩ

(0)
4 ) ,

K
(0)
2 =(κI

(0)
8 , 0) ,

K
(0)
3 =(0,ReΩ

(0)
4 ) .

(3.25)

From the Fierz identities (or from the SU(2) algebra) it follows that Ω
(0)
4 transforms

holomorphically under I
(0)
8 , and obeys

Ω
(0)
4 ∧ Ω

(0)
4 = 0 , Ω

(0)
4 ∧ Ω̄

(0)
4 = 2κ2 vol8 . (3.26)

We also have ιv̂(0)J = ιρ̂8J = 0, and 1
3!
v ∧ J ∧ J ∧ J = e−2KLvol7 or in other words

1
4!
J
(0)
8 ∧ J (0)

8 ∧ J (0)
8 ∧ J (0)

8 = 1
3!
J ∧ J ∧ J ∧ v ∧ ρ8 = e−2KLvol8 . (3.27)

Furthermore, the compatibility condition (3.7) of L(0) and K
(0)
a implies ιv̂(0)Ω = 0 and

J ∧ Ω = 0, or in other words
J
(0)
8 ∧ Ω

(0)
4 = 0 . (3.28)

Therefore J
(0)
8 and Ω

(0)
4 define an SU(4) structure on the eight-dimensional space T8, i.e.

inside SL(8,R).8 From the compatibility condition (3.7) it also follows that g
(0)
8 defined

by
g
(0)
8 = eKL/2J

(0)
8 · I(0)8 , (3.29)

is a symmetric object. Furthermore, explicit computation shows that g
(0)
8 is of the form

g
(0)
8 = (detg7)

−1/4

(

g7 0
0 detg7

)

. (3.30)

Similar to (3.29) we also find for the inverse metric g
(0)−1
8 the expression

g
(0)−1
8 = e3KL/2I

(0)
8 · (vol−1

8 x( 1
3!
J
(0)
8 ∧ J (0)

8 ∧ J (0)
8 )) . (3.31)

General elements L, Ka in the orbit can be achieved from L(0), K
(0)
a by the action

of E7(7), cf. (3.8). The degrees of freedom that can modify the above embeddings are
the remaining massless fields of M-theory, namely the three-form gauge field A3 and its

7Note that this shift is not an E7(7) transformation because the four-form is not real.
8As stated above, these objects define an SU(6) structure inside E7(7).
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magnetic dual six-form field A6. Their action in SL(8) language is shown in (2.7). This
gives

L =eA4(vol−1
8 x( 1

3!
J8 ∧ J8 ∧ J8), − i J8) ,

JL =− eA4(0, J8 ∧ J8) ,
(3.32)

and
K1 =eA4(0, ImΩ4) ,

K2 =eA4(κI8, 0) ,

K3 =eA4(0,ReΩ4) ,

(3.33)

where A4 is defined in (2.8) and the shifted J and Ω4 are

J8 = J + v ∧ ρ8 , Ω4 =
(

(1 + i av6)ρ8 + i v(0)
)

∧ Ω− i ρ8 ∧ v(0) ∧ ιÃΩ (3.34)

with Â defined in (2.9), and

v = v(0) − ιÂJ , av6 = vol−1
7 · (v(0) ∧A6) . (3.35)

The symplectic and complex structure J8 and Ω4 are also compatible, which means
J8 ∧Ω4 = 0. Finally, the almost complex structure I

(0)
8 is shifted so that Ω

(0)
4 is replaced

by Ω4 in (3.22).

We see that the description of an SU(6) ⊂ E7 structure in M-theory is completely
analogous to the type II case discussed in [4], namely given by one object in the fundamen-
tal representation and a triplet in the adjoint. These are in turn described respectively by
J8 and Ω4, which define an SU(4) ⊂ SL(8) structure, in a form that very much resembles
the pure spinors e− iJ8, Ω4 of two generalized almost complex structures. We will come
back to this in Section 4.

We turn now to the Kähler potentials and prepotentials for the space of structures L
and (the hyper-Kähler cone over) Ka. They both have the expected form in terms of the
SU(4) structure objects J8 and Ω4. The Kähler potential for L can be easily computed
from (3.9)to be

KL = −1
2
log( 1

4!
J8 ∧ J8 ∧ J8 ∧ J8) . (3.36)

The hyper-Kähler potential of the hyper-Kähler cone over the moduli space ofKa is given
by (3.10) and reads in terms of Ω4 as

κ =
√

1
2
Ω4 ∧ Ω̄4 . (3.37)

Finally, the Killing prepotentials (3.13) are computed in Appendix B.2, using the differ-
ential operator D in the 56 representation that is given by the embedding

D = (0, ρ8 ∧ d) . (3.38)

The result of the computation is given by

P 3 + iP 1 = − 4κ
(

iJ ∧ ρ8 ∧ dΩ
(0)
4 + ιvΩ

(0)
4 ∧ ρ8 ∧ dA3

)

,

P 2 = e−KL Im
(

(Lv̂Ω̄
(0)
4 ) ∧ Ω

(0)
4

)

− 2κ2eKLρ8 ∧ J ∧ J ∧ v(0) ∧ dv(0)

+ 4κρ8 ∧
(

dA6 − (A3 + i κv(0) ∧ J) ∧ dA3

)

,

(3.39)

where Lv̂ is the Lie derivative along v.
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3.3 N = 1 reductions

For reductions with N = 1 supersymmetry, there is a single Spin(8) internal spinor η,
which defines an SU(7) structure in E7(7).

9 This structure can be encoded in a nowhere-
vanishing object φ in the 912 representation of E7(7) [3]. The 912 decomposes in SU(8)
representations in the same way as for SL(8), given in (2.3). In terms of this decompo-
sition, we have

φ(0) = (2η ⊗ η, 0, 0, 0) , φ̄(0) = (0, 0, 2η̄ ⊗ η̄, 0) , (3.40)

with the normalization
η̄η = e−Kφ/2 . (3.41)

Using (A.22) we can write this in terms of SL(8) representations (2.3)

φ(0) = −(c(g
(0)
8 )−1, g

(0)
8 · (vol−1

8 xφ
(0)
4 ), i cg

(0)
8 , i(g

(0)
8 )−1 · φ(0)

4 ) (3.42)

where g
(0)
8 is the metric on T8 (3.30), the complex constant c is defined by

ηTη = c , (3.43)

and
φ
(0)
abcd =

3
8
ηTγabcdη . (3.44)

Note that at points where |c| 6= eKφ/2 real and imaginary part of η actually define a
(local) SU(6)-structure. In terms of the split into 7 + 1 in (2.4), this can be written as

φ
(0)
4 = ρ8 ∧ α3 + ∗7α3 , (3.45)

where α3 is a complex three-form that defines a G2×G2-structure which reduces to a real
three-form in the G2-structure case (i.e. when η is Majorana). Note that φ

(0)
4 is self-dual

as η is of positive chirality in Spin(8).

A general element φ is obtained by

φ = eAshiftsφ(0) = −eA4(cg−1
8 , g8 · (vol−1

8 xφ4), i cg8 , i g
−1
8 · φ4) , (3.46)

where A4, defined in (2.8), acts by the E7 adjoint action (A.11), while A6 shifts the metric
(3.30) by

g8 = (detg7)
−1/4

(

g7 + (∗7A6)
2 (detg7)

1/2 ∗7 A6

(detg7)
1/2 ∗7 A6 detg7

)

, (3.47)

and the 4-form
φ4 = φ

(0)
4 + ρ8 ∧ ιÂ ∗7 α3 . (3.48)

Note that the volume form vol8 of the metric g8 in (3.47) is still given by the eight-
dimensional epsilon tensor (with entries ±1 and 0), as there is no R+ factor in E7(7)

corresponding to the eight-dimensional volume. We will therefore sometimes abuse no-
tation and make no distinction between an eight-form and a scalar.

The stabilizer of φ turns out to be indeed SU(7) [3]. Therefore, the existence of φ is
completely equivalent to η. We will denote the real and imaginary parts of φ by φ̂ and

9This spinor can have a real and imaginary part and thereby actually defines an SU(7) × SU(7)
structure.
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φ̃. The product 912 × 912 → 133 gives us the generator Jφ for the almost complex
structure eJφ related to φ. More precisely, we have

Jφ = 2φ̂× φ̂ , (3.49)

which in terms of the SL(8) decomposition (2.2) is

Jφ = eA4 · (Iφ, φr
4)) , (3.50)

with
(Iφ)

a
b = −4

3
(vol−1

8 xReφ4)
acde(Imφ4)bcde (3.51)

and
φr
4 = 14Re(c̄φ4) =

1
2
eKφ/2η̄γabcdη dx

a ∧ dxb ∧ dxc ∧ dxd . (3.52)

The Kähler potential Kφ in the orbit of φ is given by the quartic invariant in the 912
and turns out to be

Kφ =− log

√

−q(φ̂) = − log
√

−1
4
(Jφ,Jφ) = − log

√

−1
4
tr(I2φ)− 1

2
log 1

4!
φr
4 ∧ φr

4

=− log

√

−1
4
tr((I

(0)
φ )2)− 1

2
log 1

4!
φ
r (0)
4 ∧ φr (0)

4 ,

(3.53)

where in the last step we used (ιÂ ∗7α3)∧∗7α3 = 0. Therefore, the Kähler potential does
not depend on A6 and A4, in agreement with E7(7) invariance. Note that this expression
reduces to the known one in the G2-structure case.

As has been derived in [3], the superpotential W is given through the eigenvalue
equation

(Dφ) · φ = (eKφ/2W )φ , (3.54)

where D is defined in (3.38). We present the detailed computation of the superpotential
in Appendix B.1. We get

eKφ/2W = ιρ8φ
(0)
4 ∧ dφ

(0)
4 + ρ8 ∧ dA6 − 2 iφ4 ∧ ιρ8dA4 + ιρ8A4 ∧ dA4 . (3.55)

which is exactly the result of [3]. A similar result for manifolds of G2 structure has been
obtained in [10].

3.4 N = 2 in the language of N = 1

To finish this section, we note that the SU(6) structure of N = 2 reductions can also be
understood as a triple of SU(7) structures, by using the product 133× 56 → 912 given
in (A.10). We find the objects

φ̂(0)
a = L̂(0) ⊗K(0)

a = 2κ(ǫik(σa)
k
jηi ⊗ ηj , 0, ǫik(σa)

k
j η̄i ⊗ η̄j, 0) ,

φ̃(0)
a = L̃(0) ⊗K(0)

a = 2κ(− i ǫik(σa)
k
jηi ⊗ ηj , 0, i(ǫik(σa)

k
j η̄i ⊗ η̄j, 0) ,

(3.56)

which are non-zero and define an SU(2) triplet of SU(7) structures of the form given in
(3.40). The index a here labels the various symmetric combinations of the ηi. A spinor
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η = αiηi corresponds then to the SU(7) structure defined by φ = (αiǫik(σa)
k
jαj)φa,

where φ
(0)
a = φ̂

(0)
a + i φ̃

(0)
a .

For an SU(6) structure the φ
(0)
a can be computed in terms of the SU(4) forms J8

and Ω4 on the 8-dimensional bundle. For this, we use (3.29) and (3.31). In terms of the
decomposition (2.3), we then find

φ
(0)
1 =− 2e−KL/2(0, i g

(0)
8 · (vol−1

8 xReΩ
(0)
4 ), 0, (g

(0)
8 )−1 · ReΩ(0)

4 ) ,

φ
(0)
2 =− 2e−KL/2κ((g

(0)
8 )−1, eKLg

(0)
8 · (vol−1

8 x(J
(0)
8 ∧ J (0)

8 )),

i g
(0)
8 , i eKL(g

(0)
8 )−1 · (J (0)

8 ∧ J (0)
8 )) ,

φ
(0)
3 =− 2e−KL/2(0, − i g

(0)
8 · (vol−1

8 xImΩ
(0)
4 ), 0, (g

(0)
8 )−1 · ImΩ

(0)
4 ) ,

(3.57)

where g
(0)
8 is given in (3.30). As before, the general form of φa is obtained by acting

with A6 and A3 on the above expressions. The action of A6 turns g
(0)
8 into g8 (cf. Eq.

(3.47)), J
(0)
8 into J8 and Ω

(0)
4 into Ω4 (see (3.34)), while A3 acts as usual by the 4-form

shift eρ8∧A3 .

One can therefore understand the SU(6) structure in E7 relevant for N = 2 com-
pactifications as a triple of SU(7) structures. When we perform a projection on the
SU(6) structure, for instance by orbifolding or orientifolding, a single combination of
these SU(7) structures will survive, giving the N = 1 description one expects. We will
discuss such projections in Section 5.

4 Type IIA reductions

4.1 Type IIA and GL(6) decompositions

To descend to type IIA, we further split the 7-dimensional tangent space into six plus
one-dimensional pieces, i.e.

T ∗
7 = T ∗

6 ⊕ T ∗
y (4.1)

ρm = (ρm̂, ρy)

Choosing Ty to have no GL(6) weight, we get that the exceptional tangent bundle (2.5)
decomposes as 56 = 6⊕ 6⊕ 6⊕ 6⊕ 32, i.e.

EIIA =(Λ6T6)
1/2 ⊗

(

(T6 ⊕ Λ0T
∗
6 ⊕ Λ2T ∗

6 ⊕ T ∗
6 ⊕ Λ5T ∗

6 ⊕ Λ4T ∗
6 ⊕ (T ∗

6 ⊗ Λ6T ∗)⊕ Λ6T ∗
)

=(Λ6T6)
1/2 ⊗

(

(T6 ⊕ T ∗
6 ⊕ Λ5T ∗

6 ⊕ (T ∗
6 ⊗ Λ6T ∗)⊕ ΛevenT ∗

6

)

,

(4.2)
where from the last expression we recognize the type IIA charges, namely momentum,
winding, their magnetic duals and the p-brane charges.
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The adjoint decomposes as

AIIA =[λ⊕ (T6 ⊗ T ∗
6 )0 ⊕ (Ty ⊗ Λ2T6)⊕ (T ∗

y ⊗ Λ2T ∗
6 )]⊕ [ϕ⊕ Λ6T6 ⊕ Λ6T ∗

6 ]

⊕ [(Ty ⊗ T ∗
6 ⊕ Λ3T ∗

6 ⊕ (T ∗
y ⊗ Λ5T ∗

6 )]⊕ [(T ∗
y ⊗ T6 ⊕ Λ3T6 ⊕ (Ty ⊗ Λ5T6)]

= (T6 ⊗ T ∗
6 )⊕ Λ2T6 ⊕ Λ2T ∗

6 ⊕ R ⊕ Λ6T ∗
6 ⊕ Λ6T6 ⊕ ΛoddT ∗

6 ⊕ ΛoddT6

(4.3)

where
λ = dy ⊗ ∂y , ϕ = 2dy ⊗ ∂y + dxm̂ ⊗ ∂m̂ , (4.4)

are linear combinations of the generators for shifts in the volumes of the six-dimensional
part and the eleventh dimension. From the last equality we recognize the O(6, 6) adjoint,
where the GL(6) and B2-field transformations live, the SL(2) adjoint where the dual B6

of B2 is, and the sum of odd forms corresponding to the shifts of the RR potentials.

More precisely, under the breaking of the U-duality group E7(7) into the product of
T-duality and S-duality group SO(6, 6)× SL(2) ,the fundamental representation splits
according to10

56 = (12, 2)⊕ (32, 1) ,
LA = (LAi , L±)

(4.5)

where A = 1, ..., 12 (i = 1, 2) is a fundamental O(6, 6) (SL(2)) index, and ± represents
a positive or negative chirality O(6, 6) spinor (the plus is relevant for type IIA and M-
theory, while for type IIB we need the negative chirality representation). The adjoint
decomposes as the adjoint of each group, plus a spinor contribution

133 = (66, 1)⊕ (1, 3)⊕ (32′, 2) ,
K = ( KA

B , Ki
j , K∓i) .

(4.6)

The embedding of the gauge fields B2, B6 and C∓ (that we will call collectively Ashifts)
in type IIA and type IIB is the following [4]

Ashifts =

((

0 B2

0 0

)

,

(

0 B6

0 0

)

,

(

C∓

0

))

. (4.7)

We can now write explicitly the one-form v and gauge fields A3 (or A4), A6 of the
previous sections in terms of their type IIA counterparts

v(0) = dy + C1 , C5 = ι∂yA6 , A4 = ρ8 ∧ (C3 − dy ∧ B2) , ι∂yC3 = 0 . (4.8)

Inspecting (2.7), we can write the E7(7) embedding of the gauge fields in SL(8,R) decom-
position (cf. (2.2)) as follows

Ashifts = (C1 ⊗ ∂y + ρ8 ⊗ Ĉ5 , ρ8 ∧ C3 − ρ8 ∧ dy ∧ B) (4.9)

where Ĉ5 is the vector associated to C5, i.e.

Ĉ5 = vol−1
6 · C5 . (4.10)

10S-duality here does not refer to the type IIB S-duality, but as the group that acts by fractional
linear transformations on τ = B6 + i e−φ.
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4.2 N = 2 and N = 1 reductions

As in M-theory, reductions to 4D with N = n supersymmetry require n internal SU(8)
spinors ηi, which show up in the decomposition of the two ten-dimensional spinors ǫ1,2

as follows
(

ǫ1

ǫ2

)

= ξi− ⊗ ηi + c.c. (4.11)

where ηi are SU(8) spinors that combine the SU(4) ∼= O(6) spinors that build up ǫ1 and
ǫ2.

Given η1,2 and η for the case of N = 2 and N = 1, the reductions work exactly as

in M-theory, namely one builds the structures L(0), K
(0)
a as in (3.4), (3.6) in the case of

N = 2 [4], and φ(0) as in (3.40) in the case of N = 1. Their full orbit is obtained by the
E7(7) action of the gauge fields (4.9).

Let us concentrate on the N = 2 case now. The form of L resembles very much the
pure spinor counterpart eB+i J for an SU(3) structure. Indeed, we get

L = e(C1⊗∂y+ρ8⊗Ĉ5,ρ8∧C3)eρ8∧dy∧(−B−i J) · (ρ̂8 ∧ v̂, 0) . (4.12)

Note however that J here is a 2-form constructed as a bilinear of two different SU(8)
spinors, and furthermore it is complex. To make the comparison with GCGmore straight-
forward, one can parameterize them as11

η1 =

(

θ1+
θ̃1−

)

, η2 =

(

θ̃2+
θ2−

)

. (4.13)

For the special ansatz θ̃i = 0, L and K have particularly nice forms in in terms of the
O(6, 6) pure spinors12

Φ± = eB(θ1+ ⊗ θ̄2±) (4.14)

the SL(2,R) vielbein ui related to the four-dimensional axiodilaton, i = 1, 2, and the
RR-spinor C = C1 + C3 + C5 as [4]

L = eC(0,Φ+) , K3 + iK1 = eC(0, 0, uiΦ−) , (4.15)

where this is written in the O(6, 6) × SL(2,R) decomposition of E7(7), given explicitly
below in (4.5), (4.6), and K2 is just the commutator of K3 and K1.

5 From N = 2 to N = 1: Orientifolding and orbifold-

ing in EGG

As we will show in detail in Section 5.2.4, orientifolds break the E7(7) covariance into
that of the subgroup O(6, 6) × SL(2,R)O, where the “O” makes it explicit that this is
a different subgroup from that of T and S-duality. Furthermore, as we will see, each
orientifold projection gives rise to a different O(6, 6)× SL(2,R) subgroup. The splitting
of the fundamental and adjoint representations of E7(7) has been given in (4.5) and (4.6).

11In standard Calabi-Yau compactifications, one takes θ1 = θ2 = θ, θ̃i = 0. Note that in this case ηi
as defined in (4.13) are not Majorana, but the combinations η1 + η2 and i(η1 − η2) are.

12Note that for this ansatz, J (Ω) contains the bilinears between the two θ’s involving two (three)
Spin(6) gamma matrices.
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5.1 Orbifold action on T8 and its reduction to M-theory

The M-theory uplift of type IIA O6-orientifolds are a geometric involution on the 7-
dimensional space. Such an involution can in turn be uplifted to an orbifold action σ̃∗ on
the 8-dimensional space T8 such that the SL(8) bundle decomposes at the locus of the
action into a positive and a negative eigenbundle

T8 = T+
8 ⊕ T−

8 , (5.1)

and such that both subspaces are four-dimensional. The adjoint of E7(7) (2.2) decomposes
under (5.1) as

E =(T+
8 ⊗ T ∗+

8 )0 ⊕ (T−
8 ⊗ T ∗−

8 )0 ⊕ (Λ2T ∗+
8 ⊗ Λ2T ∗−

8 )⊕ T0 ⊕ Λ4T ∗+
8 ⊕ Λ4T ∗−

8

⊕ (T+
8 ⊗ T ∗−

8 )⊕ (T−
8 ⊗ T ∗+

8 )⊕ (Λ3T ∗+
8 ⊗ Λ1T ∗−

8 )⊕ (Λ1T ∗+
8 ⊗ Λ3T ∗−

8 ) ,
(5.2)

where T0 is the element of the adjoint that acts as ±1 on T±
8 . By comparing to (4.6),

we can see how E7 is broken into O(6, 6)× SL(2,R): the first line builds up the adjoint
of O(6, 6) × SL(2,R)O, which is even under the orbifold action, while the terms in the
second line are odd and form the (2, 32′) representation. Similarly, the fundamental of
E7(7), given in (2.1) in terms of SL(8) representations, decomposes as

A = Λ2T+
8 ⊕ Λ2T−

8 ⊕ Λ2T ∗+
8 ⊕ Λ2T ∗−

8 ⊕ (T+
8 ⊗ T−

8 )⊕ (T ∗−
8 ⊗ T ∗−

8 ) , (5.3)

where the first four terms are even and form the (12, 2) representation of O(6, 6) ×
SL(2,R)O (see Eq. (4.5)), while the last two, odd terms, form the (32, 1).

To descend to M-theory, we require the orbifold action to have positive eigenvalue
when acting on ρ̂8. Eq. (2.4) tells us then that T+

7 is three-dimensional, while T−
7 is

four-dimensional. Finally, to recover the type IIA orbifold action that gives rise to O6
planes, we require v̂ to have negative eigenvalue. In summary

T8 = T+
8 ⊕ T−

8 = (T+
7 ⊕ T+

ρ̂8
)⊕ T−

7 = (T+
6 ⊕ T+

ρ̂8
)⊕ (T−

6 ⊕ T−
y ) . (5.4)

We will come back to the full orientifold projection later in Section 5.2.1

Now let us see how the orbifold acts on the N = 2 structures defined in the previous
sections. In type IIA, an involutive symmetry σ that can be used to mod out the theory
should be anti-holomorphic if N = 1 supersymmetry is to be preserved [11]. This means
that for an SU(3) structure defined by J and Ω, it should act as σ∗J = −J , σ∗Ω = Ω̄.
This is easy to uplift to an action on J8, Ω4 defining the SU(4) structure on T8, namely
we require σ to act as

σ̃∗J8 = −J8 , σ̃∗Ω4 = −Ω̄4 . (5.5)

This implies that the action induced by σ̃∗ on Ka and L in the 133 and the 56 represen-
tation, which define an SU(6) ⊂ E7 structure, should be

σ̃∗L = −L , σ̃∗K1 = K1 , σ̃∗K2/3 = −K2/3 . (5.6)

Therefore, L and K2/3 are not well-defined any more in the presence of fixed points.
However, their products are well-defined under the orbifold action. More precisely, their
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product in the 912 representation is defined by13

L⊗ (K2 + iK3) =
√
κφ , (5.7)

where the pre-factor
√
κ appears due to the different normalizations in (3.2) and (3.41).

This φ in the 912 defines in turn an SU(7) structure following Section 3.3, corresponding
to the single spinor that survives the orbifolding. φ defines the metric g and a four-form
φ4, cf. (3.46). From (5.7) we find

φ4 =
√
κ
−1
e−KL/2 ImΩ4 +

√
κeKL/2J8 ∧ J8

φr
4 =e−KL ImΩ4 + κJ8 ∧ J8 .

(5.8)

We find the second expression using c =
√
κe−KL/2.

The orbifold projection selects an N = 1 special Kähler subspace inside the N = 2
Kähler and quaternionic spaces. The generator of its complex structure is given in (3.50),
which can in turn be written in terms of the SU(4)-structure objects J8 and Ω4 in L and
K respectively as

Jφ = eA4 · (0, e−KL ImΩ4 + κJ8 ∧ J8) = e−KLK1 + κJL . (5.9)

Therefore, the complex structure on the N = 1 Kähler space eJφ is the tensor product
of the complex structures eK1 with eJL . If the orbifold singularities were blown-up (see
comments below), eJφ would not be block-diagonal any more. As long as the singularities
are not blown up, the Kähler potential (3.53) simplifies to the sum the two Kähler
potentials for L and K, i.e.

Kφ = −1
2
log κ+KL + 1

2
log 2 , (5.10)

The superpotential is given in (3.55). On the other hand, we have the Killing prepoten-
tials (3.39) that should descend to the N = 1 description. Comparing both expressions
we find the relation

eKφ/2W = 1
2
κ−1(P 2 + iP 3) . (5.11)

The above formulas are valid for the orbifold of an SU(6) structure. If we blow-up
the singularities resulting from the orbifolding, we switch on additional modes in φ that
alter its form from the one given in (5.7). More precisely, the objects K2/3 and L are not
well-defined on the blown-up manifold, while φ still defines the geometry. The blow-up
should lead to new modes that enter φ4 as extra four-forms.

5.2 Further descent to type IIA

5.2.1 O6 orientifolds

To recover O6-orientifolds, the orbifold involution σ̃ should have negative eigenvalue on
Ty, i.e. act on T7 as diag(σ,−1) where σ is an involution on the 6-dimensional space

13Note that the 56 component of their tensor product is forced to be zero by the compatibility
condition.
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whose action is given above (5.5). Furthermore, the O6 projection mods out by the
action of σΩp(−1)FL, where Ωp is the worldsheet parity, and (−1)FL gives an additional
minus sign on the RR sector. The uplift of this combination is the purely geometric
involution σ̃.

The combined operation Ωp(−1)FL has a different action on the different O(6, 6) ×
SL(2,R) components of L and Ka. On O(6, 6) bispinors, such as the RR potentials or
the pure spinors of generalized complex geometry Φ±, which are tensor products of a left
and a right-moving spinor, it acts in the following way [12]

(−1)FLΩpΦ
+ = λ(Φ+) , (−1)FLΩpΦ

− = −λ(Φ̄−) , (−1)FLΩpC = λ(C) (5.12)

where λ is the following action on forms

λ(α2p) = (−1)pα2p , λ(α2p−1) = (−1)pα2p−1 . (5.13)

This can be understood since worldsheet parity exchanges the left and right-moving
sectors, and on the bispinors, which are tensor products of left and right moving spinors,
it acts by transposition. Since the orientifold projection keeps states which are even
under the action of σ(−1)FLΩp, one requires the involution to satisfy

σ∗Φ+ = λ(Φ+) , σ∗Φ− = −λ(Φ̄−) , σ∗C = λ(C) . (5.14)

We want to define an analogous “λ-operation” as an action on fundamental SL(2) and
O(6, 6) indices. The following operator acting respectively on the 12 of O(6, 6), 2 of
SL(2,R) and 32 of O(6, 6) does the job

λ̃ =

(

16×6 0

0 −16×6

)

⊗
(

1 0

0 −1

)

⊗ (−λ). (5.15)

For higher representations λ̃ just acts on all indices.14. Therefore, on the fundamental
56 representation, which decomposes into O(6, 6)×SL(2,R) as in (4.5), this action reads

λ̃(L) =

((

Lm̂1 −Lm̂
1

−Lm̂2 Lm̂
2

)

,−λ(L+)

)

. (5.16)

On the adjoint representation, whose O(6, 6)× SL(2,R) decomposition is given in (4.6),
we get

λ̃(K) =

((

Km̂
n̂ −Km̂n̂

−Km̂n̂ Km̂
n̂

)

,

(

K1
1 −K1

2

−K2
1 K2

2

)

,

(

−λ(K−1)

λ(K−2)

))

(5.17)

(where by construction K2
2 = −K1

1 and Km̂
n̂ = −Km̂

n̂).

The claim is that λ̃ acts like Ωp(−1)FL on K1, while on L and K2/3 it is −λ̃ that
does the job. The fields that will survive the orientifold projection are therefore those
for which σ acts in the following way

σ∗L = −λ̃(L) , σ∗K1 = λ̃(K1) , σ∗K2/3 = −λ̃(K2/3) . (5.18)

14Note that the action on T ⊕ T ∗ then induces the action λ in (5.13) on the spinor representation
(isomorphic to a sum of forms).
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In the language of (4.13), we see from (3.4)-(3.6) that the action of λ̃ corresponds to the
exchange of the two spinors ηi.

For the corresponding vector fields Lµ = (LiA
µ , L

+
µ ) in the 56 representation we have

σ∗Lµ = λ̃(Lµ) . (5.19)

Here, LAi
µ are the electric and dual magnetic vectors coming from the off-diagonal com-

ponents fo the metric and the B-field, while L+
µ collects the Ramond-Ramond fields with

one external leg, i.e. L+
µ = (C1)µ + (C3)µ + (C5)µ + (C7)µ.

5.2.2 Type IIB orientifolds

For completeness (and because we will use later O9 as an illustration) we give the action
for type IIB orientifolds.15 There, the theory is modded out by σΩp(−1)FL for O3/O7
projection, and σΩp for O5/O9. This means that the latter projection has an extra minus
sign on the O(6, 6) spinors with respect to the type IIA case, i.e. we define

λ̃IIB =

(

16×6 0

0 −16×6

)

⊗
(

1 0

0 −1

)

⊗±λ, (5.20)

where the plus sign is for O3/O7 projections, while the minus applies to O5/O9. This
contributes to a ± sign in the last components of (5.16) and (5.17). We then require
(5.18) and (5.19), with λ̃ replaced by λ̃IIB.

5.2.3 New Z2 projections

In general, new orientifold actions can be found by conjugating known orientifold actions
with elements in E7(7)(Z). For all these new orientifolds our discussion applies. A simple
example of a new Z2 action is the NS5-projection that is related to O5-orientifolding
in type IIB by S-duality in ten dimensions. Concerning the involution, S-duality only
exchanges the roles of the B field and the field C2. Therefore, the NS-NS (R-R) sector is
even (odd) under the resulting involution, which thus can be written as (−1)FLσ, where
FL is the left-moving fermion number on the world-sheet and σ is an involution of the
internal space that inverts four of the internal directions, satisfying the following on the
pure spinors of GCG and the RR fields

σ∗Φ± = Φ± , σ∗C = −C . (5.21)

Correspondingly, the involution λ̃NS5 is

λ̃NS5 = 112×12 ⊗ 12×2 ⊗ (−1)32 . (5.22)

Subsequently, the roles of K1 and K3 are exchanged with respect to (5.6). S-duality
implies that the fixed points of this action are negative tension objects with negative
NS5-brane charge.

15Note that in type IIB the roles of Φ+ and Φ− are exchanged.
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Note that this action can be defined in a completely analogous way in type IIA, and
it can be uplifted to M-theory to find the orientifolding for M5-branes, with

σ̃∗
M5dy = −dy , σ̃∗

M5ρ8 = −ρ8 . (5.23)

The analogous D4-orientifolding lifts to the same expression, but without any involution
of dy. Though we can uplift these involutions to M-theory, even with these assignments
for σ̃M5, the M5-involution does not become an orbifold action. More precisely, it acts
on the adjoint representation as σ∗

M5 but on the exceptional generalized tangent bundle
with an extra minus sign, i.e. with −σ∗

M5. Therefore, the projection on L and Ka is given
by

σ̃∗
M5L = L , σ̃∗

M5K1 = K1 , σ̃∗
M5K2/3 = −K2/3 , (5.24)

in contrast to the orbifold action given in (5.6). Thus, no SU(7) structure surviving the
involution can be defined. As a consequence the fixed points of σM5 cannot be resolved in
a geometric way within M-theory, in contrast to the orbifold fixed points of Section 5.1.

5.2.4 Kähler subspaces

Here we show how the orientifold projection selects the N = 1 special Kähler subspaces
inside the N = 2 Kähler and quaternionic ones. Before we analyze how a Kähler space
emerges from the projection on the hypermultiplets, we first want to understand the
reduction of E7(7) under the orientifolding. Let us first start with an orientifolding to
O9-planes, i.e. σ is the identity (and we are modding out the theory just by the action
of Ωp). As the representations of E7(7) split into the even and odd parts under λ̃, they
form representations of a subgroup of E7(7) that is the subgroup of even transformations.

Therefore, we analyze the action of λ̃ on the adjoint of E7(7), split into representations
of the subgroup O(6, 6)× SL(2,R) corresponding to T- and S-duality subgroups, cf. Eq.
(4.6).16

On the adjoint of O(6, 6), λ̃ acts as in the first component of (5.17). The 66 repre-
sentation therefore gets projected to

66 → 350 ⊕ 10 , (5.25)

µA
B → µm̂

n̂

Thus we find O(6, 6) → Gl(6,R) = SL(6,R)× R+ (and the subindex denotes the charge
under this R+, corresponding to the volume). Similarly

3 → 10 , (5.26)

µi
j → µ1

1

and thus SL(2,R) → R+ (and the subindex denotes the charge under this R, correspond-
ing to the dilaton). Finally, on the (32′, 2) representation we get (recall that for O9, λ̃IIB
acts as −λ on the spinor)

(32′, 2) → 1(+1,+1) ⊕ 15(+1,−1) ⊕ 1(−1,−1) ⊕ 15′
(−1,+1) , (5.27)

µ+i → µ2
(0) + µ1

(2) + µ1
(6) + µ2

(4) .

16Here S-duality does not refer to the type IIB S-duality acting on the RR axion C0 and the dilaton,
but the S-duality within the NS sector, that acts on τ = B6 + i e−φ.
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On the first line we stated the SL(6,R) representations and denoted the charges under
the two R+ factors coming from the volume and the dilaton, and on the second line
the superscript denotes the SL(2) component, while the number in parenthesis in the
subscript denotes the degree of the form.

We see that the diagonal R+ factor together with the two scalars in (5.27) forms an
SL(2,R) group, while the two 15s together with the non-diagonal R+ factor enhance the
SL(6,R) to O(6, 6). Thus, the new covariance group is O(6, 6)× SL(2,R). Since this is
a different O(6, 6)× SL(2,R) from the original one associated with S- and T-duality (see
Footnote 16), we call this O(6, 6)× SL(2,R)O. Thus we get

E7 →O(6, 6)× SL(2,R)O9 ,

µ →
((

µm̂
n̂ µ1

(2)

µ2
(4) µm̂

n̂

)

,

(

µ1
1 µ1

(6)

µ2
(0) −µ1

1

)

, 0

)

,

Ashifts →
((

0 C2

0 0

)

,

(

0 C6

0 0

)

, 0

)

.

where in the last line we have used the O(6, 6)×SL(2,R) embedding of the B and C-fields
given in (4.7).

If σ is not the identity, the situation is slightly more involved. The orientifolding in
general maps different points onto each other. Only at the locus of the O-planes the
covariance group can be really projected to a subgroup. Let us consider the case of an
O(3 + p)-plane. At the O(3 + p)-plane we can split the tangent space

T → T
(p)
‖ ⊕ T

(6−p)
⊥ , (5.28)

where the supraindex in parenthesis indicates the dimensions of each space. The involu-
tion σ∗ acts as +1 on T‖ and as −1 on T⊥. Therefore, the combination σ∗λ̃ projects the
geometric group

Gl(6,R) → Gl‖(p,R)×Gl⊥(6− p,R) . (5.29)

Furthermore, σ∗λ̃ projects

Λ2T ∗ → T ∗
‖ ⊗ T ∗

⊥ , Λ2T → T‖ ⊗ T⊥ , (5.30)

and these give each the (p, 6− p) representations that enhance Gl‖(p,R)×Gl⊥(6−p,R)
to Gl(6,R)O(3+p). Thus, as for the case of O9-planes, we find O(6, 6) → Gl(6,R), but
now to a different Gl(6,R) indicated by the subindex. Under the breaking O(6, 6) →
Gl(6,R)O(3+p)

, the (2, 32′) representation projects as in (5.27). Here, the two surviving

singlets are ΛpT ∗
‖ and Λ(6−p)T ∗

⊥, which form singlets under the emerging Gl(6,R)O(3+p).

Hence, we see that for all orientifold actions, the covariance group projects to O(6, 6)×
SL(2,R)O(p+3) (as we saw this subgroup is different for each type of orientifold).

Now let us consider the projection (5.18) on the vector and hypermultiplet sectors.
The vector fields that survive the orientifold projection are those that are even under
σ∗λ̃ (see (5.19)). For O9, where σ is the identity and λ̃ acts as −λ in the spinor part, we
get that the surviving vector fields are the Kaluza-Klein vectors as well as the vectors
associated with the internal one-form (C2)µ (and their magnetic duals). As for the N = 1
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chiral fields that descend from N = 2 vector multiplets, we keep from L only the pieces
that are invariant under −σ∗λ̃. Again, for an O9 and an SU(3) structure, we have that
the projection onto states that are invariant under λ̃ gives that all degrees of freedom in
the three-form Ω is kept.

In the hypermultiplet sector, since E7(7) is projected onto O(6, 6) × SL(2,R)O(p+3),
we know from (5.18) that both K2 and K3 will be in the (32′, 2) representation of
O(6, 6) × SL(2,R)O(p+3), which is odd under the projection. Since [K2, K3] ∼ K1 and
each K2 and K3 determine each other, K2 + iK3 defines a pure O(6, 6) spinor tensored
with a doublet of SL(2,R). Therefore, K2 + iK3 parametrizes a special Kähler space.
On the other hand, K1 is in the (66, 1) ⊕ (1, 3) of O(6, 6) × SL(2,R)O(p+3). It can be
understood as a generalized almost complex structure on the orbit of K2 + iK3.

6 Discussion

In this work we derived the form of the couplings for general SU(7) and SU(6) structures
in M-theory and type IIA, which correspond to (off-shell) N = 1 and N = 2 supersym-
metric compactifications to four dimensions, building on and extending the work of [3,4].
Using EGG we could reformulate all degrees of freedom in such backgrounds by a set of
fundamental objects in E7(7) representations. Moreover, the effective couplings are easily
determined as singlets that are tensor products of the fundamental objects and their
first derivatives in E7(7). In particular, N = 1 backgrounds are determined by an SU(7)
structure φ in the 912 representation. Its quartic invariant gives the Kähler potential,
while the superpotential is determined by an eigenvalue equation. In contrast, N = 2
backgrounds admit two sectors: vector- and hyper-multiplets. The former is described
by one object L in the (fundamental) 56 representation whose quartic invariant gives the
Kähler potential. The hypermultiplets are described by an SU(2) subalgebra spanned by
a triplet of structures Ka in the adjoint representation. The normalization of the SU(2)
commutator relations gives the hyper-Kähler potential of the hyper-Kähler cone over this
quaternionic Kähler space. L and Ka together define an SU(6) structure. The couplings
of the two sectors, i.e. the prepotentials, are given by a triple tensor product of these
two objects with the derivative operator.

Furthermore, we discussed involutions in EGG that are supposed to project an N = 2
background to an N = 1 one. Examples of these involutions are orbifoldings in M-theory
or orientifoldings in type II. We found the explicit map between the original SU(6) struc-
ture and its SU(7) descendant. In particular, while L as well as K2 + iK3 are projected
out, their tensor product produces φ, which defines the SU(7) structure and survives
the blow-up to a smooth geometry. The N = 1 Kähler potential and superpotential are
then naturally determined by the N = 2 Kähler and hyper-Kähler potentials, and the
prepotentials. We also determined the projection that creates negative tension objects
with negative M5-brane charge in M-theory and observed that no SU(7) structure can be
defined in that case, i.e. one cannot describe the resolution of singularities from involu-
tions other than orbifoldings in EGG. In particular, the orientifold singularities related to
D6-branes in type IIA cannot be resolved, but the corresponding M-theory orbifold fixed
points can. In other words, the pure existence of an extra coordinate enables to resolve
the singularities of D6-branes and O6-planes. It seems in order to describe D-branes in
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EGG one needs to introduce extra coordinates. For instance, while NS5-branes cannot
be described in generalized geometry, they could in principle be described in doubled
geometry. It would be interesting to understand the resulting doubled geometries in the
presence of NS5-branes and their negative tension counterparts further. Even more chal-
lenging would be the realization of a 56-dimensional space that covariantizes E7(7) and
could describe all branes in type II string theory or M-theory.

We pointed moreover out that there exists an intermediate generalized tangent bundle
T8 in M-theory that transforms under an SL(8) subgroup of E7(7). From the type IIA
point of view, this SL(8) group contains the geometric transformations SL(6) and the
group SL(2) transforming the four-dimensional axiodilaton τ = B6 + i e−φ. In this
language, N = 1 backgrounds are described by a four-form on T8, N = 2 backgrounds
by a real two-form and a complex four-form, i.e. they correspond to Spin(7) and SU(4)
structures in eight dimensions. This suggests that there should exist a lift to an eight-
dimensional space M8 on which T8 is the tangent bundle, similar to F-theory, whose
volume is normalized everywhere. In the fashion described above, M8 would not only
geometrize D6-branes, but also some kind of exotic branes (as described in [13,14]) that
form a set of (p, q)-branes for the four-dimensional axiodilaton, similar to F-theory. It
would be very interesting to understand such geometries further.

Acknowledgments

We would like to thank Diego Marqués, Ruben Minasian, Eran Palti and Daniel Waldram
for useful discussions. This work was supported in part by the ANR grant 08-JCJC-0001-
0 and the ERC Starting Grants 259133 – ObservableString and 240210 - String-QCD-BH.

Appendix

A E7(7) group theory

In the following we give relevant formulas for products of representations in the SL(8)
decomposition and their translation into the SU(8) decomposition of spinors, following
and extending [6].

A.1 E7(7) group theory in terms of SL(8) representations

The E7(7) representations of interest are the fundamental 56, the adjoint 133 and the
912, whose decompositions under SL(8) are given in (2.1), (2.2) and (2.3), respectively.
In the following we denote objects in the fundamental representation by α, β, etc. and
write them in terms of SL(8) representations as

α = (αab, αab) . (A.1)
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Similarly, the adjoint representation decomposes as

µ = (µa
b, µabcd) . (A.2)

The 912 representation finally is given by

φ = (φab, φabc
d, φab, φabc

d) . (A.3)

We will use the following notation for the product of representations:

(, ) : [rep⊗ rep]1 ,

× : [rep⊗ rep]133 ,

· : [133⊗ rep]rep , (A.4)

⊗ : [56⊗ 133]912 ,

⊙ : [912⊗ 133]56 ,

◦ : [912⊗ 56]133 ,

where rep is any representation of E7(7).

The action of the adjoint on the fundamental representation, in other words the
product 133× 56 → 56, is given by

(µ · α)ab =µa
cα

cb + µb
cα

ac + (vol−1
8 xµ)abcdαcd ,

(µ · α)ab =− µc
aαcb − µc

bαac − µabcdα
cd .

(A.5)

The symplectic invariant on the 56 reads

〈α, β〉 = αabβab − αabβ
ab . (A.6)

The trace in the adjoint is

(µ, ν) = µa
bν

b
a −

1

6
(vol−1

8 xµ)abcdνabcd . (A.7)

The 56× 56 → 133 reads

(α× β)ab =α
caβcb − 1

8
δabα

cdβcd + αcbβ
ca − 1

8
δabαcdβ

cd ,

(α× β)abcd =− 3(α[abβcd] +
1
4!
ǫabcdefghα

efβgh) .
(A.8)

The action of the adjoint onto itself, i.e. the 133× 133 → 133 is given by

(µ · ν)ab =(µa
cν

c
b − µc

bν
a
c)− 1

3
((vol−1

8 xµ)acdeνbcde − µbcde(vol
−1
8 xν)acde) ,

(µ · ν)abcd =4(µe
[aνbcd]e − νe[aµbcd]e) .

(A.9)

The product 56× 133 → 912 is given by

(α⊗ µ)ab =µa
cα

cb + µb
cα

ca ,

(α⊗ µ)abcd =− 3(α[abµc]
d − 1

3
αe[aµb

eδ
c]
d ) + 2((vol−1

8 xµ)abceαed +
1
2
αef (vol

−1
8 xµ)ef [abδ

c]
d ) ,

(α⊗ µ)ab =− µc
aαcb − µc

bαca ,

(α⊗ µ)abc
d =− 3(α[abµc]

d − 1
3
αe[aµb

eδdc]) + 2(µabceα
ed + 1

2
αefµef [abδ

d
c]) .

(A.10)
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The adjoint action 133× 912 → 912 on the 912 is given by

(µ · φ)ab =µa
cφ

cb + µb
cφ

ac + 2
3
((vol−1

8 xµ)cde(aφ
b)
cde) ,

(µ · φ)abcd =3µ[a
eφ

bc]e
d − µe

dφ
abc

e + (vol−1
8 xµ)abceφed + (vol−1

8 xµ)ef [abφ
c]
efd

− (vol−1
8 xµ)efg[aφb

efgδ
c]
d ,

(µ · φ)ab =− µc
aφcb − µc

bφac +
2
3
(µcde(aφ

cde
b)) ,

(µ · φ)abcd =− 3µe
[aφbc]e

d + µd
eφabc

e + µabceφ
ed + µef [abφ

efd
c] − µefg[aφ

efg
bδ

d
c] .

(A.11)

The product 912× 133 → 56 reads

(φ⊙µ)ab =− (φacµb
c − φbcµa

c)− 2φabc
d µd

c

+ 2
3
(φa

cde(vol
−1
8 xµ)cdeb − φb

cde(vol
−1
8 xµ)cdea) ,

(φ⊙µ)ab =(φacµ
c
b − φbcµ

c
a)− 2φabc

dµc
d

− 2
3
(φcde

aµcdeb − φcde
bµcdea) .

(A.12)

Similarly, the product 912⊗ 56 → 133 reads

(φ ◦α)ab =αcaφcb + αcbφ
ca + αcdφ

cda
b − αcdφcdb

a ,

(φ ◦α)abcd =− 4(φ[abc
eαd]e − 1

4!
ǫabcdefghφ

efg
iα

hi) .
(A.13)

The product 912⊗ 912 → 133 reads in the SL(8) decomposition

(φ× ψ)ab =φ
acψcb + φbcψ

ca + 1
3
(φcde

aψcde
b + φcde

bφcde
a)

− (φacd
eψbcd

e + φbcd
eψacd

e)

− 1
8
δab (φ

cdψcd + φcdψ
cd − 2

3
φcde

fψcde
f − 2

3
φcde

fψcde
f) ,

(φ× ψ)abcd =4(φe[aψbcd]
e + φ[bcd

eψa]e +
1
4!
ǫabcdefgh(φ

eiψfgh
i + φfgh

iψ
ei))

+ 2(φf [ab
eψ

f
cd]e +

1
4!
ǫabcdefghφ

efj
iψ

ghi
j) .

(A.14)

A.2 The relation to SU(8) representations

The SU(8) representation is spanned by anti-symmetric products γab of the matrices γa
that obey the Clifford algebra

{γa, γb}αβ = 2gabδ
α
β . (A.15)

Furthermore, the gamma matrices γa fulfill

(γa)αβ(γa)
γ
δ = δαδ δ

γ
β . (A.16)

Under SU(8), the 56 decomposes according to

α = (ααβ, ᾱαβ) ,

56 = 28⊕ 2̄8 ,
(A.17)
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while for the adjoint 133 we have

µ = (µα
β, µ

αβγδ, µ̄αβγδ) ,

133 = 63⊕ 35⊕ 3̄5 .
(A.18)

where µα
α = 0 and µ̄αβγδ = ∗8µαβγδ. Furthermore, we have for the 912 the SU(8)

decomposition
φ = (φαβ, φαβγ

δ, ᾱαβ, φ̄αβγ
δ) ,

912 = 36⊕ 420⊕ 3̄6⊕ ¯420 ,
(A.19)

Note that these are very similar to the SL(8,R) decompositions (2.1), (2.2) and (2.3). To
go from one to the other, we use for the 56 [3]

αab = (ααβ + ᾱαβ)γabβα ,

α̃ab = − i(ααβ − ᾱαβ)γabβα ,
(A.20)

where we defined γabβα = Cβγ(γ
ab)γα and Cαβ is the matrix that induces transposition

on spinors. In the 133, if only the 63 adjoint representation of SU(8) is nonzero, i.e. if
µαβγδ = 0, one recovers the following SL(8,R) components

µab =
i
2
µα

βγab
β
α ,

µabcd =
1
4
µα

βγabcd
β
α ,

(A.21)

where µba = −µab and ∗8µabcd = µabcd (the symmetric and anti-self-dual pieces are ob-
tained from the 70 representation µαβγδ) and µab = gacµ

c
b. Similarly, if only the 36

and the 3̄6 components are non-zero in the SU(8) decomposition of the 912, we get the
SL(8,R) components 36 and 420 in the following way

φab =− 1
2
(φαβ + φ̄αβ)Cαβg

ab ,

φabc
d =− 3

16
(φαβ + φ̄αβ)(γabcd)αβ ,

φab =
i
2
(φαβ − φ̄αβ)Cαβgab ,

φabc
d = 3 i

16
(φαβ − φ̄αβ)(γabc

d)αβ .

(A.22)

B Technical computations

B.1 The N = 1 superpotential

In this appendix we give the computation of the superpotential given in (3.55). We start
from (3.54) where the differential operator is given by (3.38). The form of φ is given in
(3.46 – 3.48). In order to compute (3.54), we consider first

DC(A D
4Bφ

A
DC + A D

4Cφ
A
BD − A A

4Dφ
D
BC) =A

D
4BD

CφA
DC −A A

4DD
CφD

BC

+ (DCA D
4B)φ

A
DC − (DCA A

4D)φ
D
BC

+ (DCA D
4C)φ

A
BD + A D

4CD
CφA

BD ,

(B.1)
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where we used Sp(56) indices.17 Now we can translate this back into E7(7) indices,
rewriting the above equation as

D ◦ (A4 · φ) = A4 · (D ◦φ) + (D ⊗A4)× φ+ (D · A4) ◦φ+
(

A4 ·D
)

◦φ , (B.2)

where we used the notation of Eq. (A.4) and in the last term the differential operator D
acts on φ. If we use the form A4 = (0, ρ8 ∧A3) and the form of the differential operator
(3.38), we find that

D · A4 = 0 , A4 ·D = 0 . (B.3)

Now we can use a variant of the Hadamard formula to find

Dφ = eA4D(e−A4φ)− eA4
([

D⊗A4

]

× (e−A4φ)
)

+ 1
2
eA4
((

A4 ·
[

D⊗A4

])

× (e−A4φ)
)

+ . . . ,

(B.4)
where we can compute the coefficients to be

[

D ⊗A4

]

=(0, 2(ǫ · (ρ8 ∧ dA3))⊗ (ρ8), 0, 0) ,

A4 ·
[

D ⊗A4

]

=(0, 0,−2 ∗8 (A3 ∧ ρ8 ∧ dA3)(ρ8)⊗ (ρ8), 0) ,

A4 · (A4 ·
[

D ⊗A4

]

) =0 .

(B.5)

The last equation actually puts all further terms in (B.4) to zero. From this together
with (3.54), the superpotential can be computed to be

eKφ/2W = 1
2
ιρ8φ4 ∧ dφ4 +

1
2
ρ8 ∧ φc

4 ∧ d†φ4 − 2 iφ4 ∧ ιρ8dA4 + (ιρ8A4) ∧ dA4 . (B.6)

In order to make the dependence on A6 explicit, we use Formula (B.1) but now for
Â = (ρ8 ⊗ Â, 0) and note that DBÂA

B = 0 and ÂD
CD

C = 0. Therefore, we find

D · (Â · φ) = Â · (D ◦φ) + [D ⊗ Â]× φ . (B.7)

Furthermore, we compute

D ⊗ Â = (0, 0, (ρ8 ∧ dA6)ρ8 ⊗ ρ8, 0) , (B.8)

giving

eKφ/2W =1
2
ιρ8φ

(0)
4 ∧ dφ

(0)
4 + 1

2
ρ8 ∧ φ(0)

4 ∧ d†φ
(0)
4 + ρ8 ∧ dA6

− 2 iφ
(0)
4 ∧ ιρ8dA4 + (ιρ8A4) ∧ dA4 .

(B.9)

From self-duality of φ
(0)
4 we find that the first two terms actually agree. This means that

we finally have

eKφ/2W = ιρ8φ
(0)
4 ∧ dφ

(0)
4 + ρ8 ∧ dA6 − 2 iφ

(0)
4 ∧ ιρ8dA4 + (ιρ8A4) ∧ dA4 . (B.10)

17Note that E7(7) ⊂ Sp(56).
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B.2 The N = 2 prepotentials

In this appendix we compute the Killing prepotentials of the N = 2 theory given in
(3.39). This computation is very similar to the one in Appendix B.1. We start with the
second term in (3.13) where the differential operator is given by (3.38). The objects Ka

and L defining the SU(6) structure are given in (3.33) and (3.32), respectively. In order
to compute (3.13), we consider first

DB(A A
4DK

D
B − A D

4BK
A
D) =A

A
4DD

BKD
B + (DBA A

4D)K
D
B − A D

4BD
BKA

D

− (DBA D
4B)K

A
D ,

(B.11)

where we again used Sp(56) indices. Translating this back into E7(7) indices, we find

D(A4 ·K) = A4 · (DK) +
[

D ⊗ A4

]

⊙K +
[

D · A4

]

·K +
(

A4 ·D
)

·K , (B.12)

where in the last term the differential operator D acts on K. The last two terms vanish
due to A4 = (0, ρ8 ∧A3), cf. (B.3). From the Hadamard formula we find

DK =eA4D(e−A4K)− eA4
([

D ⊗ A4

]

⊙ (e−A4K)
)

+ 1
2
eA4
((

A4 ·
[

D ⊗A4

])

· (e−A4K)
)

,
(B.13)

where the coefficients are given in (B.5). We can treat the transformations Â = (ρ8⊗Â, 0)
using the same equations and (B.8), so that

DK =eAshiftsD(e−AshiftsK)− eAshifts
([

D ⊗A4

]

⊙ (e−AshiftsK)
)

+ 1
2
eAshifts

((

A4 ·
[

D ⊗ A4

])

· (e−AshiftsK)
)

− eAshifts
([

D ⊗ Â
]

⊙ (e−AshiftsK)
)

.

(B.14)

For the first term in (3.13) we have essentially to determine the scalar derivative (L,D).
From (3.32) and (3.38), we get

(L(0), D) = −eKLvol−1
8 x( 1

3!
J3 ∧ ρ8 ∧ d) = e−KLLv̂(0) . (B.15)

From this together with (3.13), the Killing prepotentials can be computed to be

P 1 = − 4 iκJ ∧ ρ8 ∧ d ImΩ
(0)
4 − 4κιv(ImΩ

(0)
4 ) ∧ ρ8 ∧ dA3 ,

P 2 = e−KL((Lv̂(0) + ι[v̂(0) ,Â]) ReΩ
(0)
4 ) ∧ ImΩ

(0)
4 − e−KL((Lv̂(0) + ι[v̂(0),Â]) ImΩ

(0)
4 ) ∧ ReΩ

(0)
4

+ 4κρ8 ∧ dA6 − 2κ2eKLJ ∧ J ∧ ρ8 ∧ v(0) ∧ dv(0)

+ 4κ(A3 + iκv(0) ∧ J) ∧ ρ8 ∧ dA3 ,

P 3 = − 4 iκJ ∧ ρ8 ∧ dReΩ
(0)
4 − 4κιv(ReΩ

(0)
4 ) ∧ ρ8 ∧ dA3 .

(B.16)
where we also used [Lv̂(0) , ιÂ] = ι[v̂(0),Â].
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