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ABSTRACT

We have developed a variational data assimilation technique for the Sun using a toy αΩ dynamo model. The purpose
of this work is to apply modern data assimilation techniques to solar data using a physically based model. This
work represents the first step toward a complete variational model of solar magnetism. We derive the adjoint αΩ
dynamo code and use a minimization procedure to invert the spatial dependence of key physical ingredients of the
model. We find that the variational technique is very powerful and leads to encouraging results that will be applied
to a more realistic model of the solar dynamo.
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1. INTRODUCTION

1.1. Predicting Solar Activity

At its surface, the Sun exhibits turbulent and very active
behavior, with magnetic phenomena as diverse as emerg-
ing sunspots, flares, prominences, and coronal mass ejections
(CMEs). Quite unexpectedly, this magnetic activity is cyclic.
The full 22 year cycle is composed of two consecutive 11 year
sunspot cycles (producing the so-called butterfly diagram).
Coexisting with these large-scale-ordered magnetic structures
are small-scale but intense magnetic fluctuations that emerge
over much of the solar surface, with little regard for the solar
cycle (see Stix 2002). It is currently thought that, in order to ex-
plain this activity and the large diversity of observed magnetic
phenomena, the Sun must operate two conceptually different dy-
namos: a large-scale/cyclic dynamo (Moffatt 1978; Brun et al.
2004; Charbonneau 2005) and a turbulent small-scale one (e.g.,
Cattaneo & Hughes 2001; Ossendrijver 2003).

This cyclic activity has been observed directly since the early
1600s and traced back (indirectly) via 10Be concentration found
in the ice core for at least 10,000 years (Beer et al. 1998). This
intense activity is known to have a direct impact on Earth’s upper
atmosphere and on our technological society. Being able to
anticipate and predict the turbulent solar dynamics and magnetic
activity is thus crucial if we wish to prevent damages to our
satellites or interferences in our communications. This has led
to the development of space weather studies and forecasts.
Answering key questions such as which physical processes
lead to eruptive phenomena, what the associated spectrum
of solar energetic particles is, and what leads to geoeffective
interplanetary CMEs constitutes the main purpose of studying
space weather (Schwenn 2006).

Solar eruptive phenomena are associated with active regions,
i.e., complexes of sunspots that possess intricate magnetic field
topology. There is a direct link between internal magnetism
and these surface magnetic phenomena, since active regions are
related to the emergence of strong toroidal structures most likely
generated in the deep solar tachocline of intense latitudinal and
radial shear at the base of the convection zone (Cline 2003;
Browning et al. 2006; Brun et al. 2011). These toroidal structures

become unstable, subsequently rise through the solar convection
zone to appear at the surface as active regions (Magara &
Longcope 2003; Fan et al. 2003; Archontis et al. 2005; Jouve
& Brun 2009), and are advected by convective motions on the
solar surface (Wang & Sheeley 1991). However, the exact link
between the solar cycle, CMEs, and the geoeffectiveness of
solar events is not simple to assess (Pevtsov & Canfield 2001).
It is clear, however, that one important goal of space weather
is to characterize the configurations (strength, location, field
topology, etc.) that lead to geoeffective events. One way to
progress in our ability to predict solar activity is to assimilate
quality observations in modern numerical models of solar inner
and outer magnetism (Schrijver & Derosa 2003; Brun 2007).

Hathaway et al. (1999) summarize most of the methods used
to predict the next solar cycle using historical data. Methods
such as regression or curve fitting work well near solar maximum
while others such as geomagnetic precursors perform better near
solar minimum. It has also been empirically determined that odd
numbered cycles are usually stronger than even numbered ones
(possibly indicating a preferred orientation of the inner solar
magnetic field) and that on average the cycle rises in 4.8 years
and falls in 6.2 years, even though strong cycles rise to their
maximum faster. A useful quantity for assessing the intensity of
a cycle is the yearly averaged Wolf sunspot number:

R = k(10g + s)

with g being the number of sunspot groups, s the total number of
individual sunspots in all groups, and k a variable scaling factor
(with usually k < 1) that accounts for instruments or observation
conditions. Hathaway et al. (1999) suggest that a synthesis of
current methods can provide a more accurate and useful forecast
of the evolution of the Wolf number. Cycle 23 was predicted by
the solar cycle 23 panel to be slightly stronger (R � 160) than
cycle 22. However, with an observed value of about 120, it
turned out to be almost as weak as the even numbered cycle
20 (R = 105.9 in 1968). Further, in the prediction summary
of the solar cycle 23 panel, only few of the many predictions
included the observed value of 120 (even by taking into account
the associated error bars).

Thus one needs to be careful with the standard indicators
used until now. The existence of a panel prediction can be seen

1

http://dx.doi.org/10.1088/0004-637X/735/1/31


The Astrophysical Journal, 735:31 (14pp), 2011 July 1 Jouve, Brun, & Talagrand

as an attempt to use ensemble forecasting (Kalnay 2003), sim-
ilar to what is done in meteorology. The relative success of
these methods, in particular for cycles 21 and 22 (much less so
for cycle 23) could be a sign that the set of model equations
used in the panel form a good ensemble. However, most of
the techniques considered by Hathaway et al. do not resolve
the spatial dependence of the solar activity; they just focus
on global properties such as the number of sunspots or the
timing of the next maximum. As such, these techniques are
much less sophisticated than the ones used in weather forecast-
ing. We thus need to develop more physically based forecast
models of the solar cycle. Historically, two types of physical
models have been developed in order to understand the solar
global dynamo: two-dimensional mean-field models and three-
dimensional (3D) magnetohydrodynamic (MHD) simulations
(Ossendrijver 2003). However, none of these models have been
used to predict the evolution of the solar cycle until very re-
cently. In order to take into account the spatial dependency of
the solar activity, more recent approaches numerically solve the
induction equation in a meridional plane and impose a surface
term through the observed latitudinal band of activity (Dikpati &
Gilman 2006; Cameron & Schüssler 2007; Nandy et al. 2011).
By assimilating sunspot or meridional flow data, they try to
predict the peak and timing of cycle 24.

Today, the predictions for the current solar cycle (recently
summarized by the cycle 24 prediction panel) differ quite
significantly from one model to another (Hathaway 2010). Some
techniques, such as the ones based on geomagnetic precursors,
predict a weak cycle 24 (R < 100; Svalgaard et al. 2005; Duhau
2003; deJager & Duhau 2009); others based on dynamo models
or meridional flow speed predict a stronger cycle (R > 140;
Dikpati et al. 2006; Hathaway & Wilson 2004). It is worth noting
that all the predictions for a weak cycle 24 rely on cycle 23, i.e.,
cycle n is correlated with cycle n−1, whereas those predicting a
strong cycle 24 (i.e., stronger than cycle 23) favor a correlation
with cycle 22, i.e., cycle n is well correlated with cycle n−2. The
predictions of the cycle 24 panel also differ on the timing of the
next maximum. In 2008, the predictions were that the maximum
would occur between 2010 and 2012, depending on how fast the
next cycle would rise to reach its maximum (fast if strong, slow
if weak). It is now clear that the maximum will be reached late
in 2013 or in 2014, confirming again the difficulty of trying to
predict the solar cycle. Some recent efforts have been undertaken
to improve this situation. For instance, Kitiashvili & Kosovichev
(2008) have used assimilation of data in solar dynamo models
to predict solar activity (see also the work of Choudhuri et al.
2007; Roth 2009; Rempel & Dikpati 2009). Assimilation of
solar data in numerical models has thus already begun (Dikpati
et al. 2004; Kitiashvili & Kosovichev 2008; Bélanger et al. 2005;
Schrijver & DeRosa 2003). However, intrinsic difficulties in the
solar weather forecast are linked to the fact that we do not yet
have a complete understanding of the solar magnetic dynamo,
cycle, and surface activity. For every “piece” constituting the
full puzzle, theoretical developments are still underway. This
work intends to contribute to this effort.

1.2. Modern Data Assimilation Techniques in
Weather Forecasting

In meteorological centers, data assimilation already has
been operational for many decades. Various approaches have
been developed, becoming more and more sophisticated. Data
assimilation can be defined as “using all available information to
determine as accurately as possible the state of the atmospheric

(or oceanic) flow” (Talagrand 1997, p. 193). The purpose of the
work presented in this paper is to add to this “solar flow and
activity”.

Modern data assimilation techniques rely on statistical esti-
mation theory, such as least-squares methods. The generaliza-
tion of such statistical methods to multivariate systems leads to
what is called the optimal interpolation (OI) for data assimilation
(Lorenc 1981). OI consists of taking into account (assimilating)
the new information that the observational data provide in or-
der to advance in time the “background” state (also called first
guess or prior information) that the weather forecasting numer-
ical code has predicted. The increment is obtained by taking the
difference, or innovation, between the observational data and
the observation operator. The new state or analysis is then the
result of the assimilation/forecast procedure. More specifically,
let xb be the background vector state characterizing the current
state of the model, H the observational operator, and y◦ the ob-
servational data to be assimilated in the model, then one can
show that the analysis xa is

xa = xb + W (y◦ − H (xb)), (1)

where y◦ = H (xreal) + error and where W represents the weights
determined from the estimated statistical error covariances of the
forecast and the observations (Kalnay 2003). This equation is
the base of modern data assimilation. The various assimilation
methods will differ in the exact definition of W.

In practice, the background state, the observations, and
even the numerical model used to simulate Earth’s atmosphere
(i.e., the primitive equations) possess errors. The assimilation
methods consist in predicting the evolution in the errors and, of
course, minimizing it, i.e., keeping it under control as much as
possible given the very chaotic nature of Earth’s atmosphere.
Errors in the dynamic atmospheric system are known to double
every two to three days, which leads to a predictability limit for
weather forecasting that Lorenz in 1963 was the first to quantify
to be of the order of 15 days. This is a very strong constraint on
our ability to predict that weather patterns and solar equivalent
predictability limits must exist. However, some atmospheric
properties may be easier to predict over long periods than others,
such as weekly averaged rainfall or temperature. It is likely that
for the Sun, some characteristics could also be predicted over a
longer period of time.

In order to have a better control of the evolution of the errors,
data assimilation methods were developed and split into two
categories: sequential or variational (see Talagrand 1997; Daley
1991; Kalnay 2003). As shown in Figure 1, in the sequential
methods, such as OI or Kalman filter, observational data are
assimilated in the numerical model at a fixed time, say every
6 hr, and then evolved forward in time. In the so-called four-
dimensional variational techniques, one seeks to minimize a
cost (or misfit) function J (ξ ) (representing the misfit between
the observations and the outputs of the model) within a certain
time interval (usually 12 hr) for which data are available before
making a forecast. The procedure converges when J reaches its
minimum which occurs for ξ = xa (see Talagrand 2003). Then
in the next 12 hr period, the procedure is applied again, using
the numerical model of the previous 12 hr as the background
state. The latter technique is the one we wish to apply to the
solar dynamo problem.

1.3. Variational Assimilation and the Adjoint Method

Variational methods require the development and mainte-
nance of a so-called adjoint model of the dynamical equations
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Figure 1. Schematic representation of the sequential and four-dimensional (4D)
variational data assimilation methods used in weather forecasting (adapted from
Bocquet 2011). Upper panel: in the sequential method, the background state (xb)
is updated every time observations are available (time between k and k+1) and
the model evolves the state until the next step (following the arrows), at which
point observational data (y◦) are again assimilated to produce the analysis
(xa). Lower panel: 4D variational method and comparison with sequential
assimilation. In the 4D variational method, within a given time interval, the
model and the observations are taken into account in a cost function J that
needs to be “minimized.” The minimization of this cost function results in a best
trajectory (plain arrows) across the observations.

(A color version of this figure is available in the online journal.)

under consideration (Le Dimet & Talagrand 1986). This ad-
joint model efficiently computes the gradient ∂J/∂ξ necessary
for the iterative minimizing procedure, by evolving the adjoint
system of equations backward from the forward temporal inte-
gration (Talagrand 2003; Kalnay 2003). Such a method is also
useful if one seeks to determine the gradient of a variable with
respect to a large set of input variables. One can also evaluate
the sensitivity of an erroneously predicted feature in the flow
in order to assess which input variables are responsible for the
error.

Developing an adjoint model is a straightforward but costly
task and no such models have been yet developed for the full
MHD system of equations (and in particular the induction
equation for the magnetic field; see the next sections) that is
required to model the solar dynamics and magnetic activity.
The development of the adjoint model of the induction equation
is one purpose of this work.

Let us now enter a little bit more into the details of the adjoint
procedure in order to understand how it eases the evaluation of
the gradient of the cost function J with respect to all the input
parameters (see Talagrand 1991).

We start by considering a composition of operations G =
Gl � Gl−1 � · · · � G2 � G1 (where G is a differen-
tiable function) that, given a set of input variables u =
(u1, u2, u3, ..., un−1, un), determines a set of output variables
v = (v1, v2, v3, ...., vm−1, vm).

This process can be described by the following equation

v = G(u). (2)

A variation δv on the output data leads to a variation δu of
the input data that is given at first order by the tangent linear
equation

δv = G′δu, (3)

where G′ is the local Jacobian matrix of G, i.e.,

G′ =
(

∂vj

∂ui

)
1�j�m,1�i�n

. (4)

Let us now consider a scalar cost function J of the output
variables v. The gradient of the function J with respect to the
input variables u reads

∂J
∂ui

=
m∑

j=1

∂vj

∂ui

∂J
∂vj

with i = 1, ..., n, (5)

which is in matrix notation ∇uJ = G′�∇vJ , where G′�
corresponds to the transposition of G′ (hence the operator
represented by the matrix G′� is the adjoint operator of the
one represented by G′).

The adjoint method thus allows one to compute the gradient
of J with respect to the input variables by considering the above
expression (see Appendix B for more details). Note that since
G is the composition of elementary process (Gk)k=1,...,l , the
transposition of the Jacobian matrix G′ will be the product of
the transposition of the individual Jacobian matrices G′

k , taken
in the reverse order:

G′� = G′�
1 × G′�

2 × · · · × G′�
l . (6)

We have chosen to use this method in the framework of the
solar dynamo by applying it first to a simple αΩ mean-field
dynamo model in Cartesian geometry. We give more details
on how to apply it specifically to the induction equation in the
Appendix B and describe the model used in this work in the
following section.

2. THE SPECIAL CASE OF THE αΩ DYNAMO

2.1. Direct αΩ Dynamo Model

The equation we are interested in is the mean-field induction
equation, derived from the standard induction equation gov-
erning the evolution of a magnetic field in the presence of a
conducting fluid and dissipation in the framework of mean-field
theory. The details of the derivation of this equation can be
found in Steenbeck et al. (1966) or Krause & Raedler (1980).
The mean-field equation reads

∂B
∂t

= ∇ × (v × B) + ∇ × (αB) − ∇ × (η∇×B), (7)
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where B and v are, respectively, the mean magnetic and velocity
fields, α parameterizes the physical process responsible for the
regeneration of the poloidal field, and η is the effective magnetic
diffusivity.

We choose to work in Cartesian geometry with coordi-
nates (x, y, z),which, in spherical geometry would, respectively
correspond to the radius, latitude, and longitude. The three
components of the magnetic field depend only on the x- and
y-coordinates. The domain is defined as [x1, x2] × [y1, y2], with
a regular grid spacing assuming Nx = Ny = 30. For simplicity
we assume that x1,2 = ±1 and y1,2 = ±1. We note that the dis-
cretization in y is symmetric with respect to the equator defined
by y = 0. The poloidal/toroidal decomposition of the magnetic
field then reads

B(x, y, t) = ∇ × (A(x, y, t)ez) + Bz(x, y, t)ez. (8)

Reinjecting this poloidal/toroidal decomposition in our
mean-field induction equation, we get two coupled partial dif-
ferential equations, one for the poloidal potential A and the other
for the toroidal field Bz:

∂A

∂t
= αBz + η

(
∂2A

∂x2
+

∂2A

∂y2

)
(9)

∂Bz

∂t
= ∂v

∂x

∂A

∂y
− ∂v

∂y

∂A

∂x
+ η

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)
. (10)

We choose to neglect the α-effect in the equation for the
toroidal field since the shear is considered to be the dominating
source term. We thus consider a simple αΩ dynamo model here.
For boundary conditions, we assume for simplicity that both A
and Bz are set to zero on the borders x = x1 or x2 for all y
and on the borders y = y1 or y2 for all x at all times t. As
initial conditions, we choose a dipolar field structure, A being
symmetric with respect to the equator y = 0 and Bz being zero
everywhere.

The prescribed velocity field can be simply expressed as

v = Ω0x sin

(
π

y + 1

2

)
ez, (11)

where Ω0 represents the rotation rate of our domain.
We now need to give the expression for the α-effect, which is

responsible for the regeneration of the poloidal field. We choose
it to be antisymmetric with respect to the equator, as is assumed
in the Sun from surface kinetic helicity measurements (Komm
et al. 2007, 2008) and 3D simulations of the convective interior
(Miesch et al. 2000; Brun et al. 2004). Its expression is the
following:

α = α0 cos

(
π

y + 1

2

)
. (12)

Finally, the magnetic diffusivity is assumed to be constant
η = cst . The profile of the physical ingredients of the model is
shown in Figure 2.

We can now nondimensionalize those equations by choosing
a length scale L and a temporal scale L2/η. This procedure leads
to the definition of physically relevant dimensionless parameters
and to the new equations:

∂A

∂t
= CαBz +

(
∂2A

∂x2
+

∂2A

∂y2

)
(13)

Figure 2. Profiles of v (upper panel) and α (lower panel) used in this simple
model.

∂Bz

∂t
= CΩ

(
∂v

∂x

∂A

∂y
− ∂v

∂y

∂A

∂x

)
+

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)
, (14)

with Cα = α0L/η and CΩ = Ω0L
2/η the Reynolds numbers

measuring the intensity of the α and Ω effects compared to the
Ohmic dissipation. The product of those two numbers will have
to be above a given threshold for dynamo action to occur.

2.2. The Numerical Method and Choice of Model Parameters

Equations (13) and (14) are solved numerically using a finite
difference scheme in space and time. More specifically, we
use a first-order explicit Euler scheme for time integration
and a second-order-centered scheme in space. Thus we have
to carefully check the Courant-Friedrichs-Lewy condition: the
time step will be constrained by the minimum of the advective
timescales (related to α0 and Ω0) and the diffusive time (related
to η). The output of such simulations will be two 3D arrays, A
and Bz (two dimensions in space and one in time), of dimension
30 × 30 × 1000.

A typical dynamo solution found in our model is shown in
Figure 3. Our set of parameters (α0 = −0.02665, Ω0 = 0.03,
and η = 0.001) was carefully chosen so that we are in the
marginally stable regime. We are exactly at the threshold for
which the dynamo instability is triggered, i.e., the growth rate of
the instability is purely imaginary and the fields oscillate around
zero without growing. If the absolute value of the dynamo
numbers were further increased, the dynamo instability would
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p
p

Figure 3. Representative case for α0 = −0.02665, Ω0 = 0.03, and η = 0.001:
time evolution of the toroidal field (plain line) and poloidal potential dotted line
at a particular point in space (upper panel) and time-latitude cut of the toroidal
field at a depth xp near the top of the domain (lower panel). The latter represents
the butterfly diagram of our solution. The dashed and dash-dotted lines represent,
respectively, the end of the first and second assimilation windows.

grow and in this linear case, the magnetic energy would increase
exponentially without bound.

The lower panel of Figure 3 shows the butterfly diagram, i.e.,
a time-latitude cut of the toroidal field Bz at a particular location
in depth. Again, our choice of parameters, especially the sign of
the dynamo number CαCΩ was made to produce an equatorward
propagating dynamo wave. Indeed, Yoshimura (1975) showed
that the direction of propagation of the dynamo wave when a
radial shear is present depends on the sign of the product α0Ω0.

2.3. Generating Observational Data

The idea of this work is to show that data assimilation
techniques can be applied to solar dynamo models. To do so,
we develop the adjoint model necessary for the variational
assimilation described in Section 1 and we test its validity.
We will generate synthetic observations with a certain set of
parameters and will use our adjoint model to minimize the cost
function and recover the right parameters starting from a random
initial guess. Such a procedure is called a twin experiment and
has been used in various situations and studies before (e.g.,
Fournier et al. 2007).

We choose as our synthetic data the dynamo solution pre-
sented in the previous section. In our twin experiments, the
observations are chosen to be the toroidal field Bz at ny specific
points in space and nt points in time, corresponding in the Sun

to the value of the sunspots’ magnetic field at different latitudes
and time during the cycle.

The aim of the adjoint procedure will then be to reconstruct
the state vector α̂, the dimension of which is the number of points
in the y-direction, fixed to 30 in all calculations. In the remainder
of the paper, we distinguish the true physical ingredient (denoted
α) and the state vector to be reconstructed (denoted α̂).

2.4. Adjoint αΩ Dynamo Model

In Appendix A, we present the derivation of the adjoint
induction equation. This helps us gain some insight into the
relation between the mathematical definition of an adjoint
operator and the procedure we are using in this work. However,
it has to be pointed out that it is not the adjoint partial
differential equation which will be discretized to build the
adjoint code. Rather we attribute an adjoint instruction to
each direct instruction in the tangent linear model deduced
from the linearization of the direct model. This follows the
formal procedure described in Talagrand (1991) and Giering &
Kaminski (1998).

The goal of the whole variational experiment here is to min-
imize a cost function J which will measure the misfit between
the observations and the values of the variables calculated by
the numerical model. To do so, first we need to define a proper
cost function which will have to be minimized. Second, the idea
is to choose a minimization algorithm that uses the values of the
cost function (calculated by the direct integration of the model)
and its gradient with respect to all input parameters (produced
by the adjoint integration).

For our studies, we choose the following cost function:

J =
nt∑

k=1

ny∑
j=1

(Bz(xp, yj , tk) − Bobs
z (xp, yj , tk))2

ω(j, k)2
, (15)

where xp is a particular depth. It is chosen to be close to the
boundary of the domain in our case, in an attempt to get closer to
the real Sun where data are available only at the surface. ω(j, k)
can be adjusted to give more or less weight to some observations
if, for example, some are more reliable than others. This would
happen if a new instrument with more accuracy was launched
(then we could expect the errors on the observations to vary in
time) or if observations of certain regions in space were less
subject to uncertainty. In our twin experiments described below,
ω(j, k) is chosen to be constant, i.e., independent of the position
in space or time.

The cost function is then minimized through a quasi-Newton
method which uses the first and second derivatives of the func-
tion. A particularity of quasi-Newton methods is that they re-
quire the gradient of the function (which is here provided by
the adjoint integration) but do not require exact computation of
the Hessian matrix, which is instead approximated by an iter-
ative algorithm (here the Broyden–Fletcher–Goldfarb–Shanno
formula is used to update the value of the Hessian approxima-
tion). See Polak (1971) for details about the algorithm. We note
here that the computation of the gradient of the cost function
through the adjoint code has been tested. To do so, we checked
that the quantity

J (X + δX) − J (X) − δX · ∇J (X) (16)

with ∇J (X) calculated through the adjoint code is order o(δX)
to computer accuracy.
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Figure 4. Initial guess and alpha recovered by the minimization of the cost
function with 10 observations in time and 10 regularly spaced observations
along the y-direction for each of those 10 points in time. We also show the error
between the recovered alpha and the true state, magnified by a factor of 107.

3. TWIN EXPERIMENTS AND RESULTS

As discussed in Section 2.3, we wish to reconstruct the true
state α. To do so, we perform several experiments to assess the
sensitivity and quality of the reconstructed state.

3.1. Regular Sampling in Space

Our first experiment consists of producing data with the
choice of parameters quoted above at regularly spaced locations
in space and time. More specifically, we fix the value of
the x-coordinate (representing the depth in the convection
zone) and we produce observations both in the northern and
southern hemispheres, with regular spacing. Moreover, these
observations will be available during the first cycle(s) only, with
regular spacing in time.

The initial guess is α̂ = 0 on every grid point except at the
boundaries y = −1 and y = 1 where α̂ is set to the true state.
Indeed, the values of α̂ at the boundaries will not affect our
cost function since the magnetic field Bz is set exactly at zero
at those points (see the lower panel of Figure 3 and Equations
(9) and (10)). As a consequence, in the minimization procedure,
only α̂ within the domain is adjusted to reduce the amplitude
of the cost function. The tolerance on the gradient is set to
10−12, which is typically reached after about 300 iterations
of our minimization algorithm. By that time, depending on
the number of observations used, the final value of the cost
function varies between 10−17 and 10−27, i.e., has decreased by
at least 16 orders of magnitude. We note here that the number
of iterations might seem large compared to the dimension of
the state vector. However, close to both the boundaries and the
equator, the amplitude of the toroidal field Bz is about 100 times
smaller than at mid-latitude. Since the α̂ function only affects
the cost function through its product with Bz (see Equations (9)
and (10)), the recovery of α̂ will be less efficient in the regions
where Bz is close to zero. If, on the contrary, those points are
removed from the assimilation procedure and initially set to
their true values, the convergence is much faster (not shown).
We will discuss the difficulties of recovering α̂ in the equatorial
regions in the following sections.

We run our minimization procedure and compare the results
obtained when various numbers of observations are assimilated.
The number of points in time can be 5 or 10, located in the
first cycle or the first two cycles (see the two assimilation

Figure 5. L2 error on α̂ (compared to the α used to produce the observations)
for various numbers of observations in space and time. Note the monotonous
decrease in the error when 10 points in time are used as observations.

windows in Figure 3). In space (more specifically in the direction
of y, representing the latitude), the number of observations
varies from 6 to 14. The total number of observations thus
extends from 30 to 140 depending on the calculation. Figure 4
shows a typical result of the minimization algorithm for 100
assimilated observations. The function is perfectly recovered
and the pointwise error has been reduced by a factor of 107

compared to the initial guess.
The first conclusion that can be drawn from this experiment

is that, not surprisingly, increasing the number of observations
decreases the error on the reconstructed α̂ (see Figure 5).
However, even 30 total observations (5 in time × 6 in space)
are sufficient to get an α̂ function that is indistinguishable from
the true state. Thus the only quantitative way to compare the
different experiments is to look at the L2 errors between the α̂
from the minimization algorithm and the true α used to produced
the observations. More precisely, we calculate the following
quantity:

e =

√√√√∑ny

j=1

(
α̂(yj ) − α(yj )

)2

∑ny

j=1 α(yj )2
. (17)

The amplitude of those errors is shown in Figure 5 as a
function of the number of observations in the y-direction. For
completeness, we show the results obtained when observations
are located both in the first cycle (nt = 5) and in the first two
cycles (nt = 10). We clearly show here that the error almost
monotonically drops when more observations are assimilated,
reaching values of the order of 10−7 for the best cases. The
reconstructed α̂ then produces poloidal and toroidal magnetic
fields very much in agreement with our synthetic observations
as shown in Figure 6.

Figure 6 shows the L2 errors on the toroidal and poloidal fields
produced by the reconstructed α̂ effect for various numbers of
assimilated observations. Again, we find a very good agreement
for both the poloidal and the toroidal fields even for the smallest
number of observations. For larger numbers of observations, the
relative errors reach values close to 10−10 and even 10−12 for
the toroidal field. It is interesting to note that the errors on the
toroidal field are systematically about one order of magnitude
less than the errors on the poloidal field. This is likely due to
the fact that observations are available on the toroidal field only
(e.g., the cost function depends exclusively on Bz) and thus a
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Figure 6. L2 errors on the toroidal (black lines) and poloidal fields (red lines)
for the different experiments.

(A color version of this figure is available in the online journal.)

better agreement is to be expected. We can also note on this
figure that the errors do not grow in time and thus the functions
are recovered on the whole time interval, even if observations
were only available on the first cycles. This feature is mainly due
to the fact that our system of equations is stable to perturbations
of the initial conditions, meaning that an initial perturbation
would not be amplified or damped.

For the best case considered (nt = 10, ny = 14), we found
it instructive to follow the evolution of the gradient of the cost
function with respect to α̂ during the minimization procedure.
We choose particular steps in the iterative minimization proce-
dure, separated by sufficiently large decreases in the norm of the
gradient. The results are shown in Figure 7 where the gradient
is plotted at those steps, with respect to the y-coordinate. The
first thing we note is the clear decrease in the amplitude from
the beginning to the end of the procedure, the last step chosen
(after 200 iterations) being very close to the total number of it-
erations required to achieve convergence (211 in this case). The
second striking property of the curves shown in this figure is
the shape of the function; it is antisymmetric with respect to the
equator. This characteristic indicates that the cost function J is
not sensitive to the values of α̂ close to the equator and explains
why the difficulties in reproducing the true α-effect lie mostly
in the equatorial regions. This will be even more obvious in the
following sections where data are chosen not to be distributed
over the whole domain or when data are perturbed by a random
noise. However, the profile of the gradient is not surprising if
we consider Equation (B13) of Appendix B and Equations (9)
and (10), which clearly demonstrate that if Bz is zero, α̂ has
no influence in the equation for the magnetic field. In other
words, the profile of ∇αJ follows that of the mean value of
Bz over the time interval in which the assimilation procedure
is applied. As a test, we plotted < Bz(x, y) >t with respect to
y at a particular point in x (not shown) and indeed, we recov-
ered the same profile as that shown in Figure 7 for the various
curves.

3.2. Irregular Sampling in Space

We chose as observations a quantity Bz related to the intensity
of the sunspots’ magnetic field. In the real Sun, sunspots emerge
at mid-latitudes at the beginning of the magnetic cycle and
ever closer to the equator as the cycle proceeds. For a more
realistic experimental setting, we have studied different cases for

Figure 7. Gradient of J with respect to α̂ in the case where observations
(represented by the squares at the bottom of the graph) are regularly spaced in
y. The various curves represent the value of the gradient after 30 iterations of
the minimization algorithm, 50 × ∇J after 100 iterations, 500 × ∇J after 160
iterations, and 10, 000 × ∇J after 200 iterations.

which we have assimilated observations in restricted latitudinal
bands. We first show the results of an experiment where data
were available in one hemisphere only and in the next section,
we investigate the case where observations are assimilated in
the activity belt only, i.e., at low latitudes in both hemispheres.

3.2.1. One Hemisphere Sampling

In this first case, we produce synthetic data only in the
southern hemisphere (for negative values of y) and study the
reconstruction of the α̂ function through the minimization
algorithm. Again, the initial guess is 0 everywhere except on
the boundaries, and observations are equally spaced in time
and on the first two cycles only (10 points in time are used
here).

Figure 8 shows the results of the minimization. It is clear
that where data have been assimilated, the reconstruction of the
function is much more accurate than in the northern hemisphere
where observations were absent. The behavior of the function
is much smoother in the southern hemisphere and very similar
for both sets of observations. By contrast, the function strongly
fluctuates on the data-free region and especially in the equatorial
region for the experiment where only 10 points in space were
used. However, when observations are added mostly close
to the equatorial region, the error is reduced even on the
data-free region and the equatorial region is almost correctly
recovered.

However, even if a clear asymmetry exists between the two
hemispheres here, it has to be noted that the error on the α̂
function after minimization is much less than the initial error,
even in the data-free region. This is shown in the lower panel
of Figure 8, where the pointwise error is plotted for the initial
guess and for the recovered α̂. We thus conclude from those
experiments that a knowledge of the toroidal field in only one
hemisphere also gives us some information about the profile of
the α-effect in the other hemisphere. This result shows that a
link exists between the two hemispheres, due to various physical
processes, explaining why the intensity of the magnetic field in
one hemisphere will influence the other hemisphere. In the Sun,
this link could be related to magnetic flux crossing the equator at
particular moments during the cycle or to the dipolar topology
of the poloidal field.
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Figure 8. Upper panel: α̂ reconstructed after assimilation of data in the southern
hemisphere only, with two different sets of observations, superimposed with the
true state. Lower panel: errors made on the reconstructed α̂ for the initial guess
(see Figure 2) and after assimilation of the two sets of observations.

Again, as in the previous section, we have followed the
evolution of the gradient of the cost function with respect
to α̂. Various instants in the minimization algorithm were
chosen, namely after 30, 100, 400, and 990 iterations (the larger
number of iterations is due to the slower convergence of the
algorithm). At the beginning of the minimization procedure,
an asymmetry between the two hemispheres is clearly visible,
as expected. This is seen in the analysis of the full curve of
Figure 9, which represents the gradient after 30 iterations of
the algorithm. The peak value of the gradient in the southern
hemisphere is about three times higher than the peak value in the
northern hemisphere. However, as the minimization proceeds,
the gradient in the southern hemisphere is reduced more than in
the northern hemisphere, leading to a more symmetric profile
with respect to the equator.

Once again, we can analyze the quality of the magnetic
fields produced by the reconstructed α̂ and calculate its errors
compared to the true state. This is shown in Figure 10 at one
instant, for the case where eight observations were used. We
wish to focus on the errors at a particular instant in the simulation
since we are interested in the spatial distribution of the error
rather than its time evolution. We show in this figure that again
the field is in very good agreement with the true state in the
region where observations were assimilated, the relative errors
reaching values as low as 10−6 in these regions. On the contrary,
the agreement in the northern hemisphere is much worse, even
if the relative error is of the order of 10−3 for the toroidal field.

Figure 9. Gradient of J with respect to α̂ in the case where observations
(represented by the filled squares at the bottom of the graph) are available
only in one hemisphere. The various curves represent the value of the gradient
after 30 iterations of the minimization algorithm, 80 × ∇J after 100 iterations,
2000 × ∇J after 400 iterations, and 20, 000 × ∇J after 990 iterations.

Figure 10. Difference between the components of the toroidal magnetic field
(upper panel) and poloidal potential (lower panel) produced by the reconstructed
α̂ and the true state at t = 0.5 (in the middle of the time interval).

For the poloidal field, the errors are again almost one order
of magnitude higher, still due to the fact that observations are
available on the toroidal field only. We should note that the
agreement for the poloidal field on the southern hemisphere
is very satisfactory, stressing the efficiency of the variational
assimilation.
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Figure 11. Errors made on the reconstructed α̂ after assimilation of various
numbers of observations located in the equatorial regions, between −35◦ and
35◦ for the broadest interval.

3.2.2. Active Latitude Band Sampling

If we choose as observations the sunspot magnetic field de-
tected during solar cycles, we have to be aware that observations
will mainly be available in the solar activity belt, i.e., between
about −35◦ and 35◦ in latitude (Hathaway 2010).

We thus choose to investigate the recovery of our true state
in a case where data are assimilated close to the equator only.

Figure 11 shows the results of various experiments where data
have been assimilated in a more or less narrow band around
the equator. We present cases where observations have been
produced successively between −18◦ and 18◦, −26◦ and 26◦,
and −35◦ and 35◦. Figure 11 shows the difference of each
reconstructed α̂ from the true state. Again it is quite clear that
the recovery of the correct α̂ is optimal at the locations where
observations were present. Indeed, the function is very smooth
and close to the true state at low latitudes for the first two
runs. Close to the poles, the fluctuations around the true α̂ can
be quite significant, the error being of the same order as the
function itself for the first run. However, when the area spanned
by the observations increases, the agreement with the true state
improves and when observations between about −35◦ and 35◦ in
latitude are used, the relative error made on α̂ is as low as 10−7.
This is an interesting property since the actual activity band
in the Sun is located approximately within those latitudes. We
note that in this particular case the errors are of the same order
everywhere in the domain and that the difference in knowledge/
information between the region where data were available and
the poles is mostly absent. We conclude here that the whole
function has been recovered to a very good accuracy for this
case where data were assimilated only in the activity belt.

Once again, we can check the results on the magnetic fields
produced by the recovered α̂. Results are shown in Figure 12. We
chose to show the results for the assimilation on the latitudinal
band −35◦ to 35◦ since the resulting α̂ function for this case
was recovered to a very good and similar accuracy in the whole
domain. The largest errors on both the poloidal and the toroidal
fields at one instant are again located mainly in the data-free
regions. Nevertheless, we note that their amplitude remains
very small, even in the polar regions. Again, the errors on
the poloidal field (for which we do not produce observations)
are about one order of magnitude larger than those on the
toroidal field. It has to be noted here that the difference in
knowledge/information between the equator and the poles is
visible, contrary to what we found for the recovered α̂, stressing

Figure 12. Same as Figure 10 but for a case where data are assimilated in the
equatorial region only between −35◦ and 35◦.

the not so direct correspondence between the α-effect and the
magnetic field evolution. The recovery within the equatorial
band is excellent, the error reaching values close to 10−12 for
the toroidal field and 10−11 for the poloidal field.

3.3. Additional Noise on the Observed Data

In reality, the assimilated observations will always be contam-
inated by errors. Hence, it is natural to study the behavior of our
assimilation technique when observations depart significantly
from what is directly produced by the numerical model. To do
so, we produce the same synthetic data by running the direct
code once with the choice of parameters quoted in Section 2.2.
We then add noise on the data by calculating

Bz
obs
noise = Bobs

z ∗ (1 + σ r), (18)

with r being a random number between −1 and 1 and σ
measuring the departure from the synthetic data produced by
the direct code.

As an illustration, we show in Figure 13 the time evolution
of the “true” toroidal field at a specific point in space. We
superimpose the error on Bz

obs
noise and the true state for σ =

10−2, magnified by a factor 50. As a direct consequence of
Equation (18), the noise is proportional to the value of Bz and
thus the errors are higher at periods of maximal activity.

The results of the assimilation procedure are shown in
Figure 14. The number of observations used here was 100 (10 in
time multiplied by 10 in the y-direction). With the unperturbed
synthetic observations, the assimilation of those particular
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p

Figure 13. True state (smooth plain line) and error introduced in the data
(magnified by a factor of 50; fluctuating line) which will be used for the
assimilation. This is a special case where the synthetic data have been perturbed
by a noise with a standard deviation of σ = 10−2.

Figure 14. Reconstructed α after assimilation of data perturbed with random
noises with various standard deviations. One hundred observations were used
(10 in time and 10 along the y-direction).

observations gave us an L2-error on α of about 6 × 10−8 and
between 10−11 and 10−12 for the magnetic fields (see Figures 5
and 6). Thus we will be able to directly compare the results of the
minimization after assimilation of perturbed and unperturbed
data. Four different experiments were investigated, three of
which are represented in Figure 14. The only difference between
those various experiments is the coefficient of the observation
error σ .

From the figure, it is clear that the minimization of the cost
function gives α̂ profiles which agree less with the true state
when the noise on the assimilated data is increased. More
precisely, when σ = 10−5, the α̂ function is almost perfectly
recovered, except from a small region around the equator in
which the cost function is less sensitive to the values of α̂.
When σ = 10−4, the result of the minimization procedure gives
an α̂ that is already much less satisfactory, the L2-error to the
true state being of the order of 10−1 (compared to 6 × 10−8 for
the unperturbed case). When σ is further increased, the recovery
of the α̂ profile is poor, the error being of about 50% in this case.
The final errors on the toroidal and poloidal magnetic fields are
of the same order as the errors introduced on the assimilated data,
which shows that the minimization is fundamentally successful.
Nevertheless, even if the true state and the final fields depart
in the same amount from the perturbed observations, the errors

between them are still significant. For σ = 10−5, the minimum
L2-error reached on Bz is of the order of 4 × 10−5, about six
orders of magnitude higher than the typical errors in similar
situations using unperturbed data.

4. CONCLUSION

We have presented the first attempt to apply variational
data assimilation techniques to the solar dynamo. A very
simplified formulation was used, namely, a linear deterministic
αΩ dynamo model in Cartesian geometry, which should not
be taken as an accurate representation of the magnetic field
regeneration and evolution in the Sun. Nevertheless, we showed
that with this simple model, variational data assimilation gives
us a way to constrain various input parameters such as the profile
of the α-effect through minimization of the errors to very few
observations (at most 140 observations were used, out of 30,000
points in the (y,t)-plane). With regularly spaced observations, the
variational technique enabled us to recover the profile of the α-
effect at an accuracy of about 10−8, starting from an initial guess
with an error of 10−2. This recovered α then produced magnetic
fields in extremely good agreement (accuracy of around 10−12)
with the true state.

Moreover, we showed that a partial knowledge of the toroidal
field could give us useful information on the α-effect in the
whole domain. Indeed, we showed that assimilating data in the
latitudinal belt of activity (between −35◦ and 35◦) is enough
to reconstruct α at all latitudes with a final L2-error of 10−7.
We also showed that adding noise on the observations strongly
perturbed the results of the minimization procedure, even if the
global shape of the α-effect was mainly recovered in all cases
(and especially the antisymmetry about the equator). Finally we
showed that the reconstruction of the α-effect in our toy model
is difficult near the equator if the observed (generated) data
assimilated in the procedure are insensitive to variations in that
region, as was the case here with Bz being zero. However, if we
had considered an α2Ω dynamo model (with the α-effect present
in the production of Bz), that might have not been true. This will
be verified in future investigations. Other quantities such as the
differential rotation or observed variables such as the poloidal
field could help better reconstruct information in these specific
locations. It may then be worth trying several combinations of
quantities and variables in our attempt to better determine the
internal dynamics of the Sun.

The proof of concept presented in this work is very promising
for future developments in solar magnetic activity forecasting.
Indeed, we showed that if a physical model is assumed to be
sufficiently close to reality, the knowledge of a very small piece
of information could provide us with the reconstruction of a
very important physical process for which direct measurements
are not available. More precisely, in the case of the Sun, if
we assume that the meridional flow (large-scale flow in the
meridional plane) plays a significant role in the evolution of the
large-scale magnetic field (Dikpati & Gilman 2006; Jouve &
Brun 2007; Nandy et al. 2011) and hence in the dynamo loop,
data assimilation could be very useful. Indeed, the meridional
circulation is very difficult to measure accurately, especially at
depths higher than a few tens of Mm (see review of Miesch
2005 and recent observations of Hathaway & Rightmire 2010).
However, the magnetic field strength and configuration can now
be detected with great accuracy through new satellites such as
Hinode and the Solar Dynamics Observatory which provide
vector magnetograms of the full solar disk. Data assimilation is
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then a way to link the direct measurements of, say, the radial field
in active regions and a physical model in which the meridional
flow takes part in the dynamo loop. This is the case, for instance,
for flux-transport dynamo models which are sometimes used to
model the whole evolution of large-scale magnetic fields in the
Sun. Not only would some subtle physical processes (i.e., those
that are difficult to detect directly) be reconstructed through
the assimilation of accurate observations of more accessible
variables, but also we could then use the physical models to
predict the behavior of the next solar cycle using a different
technique from what has been used until now.

We said in the introduction that a reliable technique for
predicting future solar magnetic phenomena still does not
exist. We propose a way to progress in this direction, inspired
by what has already been used for a long time in Earth’s
weather community. Of course, better physical models and
better understanding of the physical processes interacting in
a star need to be developed before we can safely apply
data assimilation techniques to give tentative predictions of
solar activity. In particular, the goal would be to assimilate
observations of excellent quality (which are already available)
in 3D MHD global solar dynamo models producing realistic
magnetic cycles (which are not yet available). In the meantime,

we try to progress step by step toward this goal and we think
this work constitutes one of those steps, proving it is possible
to apply modern data assimilation techniques in solar physics.
A next step may be to use a nonlinear dynamo model that is
sensitive to the initial conditions and that uses polar coordinates
rather than Cartesian ones. Finally, we could also introduce a
so-called background term in the cost function, which limits
the departure from an a priori estimate of the state vector
(see Fournier et al. 2010 for further details). This allows us to
introduce data that is not contained in the observations such as
information on the smoothness of the physical parameters (like
the function α for example). We intend to do so in the near future.
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for fruitful discussions and for sharing their own experience
in using data assimilation techniques for geophysical and solar
physics problems. A. S. Brun and L. Jouve acknowledge finan-
cial support by the ERC starting grant 207430 STARS2 and by
the CNRS/INSU Programme National Soleil-Terre. All authors
are thankful to ISSI for hosting our international group on data
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APPENDIX A

THE ADJOINT INDUCTION EQUATION

In this section, we present the different steps leading to the determination of the adjoint mean-field induction equation in detail.
This is only of particular use for the development of the adjoint model but we find it useful to gain some insight into the link between
adjoint operators and the calculations shown in this work.

The velocity field v, magnetic diffusivity η, and the α-effect are given functions of space and time. We show here how to compute
the adjoint of each operator appearing in the equation. We first define the adjoint operator in the following manner:

Ψ� is the adjoint of Ψ operating on the Euclidian space E if and only if

∀(u1, u2) ∈ E2, Ψ(u1) · u2 = u1 · Ψ�(u2), (A1)

where · is the scalar product on E. As a consequence, in order to determine the adjoint of an operator, we need to find the operator
such that condition (A1) is fulfilled.

Let u1 and u2 be elements of the Euclidian space E.
1. We first obtain the adjoint of the operator u → v × u. Let Ψ� be such that (v × u1) · u2 = u1 · Ψ�(u2). Then by manipulation of

vector identities, we get

(v × u1) · u2 = −u1 · (v × u2). (A2)

The adjoint of u → v × u is thus u → −v × u.
2. Let us now find the adjoint of u → ∇ × u. Let Ψ� be such that (∇ × u1) · u2 = u1 · Ψ�(u2).

(∇ × u1) · u2 = u1 · (∇ × u2) + ∇ · (u1 × u2). (A3)

The adjoint of u → ∇ × u is thus u → ∇ × u, the term ∇ · (u1 × u2) representing a boundary term that will be used in the adjoint
integration to test the sensitivity of the cost function to the boundary conditions, for example.

3. We now determine the adjoint of u → αu. Let Ψ� be such that (αu1) · u2 = u1 · Ψ�(u2). It is easy to see that

(αu1) · u2 = u1 · (αu2). (A4)

The adjoint of u → αu is thus u → αu (this operator is said to be self-adjoint).
4. Finally, we need to determine the adjoint of u → ∂u/∂t . Let Ψ� be such that ∂u1/∂t · u2 = u1 · Ψ�(u2). We have

∂u1

∂t
· u2 = −u1 · ∂u2

∂t
+

∂(u1 · u2)

∂t
. (A5)

The adjoint of u → ∂u/∂t is thus u → −∂u/∂t , the term ∂(u1·u2)
∂t

now representing an initial conditions term which could be used in
the adjoint integration to study the effect of the initial conditions on a particular cost function.

We are thus able now to write the adjoint induction equation, using the property that the adjoint of a composition of operators is
the composition of the adjoint operators taken in the reverse order.
Finally, we have

∂B
∂t

= v × (∇ × B) − α∇ × B + ∇ × (η∇×B). (A6)
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APPENDIX B

VARIATIONAL APPROACH

In this section, we will follow and adapt the procedure described in Talagrand (2003). Let us consider the coupled induction
Equations (9) and (10) for the fields A and Bz. We search solutions of this set of equations over the rectangular domain
D = [x1, x2] × [y1, y2] × [t1, t2] in (x, y, t)-space. These equations are first order with respect to t and second order with respect to x
and y.

Now consider a field Bobs
z (x, y, t) of observations over the domain D. Since we assimilate data only on the toroidal field (as a proxy

of the surface sunspots), our cost function J is written as

J (B) = 1

2

∫ ∫ ∫
D

(Bz − Bobs
z )2 dxdydt. (B1)

Its variation is thus

δJ =
∫ ∫ ∫

D

(Bz − Bobs
z )δBz dxdydt. (B2)

We aim to express the variations of the cost function J to variations of our well-defined input parameters which are as follows.

1. The values of A and Bz for all points in space at the initial time t = t1.
2. The constant magnetic diffusivity η.
3. The function representing the α-effect α(x, y).
4. The azimuthal velocity function v(x,y).

Let us derive the tangent linear equation by differentiating Equations (9) and (10) with respect to A, Bz, the parameter η, and the
functions v and α, and call their variations δA, δBz, δη, δv, and δα, respectively. The equations read

∂δA

∂t
− δαBz − αδBz − η

(
∂2δA

∂x2
+

∂2δA

∂y2

)
− δη

(
∂2A

∂x2
+

∂2A

∂y2

)
= 0 (B3)

∂δBz

∂t
− ∂δv

∂x

∂A

∂y
+

∂δv

∂y

∂A

∂x
− ∂v

∂x

∂δA

∂y
+

∂v

∂y

∂δA

∂x
− η

(
∂2δBz

∂x2
+

∂2δBz

∂y2

)
− δη

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)
= 0. (B4)

Using Lagrange multipliers λ(x, y, t) and γ (x, y, t), respectively, for Equations (B3) and (B4), we get (introducing a negative sign
for simplicity)

δJ =
∫ ∫ ∫

D

((
Bz − Bobs

z

)
δBz − λ

[
∂δA

∂t
− δαBz − αδBz − η

(
∂2δA

∂x2
+

∂2δA

∂y2

)
− δη

(
∂2A

∂x2
+

∂2A

∂y2

)]

−γ

[
∂δBz

∂t
− ∂δv

∂x

∂A

∂y
+

∂δv

∂y

∂A

∂x
− ∂v

∂x

∂δA

∂y
+

∂v

∂y

∂δA

∂x
− η

(
∂2δBz

∂x2
+

∂2δBz

∂y2

)
− δη

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)])
dxdydt. (B5)

We now wish to remove all the differentiation operating on A, Bz, η, v, and α. To do so, we use as many integrations by parts as
necessary. For the sake of clarity we demonstrate the procedure for a few typical terms:

−
∫ ∫ ∫

D

λ
∂δA

∂t
dxdydt = −

∫ x2

x1

∫ y2

y1

λδAdxdy

∣∣∣∣
t2

t1

+
∫ ∫ ∫

D

∂λ

∂t
δA dxdydt. (B6)

Diffusion terms require a double integration by parts:

∫ ∫ ∫
D

λη
∂2δA

∂x2
dxdydt =

∫ y2

y1

∫ t2

t1

λη
∂δA

∂x
dydt

∣∣∣∣
x2

x1

−
∫ ∫ ∫

D

∂(λη)

∂x

∂δA

∂x
dxdydt

=
∫ y2

y1

∫ t2

t1

λη
∂δA

∂x
dydt

∣∣∣∣
x2

x1

−
∫ y2

y1

∫ t2

t1

∂(λη)

∂x
δA dydt

∣∣∣∣
x2

x1

+
∫ ∫ ∫

D

∂2(λη)

∂x2
δA dxdydt. (B7)

We note that the double integration modifies the sign of the diffusion term relative to the time derivative; this is expected since by
going backward in time we should anti-diffuse:

−
∫ ∫ ∫

D

γ
∂v

∂y

∂δA

∂x
dxdydt = −

∫ y2

y1

∫ t2

t1

γ
∂v

∂y
δA dydt

∣∣∣∣
x2

x1

+
∫ ∫ ∫

D

∂

∂x

(
γ

∂v

∂y

)
δA dxdydt. (B8)
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Terms involving variations of the ingredients are treated likewise:

−
∫ ∫ ∫

D

γ
∂A

∂x

∂δv

∂y
dxdydt = −

∫ x2

x1

∫ t2

t1

γ
∂A

∂x
δv dxdt

∣∣∣∣
y2

y1

+
∫ ∫ ∫

D

∂

∂y

(
γ

∂A

∂x

)
δv dxdydt. (B9)

Systematically applying this method to all the terms that possess differentiation of the variations and grouping the terms by
variations, we get the following equation for δJ :

δJ =
∫ ∫ ∫

D

([
∂λ

∂t
+ η

(
∂2λ

∂x2
+

∂2λ

∂y2

)
+

∂

∂x

(
γ

∂v

∂y

)
− ∂

∂y

(
γ

∂v

∂x

)]
δA

+

[
∂γ

∂t
+ λα + η

(
∂2γ

∂x2
+

∂2γ

∂y2

)
+

(
Bz − Bobs

z

)]
δBz + δαλBz

+δη

[
λ

(
∂2A

∂x2
+

∂2A

∂y2

)
+ γ

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)]

−δv

[
∂

∂x

(
γ

∂A

∂y

)
− ∂

∂y

(
γ

∂A

∂x

)])
dxdydt

−
∫ x2

x1

∫ y2

y1

λδAdxdy

∣∣∣∣
t2

t1

(B10)

+
∫ y2

y1

∫ t2

t1

(
η

[
λ

∂δA

∂x
− ∂λ

∂x
δA

]
− γ

∂v

∂y
δA + γ δv

∂A

∂y

)
dydt

∣∣∣∣
x2

x1

+
∫ x2

x1

∫ t2

t1

(
η

[
λ

∂δA

∂y
− ∂λ

∂y
δA

]
+ γ

∂v

∂x
δA − γ δv

∂A

∂x

)
dxdt

∣∣∣∣
y2

y1

−
∫ x2

x1

∫ y2

y1

γ δBz dxdy

∣∣∣∣
t2

t1

+
∫ y2

y1

∫ t2

t1

η

[
γ

∂δBz

∂x
− ∂γ

∂x
δBz

]
dydt

∣∣∣∣
x2

x1

+
∫ x2

x1

∫ t2

t1

η

[
γ

∂δBz

∂y
− ∂γ

∂y
δBz

]
dxdt

∣∣∣∣
y2

y1

.

This expression is valid for any λ(x, y, t) and γ (x, y, t). The space-time integral can be canceled by requiring that λ and γ verify
the following partial differential equations:

∂λ

∂t
+ η

(
∂2λ

∂x2
+

∂2λ

∂y2

)
+

∂

∂x

(
γ

∂v

∂y

)
− ∂

∂y

(
γ

∂v

∂x

)
= 0

∂γ

∂t
+ λα + η

(
∂2γ

∂x2
+

∂2γ

∂y2

)
+

(
Bz − Bobs

z

) = 0. (B11)

We also require that λ(x, y, t2) and γ (x, y, t2) equal zero for any x or y. Further, since A and Bz are constrained to be equal to zero
at the boundary, their variations are zero and all the terms involving either δA and δBz in the surface integrals above vanish. For the
terms involving derivatives of δA and δBz, we require that λ and γ equal zero on boundaries x = x1, x2 and y = y1, y2 for any t.
We note that Equations (B11) with the conditions on λ and γ stated above unambiguously define the functions in the whole domain.
Equations (B11) are first order in time and second order in space and define a well-posed problem for backward integration with
respect to t because of the positive sign of the diffusion terms. The specification of λ and γ at the final time t2 and along the spatial
boundaries x1, x2, y1, and y2 therefore unambiguously define the functions λ(x, y, t) and γ (x, y, t).
Taking into account these various conditions, Equation (B10) reduces to

δJ =
∫ x2

x1

∫ y2

y1

λ(x, y, t1)δA(x, y, t1)dxdy +
∫ x2

x1

∫ y2

y1

γ (x, y, t1)δBz(x, y, t1)dxdy +
∫ x2

x1

∫ y2

y1

[
δα

∫ t2

t1

λBzdt

]
dxdy

+ δη

∫ ∫ ∫
D

[
λ

(
∂2A

∂x2
+

∂2A

∂y2

)
+ γ

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)]
dxdydt −

∫ ∫ ∫
D

δv

[
∂

∂x

(
γ

∂A

∂y

)
− ∂

∂y

(
γ

∂A

∂x

)]
dxdydt.

(B12)

The above equation reveals that the partial derivatives of the objective function J with respect to η, α(x, y), v(x,y), A(x, y, t1), and
Bz(x, y, t1) are equal to
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∂J
∂A

(x, y, t1) = λ(x, y, t1) and
∂J
∂Bz

(x, y, t1) = γ (x, y, t1)

∂J
∂η

=
∫ ∫ ∫

D

[
λ

(
∂2A

∂x2
+

∂2A

∂y2

)
+ γ

(
∂2Bz

∂x2
+

∂2Bz

∂y2

)]
dxdydt

∂J
∂α

=
∫ t2

t1

λBz dt, ∀(x, y) (B13)

∂J
∂v

=
∫ t2

t1

[
∂

∂y

(
γ

∂A

∂x

)
− ∂

∂x

(
γ

∂A

∂y

)]
dt, ∀(x, y).

Here we solve a simplified problem by considering that A and Bz at t = t1 are known (see Talagrand & Courtier 1987 for discussions
about sensitivity to initial conditions).
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