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ABSTRACT

Context. The reason for the observed thinness of the solar tachocline is still not well understood. One of the explanations
that have been proposed is that a primordial magnetic field renders the rotation uniform in the radiation zone.
Aims. We test here the validity of this magnetic scenario through 3D numerical MHD simulations that encompass both
the radiation zone and the convection zone.
Methods. The numerical simulations are performed with the anelastic spherical harmonics (ASH) code. The computa-
tional domain extends from 0.07 R� to 0.97 R�.
Results. In the parameter regime we explored, a dipolar fossil field aligned with the rotation axis cannot remain confined
in the radiation zone. When the field lines are allowed to interact with turbulent unstationary convective motions at
the base of the convection zone, 3D effects prevent the field confinement.
Conclusions. In agreement with previous work, we find that a dipolar fossil field, even when it is initially buried deep in-
side the radiation zone, will spread into the convective zone. According to Ferraro’s law of iso-rotation, it then imprints
on the radiation zone the latitudinal differential rotation of the convection zone, which is not observed.
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1. Introduction

The discovery of the solar tachocline can be considered as
one of the great achievements of helioseismology (see Brown
et al. 1989). In this layer the rotation switches from differ-
ential (i.e., varying with latitude) in the convection zone
to nearly uniform in the radiation zone below. Its extreme
thinness (less than 5 % of the solar radius) came as a sur-
prise (see Charbonneau et al. 1999) and has still not been
explained properly.

Spiegel & Zahn (1992) made the first attempt to model
the tachocline, and they showed that it should spread deep
into the radiation zone owing to thermal diffusion. As a re-
sult, the differential rotation should extend down to 0.3R�
after 4.5 Gyr, contrary to what is inferred from helioseis-
mology (Schou et al. 1998; Thompson et al. 2003). The au-
thors suggested one way to confine the tachocline, namely
to counter-balance thermal diffusion by an anisotropic tur-
bulence, which would smooth the differential rotation in
latitude. This model was successfully simulated in 2D by
Elliott (1997).

Gough & McIntyre (1998) (GM98 hereafter) argued
that such an anisotropic turbulent momentum transport is
not able to erode a large-scale latitudinal shear, citing ex-
amples from geophysical studies (see Starr 1968 and more
recently Dritschel & McIntyre 2008 for a comprehensive
review). For instance, the quasi-biennal oscillation in the
Earth’s stratosphere arises from the anti-diffusive behavior
of anisotropic turbulence. But the question is hardly settled
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because Miesch (2003) found in his numerical simulations
that this turbulence is indeed anti-diffusive in the verti-
cal direction, but the shear is reduced in latitude. Similar
conclusions were reached through theoretical (analytical)
studies by Kim (2005), Leprovost & Kim (2006), and Kim
& Leprovost (2007).

Gough & McIntyre proposed an alternate model, in
which a primordial magnetic field is buried in the radia-
tive zone and inhibits the spread of the tachocline. This is
achieved through a balance between the confined magnetic
field and a meridional flow pervading the base of the convec-
tion zone. Such a fossil field was also invoked by Rudiger &
Kitchatinov (1997) to explain the thinness of the tachocline
and by Barnes et al. (1999) to interpret the lithium-7 de-
pletion at the solar surface. Moreover, it would easily ac-
count for the quasi uniform rotation of the radiative inte-
rior, which the hydrodynamic model of Spiegel & Zahn does
not (at least in its original formulation). However, one may
expect that such a field would spread by ohmic diffusion,
and that it would eventually connect with the convection
zone, thus imposing the differential rotation of that zone
on the radiation zone below.

In order to test the magnetic confinement scenario and
to put constraints on the existence of such a primordial
field, several numerical simulations of the solar radiation
zone were performed by Garaud (2002) in 2D, and by Brun
& Zahn (2006) (i.e. paper I, hereafter BZ06) in 3D. These
simulations exhibit a propagation of the differential rota-
tion into the radiation zone (primarily in the polar region).
The primordial magnetic field successfully connects to the
base of the convection zone where the shear is imposed
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and, according to Ferraro’s law of iso-rotation (Ferraro
1937), the angular velocity is transmitted along the mag-
netic field lines from the convection zone into the radiative
interior, much faster than it would through thermal diffu-
sion. However, in the aforementioned calculations the base
of the convection zone was treated as an impenetrable wall,
i.e. radial motions could not penetrate in either direction
(from top down or from bottom up). No provision was made
for a meridional circulation originating in the convection
zone that would penetrate into the radiation zone and could
prevent the upward spread of the magnetic field. This pene-
tration was taken into account in numerical simulations by
Sule et al. (2005), Rudiger & Kitchatinov (2007), Garaud
& Garaud (2008), in a model of the polar region by Wood
& McIntyre (2007), and in simulations coupling the radia-
tive zone to a convective zone by Rogers (2011) to prop-
erly represent the GM98 scenario. In most of these models,
an axisymmetric and stationary meridional circulation was
imposed at the top of the radiation zone, strong enough
to bend the magnetic field lines of the primordial field. As
could be expected, various profiles of meridional circulation
resulted in different confinement properties, thus emphasiz-
ing the need for a more self-consistent approach. We thus
propose here to treat the problem by letting a genuine con-
vective envelope dynamically generate its meridional cir-
culation and differential rotation and to study how these
nonlinearly generated flows interact with a fossil field.

Our 3D simulations treat the nonlinear coupling of the
convection and radiation zones, and the model includes all
physical ingredients that play a role in the tachocline con-
finement (thermal and viscous diffusion, meridional circula-
tion, convective penetration, solar-like stratification, mag-
netic fields, pumping, ...). The paper is organized as follows.
In Sect. 2 we describe the model we use to address the ques-
tion of the magnetic confinement of the tachocline. We then
emphasize in Sect. 3 the global trend of our simulations, and
examine in Sect. 4 the dynamics of the tachocline region.
Discussions and conclusions are reported in Sect. 5.

2. The model

We use the well tested ASH code (anelastic spherical har-
monics, see Clune et al. 1999, Miesch et al. 2000, Brun
et al. 2004). Originally designed to model solar convec-
tion, it has been adapted to include the radiation zone as
well (see BZ06). With this code, Brun et al. (2011) per-
formed the first 3D MHD simulations of the whole sun
from r = 0.07R� to r = 0.97R� with realistic stratifi-
cation, thus nonlinearly coupling the radiation zone with
the convection zone. Convective motions at the base of the
convective envelope (around r = 0.72R�) penetrate into
the radiative zone over a distance of about 0.04R�, ex-
citing internal waves that propagate over the entire radia-
tive interior. The model maintains a radiation zone in solid
body rotation and develops a differentially rotating con-
vective zone that agrees well with helioseismic inversions
(see Thompson et al. 2003). Although approximately three
times thicker than observed, the simulated tachocline pos-
sesses both a latitudinal and radial shear. This tachocline
spreads downward first because of thermal diffusion, and
later because of viscous diffusion, as explained in SZ92. We
do not assume here any anisotropic turbulent diffusivity to
prevent the spread of the tachocline.

In the present work, we start our simulation from a ma-
ture model with a convection and a radiation zone. We then
introduce an axisymmetric dipole-like magnetic field deep
in the inner radiation zone. This work is meant to explore
further the mechanisms considered in BZ06. The system is
then evolved self-consistently through the interplay of fluid
and magnetic field dynamics. As in Brun et al. (2011), the
computational domain extends from rbottom = 0.07R� to
rtop = 0.97R�, and the boundary between radiation and
convection zone is defined at rbcz ∼ 0.715R�, based on
the initial entropy profile (see Figs. 1(a) and 1(c)) that
is assumed to setup the background equilibrium state. We
also define in Fig. 1(c) the convective overshooting depth
rov ∼ 0.675R� (see Sect. 2.2), the penetration depth of the
meridional circulation rMC ∼ 0.68R� (see Sect. 3.2), and
the shear depth rshear ∼ 0.58R� (see Sect. 2.2).

The diffusivities (Fig. 2) were chosen to achieve a realis-
tic rotation profile in the convective envelope (see Sect. 2.2)
by means of an efficient angular momentum redistribution
by Reynolds stresses (Brun & Toomre 2002; Miesch et al.
2006). In the radiation zone, they have the same values as in
BZ06 for consistency with previous studies. We define the
following step function to construct our diffusivity profiles:

step(r) =
1

2

(
1 + tanh

(
10−10 r − rν

νs

))
,

ν = νeνt + νt (1− νe) step, (1)

where rν = 4.7 1010 cm and νs = 0.1 control the radial
localization and the thickness of the diffusivity jump. The
parameter νt = 8.0 1012 cm2 s−1 controls the viscosity value
in the convection zone and νe = 10−3 controls the size of
the viscosity jump. The thermal and magnetic diffusivities
are similarly defined with the same formulation as for the
step function, but with different κt = 3.2 1013 cm2 s−1, ηt =
1.6 1013 cm2 s−1 and κe = 0.25, ηe = 5.0 10−3 parameters
to generate the diffusivity profiles plotted in Fig. 2. We used
a Nr×Nθ×Nϕ = 1024×256×512 grid on massively parallel
computers to compute this model. The Prandtl number ν/κ
is 10−3 in the radiative zone and 0.25 in the convective
zone; and the magnetic Prandtl number ν/η is 0.1 in the
radiative zone and 0.5 in the convective zone. The hierarchy
between the various diffusivities is thus respected even if
their amplitudes are higher than in the Sun. As will be
seen in Sect. 3, they were chosen in a way that nonlinear
processes act efficiently in the regions of interest.

2.1. Governing equations

ASH solves the 3D MHD set of equations (2-6). It uses the
anelastic approximation to filter out the sound waves, and
the LES approach (large eddy simulation) with parame-
terization to take into account subgrid motions. The mean
state is described by mean profiles of density ρ̄, tempera-
ture T̄ , pressure P̄ , and entropy S̄. The reference state is
taken from a thermally relaxed 1D solar structure model
(Brun et al. 2002) and is regularly updated. Fluctuations
around the reference state are denoted without bars. The
governing equations are written in electromagnetic units, in
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(a)

(b)

(c)

Fig. 1. (a) Mean entropy gradient profile and zoom in the
region where the entropy gradient changes sign. Entropy
gradients are plotted in erg g−1K−1 cm−1. (b) Radial ve-
locity on a spherical shell near the top of the convection
zone (0.96R�). Dark colors represent the downflows, while
bright-yellow colors denote the upflows. (c) rms velocities
profiles at the interface between radiative and convective
zones. The four vertical bars label the base of the convec-
tion zone (where the entropy gradient changes sign), the
penetration depth of meridional circulation, the overshoot-
ing depth of convective motions, and the shear depth where
differential rotation vanishes.

the reference frame rotating at angular velocity Ω0 = Ω0ez:

∇ · (ρ̄v) = 0 (2)

∇ ·B = 0 (3)

ρ̄ [∂tv + (v ·∇) v + 2Ω0 × v] = −∇P + ρg

+
1

4π
(∇×B)×B−∇ · D −

[
∇P̄ − ρ̄g

]
(4)

ρ̄T̄
[
∂tS + v ·∇

(
S̄ + S

)]
= ∇ ·

[
κrρ̄cp∇

(
T̄ + T

)
+ κ0ρ̄T̄∇S̄ + κρ̄T̄∇S

]
+

4πη

c2
J2

+2ρ̄ν[eijeij −
1

3
(∇ · v)

2
] + ρ̄ε (5)

∂tB = ∇× (v ×B)−∇× (η∇×B) , (6)

Fig. 2. Radial profile of the diffusivities used in our model
(the values are given in cgs units). The κ profile corresponds
to thermal diffusivity in equation (5), acting on the entropy
fluctuations.

where v is the local velocity, B the magnetic field, κ, ν
and η are respectively the effective thermal diffusivity, eddy
viscosity, and magnetic diffusivity. The radiative diffusivity
κr is deduced from a 1D model and adjusted in the ra-
diative zone and in the overshooting layer to achieve an
equilibrated radial flux balance (see Fig. 3). The thermal
diffusion coefficient κ0 plays a role at the top of the convec-
tive zone (where convective motions vanish) to ensure the
heat transport through the surface. This term proportional
to dS̄/dr is part of our subgrid scale treatment in the con-
vection zone. The unresolved flux only acts in the upper
part of the convection zone (see Fig. 3), and κ0 is chosen
to be small enough that this flux does not play any role
in the radiative interior (besides eventual numerical stabi-
lization). ρ̄ε is the rate of nuclear energy generation chosen
to have the correct integrated luminosity (see Brun et al.
2011). J = (c/4π)∇ × B is the current density, and the
viscous stress tensor D is defined by

Dij = −2ρ̄ν

[
eij −

1

3
(∇ · v) δij

]
. (7)

The system is closed by using the linearized ideal gas law:

ρ

ρ̄
=
P

P̄
− T

T̄
=

P

γP̄
− S

cp
, (8)

with cp the specific heat at constant pressure and γ the
adiabatic exponent.

We chose rigid and stress-free conditions at the bound-
ary shells for the velocity. We also imposed constant mean
entropy gradient at the boundaries, matched the magnetic
field to an external potential magnetic field at the top, and
treated the bottom boundary as a perfect conductor.

2.2. Characteristics of the background model and choice of
the initial magnetic field

Integrated solar models built with the ASH code that cou-
ple a deep radiative interior to a convective zone have been
previously described in Brun et al. (2011); here we need
only to stress some properties that are of particular inter-
est for our study of the tachocline dynamics.

The starting point of our model is the choice of thermo-
dynamic quantity profiles that will allow us to treat the con-
vective and radiative zones together. Using a standard solar
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(a) (b) (c)

Fig. 4. (a) Azimuthally and temporally averaged rotation frequency. Yellow denotes the rotation rate of the interior,
red is the higher rotation rate and blue the lower rotation rate. (b) Radial profile of rotation frequency at different
latitudes. (c) Meridional circulation in the radiation zone (left) and in the convection zone (right), evaluated from the
poloidal mass flux averaged over time and longitude. Solid contours denote counterclockwise circulation, dashed contours
clockwise circulation.

Fig. 3. Radial flux balance. In the convection zone, energy
is mainly carried by the enthalpy flux; the entropy flux
represents the flux carried by the unresolved motions. Note
the penetration of convective motions below the convection
zone (represented by the dashed line).

model calibrated to seismic data (Brun et al. 2002) com-
puted by the CESAM code (Morel 1997), we chose to use
the real solar stratification in the radiation zone and take
a constant negative initial entropy gradient in the convec-
tion zone. These profiles are closely in agreement the guess
profile after a Newton-Raphson solve. After setting a sta-
ble/unstable stratification, we perturbed the background
state assuming a Rayleigh number well above the critical
Rayleigh number for the onset of convection. A sample of
the convective motions realized in the model is shown in
Fig. 1(b), where one can recognize the characteristic banana
pattern near the equator and a patchy behavior at high lat-
itudes (see Brun & Toomre 2002). We then let the model
evolve toward a mature state in two steps. First we let

the overshooting layer and the differential rotation develop.
Then we sped up the thermal relaxation of the system by
adding a bump on the radiative flux in the overshooting
region (see Brun et al. 2011 for more details). Thanks to
this procedure, we quickly achieved good radial flux bal-
ance (Fig. 3). The energy provided by nuclear reactions is
transported through radiation in the radiation zone, and is
essentially transported by the enthalpy flux in the convec-
tion zone. The overshoot region, defined here as the region
of negative enthalpy flux, extends from rbcz = 0.715R� to
rov = 0.675R�, leading to dov ≈ 0.04R� ≈ 0.4Hp (where
Hp is the local pressure scale height). In the convection
zone, the radiative flux quickly goes to zero, while viscous
and kinetic energy fluxes tend to oppose the outward trans-
port of heat of the enthalpy flux associated to the convective
motions. Near the top of the domain, convective motions
vanish due to our choice of impenetrable wall; thus the en-
thalpy flux decreases, and the energy is then transported
by the entropy flux.

With our choice of diffusion coefficients (Fig. 2), the
system reached a state of fully developed convection with
a rotation profile that agreed well with the results of he-
lioseismology (e.g. Thompson et al. 2003): the convection
zone rotates faster at the equator than at the poles, and the
rotation profiles are conical at mid-latitudes (see Fig. 4(a)).
We display the radial profile of Ω at indicated latitudes in
Figure 4(b). We clearly see the presence of a tachocline.
Future work will aim at reducing the thickness of the jump
of the diffusivities (Fig. 2) with a more flexible radial dis-
cretization (currently under development) to model a thin-
ner hydrodynamic tachocline. Finally, the meridional cir-
culation in the convection zone is composed by a major
cell in each hemisphere (Fig. 4(c)), and by smaller counter-
rotating cells at the poles.

When the hydrodynamic model reached an equilibrated
state (as reported in Brun et al. 2011), we introduced a
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dipolar axisymmetric magnetic field buried in the radiative
zone. It is set to vanish at the base of the tachocline, below
the level where differential rotation starts, and we imposed
the functional form B = B0 (Brer +Bθeθ), with

Br =
1

r2 sin θ
∂θΨ , Bθ = − 1

r sin θ
∂rΨ . (9)

Ψ(r, θ) is constant on field lines. As in BZ06, we chose

Ψ = (r/R)
2

(r −Rb)2 sin2 θ for r ≤ Rb
= 0 for r ≥ Rb (10)

where Rb = 0.57R� is the bounding radius of the con-
fined field. According to Gough & McIntyre (1998), the
amplitude of the magnetic field controls the scalings of the
tachocline and the magnetopause (a thin layer of intense
magnetic field). With our choice of parameters, these scal-
ings would require an initial seed magnetic field of the order
of 104G (i.e., δ/R ∼ ∆/R ∼ 10−2, in GM98’s notations).
Here we set B0 to 4.2 104G to be at equipartition of energy
in the radiative zone between magnetic energy and total
kinetic energy in the rotating reference frame.

We stress here that such a magnetic field is subject to
the high m Tayler instability (see Tayler 1973; Brun &
Zahn 2006; Brun 2007) because it has no azimuthal com-
ponent to start with. One could prefer to choose a mixed
poloidal/toroidal magnetic field because it is the only possi-
ble stable configuration of magnetic field in radiative stellar
interiors (Tayler 1973; Braithwaite & Spruit 2004; Duez &
Mathis 2010). However, this has no consequences for the
problem at hand, because a toroidal field quickly develops
and stabilizes the magnetic configuration.

3. General evolution

The first evolutionary phase of our simulation is similar to
that in BZ06, with the magnetic field diffusing through the
tachocline. But here we follow its evolution as it enters into
the convection zone, and we witness the back-reaction of
convective motions on the field. The outcome is the same
in the end, as we shall see in Sect. 3.1. More details on
tachocline dynamics are given in Sect. 3.2.

3.1. Global evolution of the magnetic field

We started the simulation by burying the primordial field
deep within the radiative interior and below the tachocline.
As the simulation proceeded, the field expanded through
the tachocline into the convection zone, where it experi-
enced a complex evolution under the combined action of
advection by the convective motions, shearing through the
differential rotation and ohmic diffusion. It finally reached
the domain boundary (Fig. 5(b)) where it connected to an
external potential field.

The distortion of the field lines produces magnetic
torques that force the angular velocity Ω to tend toward
constant along the field lines of the mean poloidal field,
thus leading to Ferraro’s law of iso-rotation. This is illus-
trated in Fig. 5, where the iso-contour Ω = 414 nHz (i.e.,
the initial rotation frequency of the whole radiation zone)
is thicker and more intense. As a result, the radiation zone
slows down under the influence of the magnetic torques
(Fig. 5(c)). Our choice of torque-free boundary conditions

implies that the total angular momentum is conserved. It is
extracted from the radiative zone and redistributed within
the convective envelope.

As the initial magnetic field meets the angular velocity
shear, toroidal magnetic field is created in the tachocline re-
gion via the Ω-effect (see Moffatt (1978)), consistent with
the magnetic layer introduced in GM98. Near the initial
time (Fig. 6(a)) the the magnetic layer exhibits a mixed
l = 1, l = 3 configuration. The axisymmetric longitudi-
nal magnetic field then presents a l = 3 structure (Fig.
6(b)), consistent with the action of differential rotation on
the dipolar magnetic field through the induction equation.
This layer of axisymmetric azimuthal magnetic field spreads
downward, accompanying the spread of differential rotation
(Figs. 6(c)-6(d)). We also observe that the upper radial lo-
calization of maximum azimuthal magnetic field remains
remarkably localized at the base of our initial tachocline.
Some azimuthal field does penetrate into the convective en-
velope, partly because of some local Ω-effect that is at work
in this region.

Meridional circulations exist in the radiative and con-
vective zones and are self-consistently generated by the con-
vective motions and local dynamics (Fig. 6). Observe that
the evolution of the magnetic layer greatly perturbs the
pattern of the meridional circulations in the radiative zone.
Comparing Fig. 6 to the hydrodynamic model (Fig. 4(c)),
we observe that even if temporal averages of the meridional
circulation produce large hemispherical cells in the convec-
tion zone, the instantaneous pattern of this flow is multi-
cellular both in longitude and latitude. Those 3D motions
are unable to prevent the magnetic field from spreading into
the convective zone, in contrast to what GM98 and Garaud
& Garaud (2008) proposed in their 2D scenario. Note that
Rogers (2011) confirm the absence of magnetic field confine-
ment in recent 2D simulations, where the author coupled a
radiative interior to a convective envelope.

Azimuthally averaged views can mislead the reader here
bacause from those figures one cannot deduce the real im-
pact of the turbulent convective motions on the magnetic
field. Figure 7 displays 3D visualizations that emphasize at
the same time the advective and diffusive processes that act
on the magnetic field in the convective zone. Magnetic field
lines are twisted and sheared by convective motions, but
still the magnetic field connects the radiative and convec-
tive zones. One clearly observes the mostly horizontal mag-
netic layer in the tachocline on Fig. 7(c). In that panel also
the radiation zone starts to show the ‘footprint’ of the dif-
ferential rotation of the convection zone. In order to follow
one particular field line, we display in Fig. 8 a 3D render-
ing time evolution using a high sampling cadence, viewed
from the north pole. We observe that particular field lines
(labeled A, B, and C) are strongly influenced by convective
motions and exhibit a complex behavior, far from just sim-
ple diffusion. The primary importance of 3D motions will
also be discussed in Sect. 3.2.

We stress here that the magnetic field lines first pen-
etrate into the convective zone through the equator. One
may wonder how this can be achieved in spite of the mag-
netic pumping (see Tobias et al. 2001; Weiss et al. 2004)
that should be acting in this region. Let us mention several
reasons why the magnetic pumping may not be efficient
enough in our simulation, and by extension perhaps in the
Sun:
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(a) (b) (c) (d)

Fig. 5. Poloidal snapshots of azimuthal averages of the rotation profile (colored background) and magnetic field lines
(black). Color table is the same as in Fig. 4(a).

(a) (b) (c) (d)

Fig. 6. Poloidal snapshots of 〈Bϕ〉 (colored background) and instant meridional circulation (black lines). Initially, the
magnetic field is purely poloidal. The first figure on the left is taken just after the beginning iteration (not the same time
as in Fig. 5(a)) to demonstrate how the longitudinal magnetic field is primarily created. Red is the positive magnetic
field, and blue the negative magnetic field. In order to display the azimuthal magnetic field in the radiation zone and the
convection zone (where it is much weaker), a logarithmic scale was used for the color table. The two white lines indicate
the base of the convection zone rbcz and the shear depth rshear (cf Fig. 1(c)).
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(a) (b) (c)

Fig. 7. Three-dimensional views of the longitudinal velocity in the rotating frame. Red are the positive velocities, and
blue the negative velocities. Picture (a) is the initial time where we added the magnetic field, and picture (b) is taken
after two solar rotation periods. Picture (c) is taken much later in the simulation, when the magnetic layer became stable.
Colored lines are the magnetic field lines we constructed from only a few seed points to be able to distinguish them. Dark
colors denote lower magnetic field intensity. Note that for the third image, we only put in seed points at one longitude
value to distinguish the field lines that explore almost the entire ϕ domain in the radiation zone.

Fig. 8. Three-dimensional views from the north pole. The left picture corresponds to Fig. 7(c), and the two following
snapshots are taken 2 and 4 days later. We reversed the color table of the field lines to emphasize their movement. The
green arrows indicate the movement of three field lines during this period.

• Magnetic pumping has been proven to be much less effi-
cient when strong rotation is present and enhances hori-
zontal mixing. This corresponds to a low Rossby number
regime, which is the case for the Sun and our simula-
tion. Indeed, our Rossby number Ro = ωrms/2Ω varies
from 0.1 to 1 in the convection zone.

• It has also been proven to be much less efficient as
the underlying region (here the tachocline) is more sta-
bly stratified. We use here a realistic (strong) solar-like
stratification.

• The meridional circulation tends to advect the magnetic
field upward at the equator, opposing the effect of the
magnetic pumping. However, our simulation is perhaps
not turbulent enough to counterbalance this effect, even
though Rm > 1.

• Our relatively high diffusivities may facilitate the con-
nection between the two zones by favoring the field
lines’ expansion. Nevertheless, it is also known that dif-
fusion helps the ’slipping’ of the field lines (e.g., Zanni &

Ferreira 2009 from ideal flux frozen scenario). This im-
plies that even though the field lines have pervaded into
the convection zone, they may not be efficiently enough
anchored to transport angular momentum. More details
will be given in Sect. 3.2.

• The nature of penetration at the base of the convection
zone is influenced by the Peclet number. In our case,
the Peclet number is on the order of 1 at the base of
the convection zone, implying a regime of overshooting
rather than of penetrative convection (Zahn 1991). This
translates into a more extended region of mixing than
what is occurring in the Sun. Hence, the motions in our
simulation are likely to be more vigorous at rov.

For all these reasons, the magnetic pumping near the equa-
tor in a fossil buried magnetic field scenario (Wood &
McIntyre 2011) is quite complex and cannot be taken for
granted as a mechanism to impermeably confine an inner
magnetic field near the equator (detailed magnetic field evo-
lution may be found in Sect. 3.2).
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In order to watch how the primordial magnetic field
manifests its presence in the convective zone, we tracked
the evolution of Br near the surface (at r = 0.96R�).
Our choice of parameters (Pm = 0.5) for this simulation
prevents the development of a dynamo-generated magnetic
field in the convection zone because the resulting mag-
netic Reynolds number is less than one hundred there. The
threshold for dynamo action is likely to be above that value,
as shown by Brun et al. (2004). As a consequence, the pres-
ence of a magnetic field at the surface of the model (as seen
in Fig. 9) is solely caused by the spreading and reshuffling
of the inner magnetic field through the convective enve-
lope. Since no dynamo action is operating in the model,
the magnetic field decays on an ohmic time scale and will
eventually vanish. However, we did not run the simulation
long enough to access this decaying phase across the whole
Sun. We also stress that the ratio ME/KE is only few
10−3 throughout the convection zone during the late evo-
lution of our model; it is still far too low to observe any
influence of the magnetic field on the convective patterns
(see Cattaneo et al. 2003). Note that the non-axisymmetric
pattern of Br on Fig. 9 is strongly correlated with vr, the
vertical velocity pattern, with opposite sign of Br in the
northern and southern hemispheres. Because the latitudi-
nal derivative of vr changes sign at the equator, we deduce
that it is the shear term (B ·∇) v of the induction equation
that dictates the evolution of Br in the convection zone. An
interesting diagnostic is provided by reconstructing (with a
potential field extrapolation) the magnetic field outside our
simulated star, up to 2R� (Fig. 10). One easily recognizes
the magnetic layer in the tachocline and the rapidly evolv-
ing magnetic field in the convection zone. The reconstructed
outer magnetic field looks mainly dipolar and does not give
any hints for its complicated inner structure.

As mentioned above, our initial magnetic field is sub-
ject to high m instabilities because it starts as a purely
poloidal field. Quickly the development of a toroidal com-
ponent stabilizes the poloidal field, resulting in a complex
poloidal-toroidal topology. In the magnetic layer, the az-
imuthal component of the toroidal field can locally be much
larger than the poloidal field. Such a toroidal field is sub-
ject to low m instabilities (e.g. Tayler 1973; Zahn et al.
2007; Brun 2007). We observe the recurring of the m = 1
pattern at high latitudes on Fig. 11(d). The profiles of the
horizontal components of the magnetic field are shown in
Figs. 11(a) and 11(c). In the two right panels of Fig. 11, we
subtracted the axisymmetric part of the field to render the
instability more obvious. Note also that at the time cho-
sen to generate the figure, the longitudinal component of
the magnetic field is ten times stronger than its latitudinal
component.

3.2. Tachocline and local magnetic field evolution

Previous studies of the GM98 scenario have shed light on
the importance of the penetration of the meridional cir-
culation into the tachocline (Sule et al. 2005; Garaud &
Garaud 2008). Numerical simulations in 2D have shown
that this large-scale flow was able to deflect the magnetic
field, and could prevent it from entering into the convec-
tion zone. We plot in Fig. 12 the meridional circulation
patterns realized in the bulk of the tachocline. We observe
both the meridional circulation penetration (coming from
above rbcz ∼ 0.72R�), and the meridional circulation cells

Fig. 10. Magnetic field lines from the center to the corona.
For r > 0.96 R�, a potential extrapolation is assumed.
This snapshot is taken at the same time as Fig. 9(g). The
two very transparent spherical shells are set at r = 0.62R�
and r = R�, we display in them the contours of the non-
axisymmetric Bϕ and total Br. Magenta denotes the posi-
tive radial magnetic field, and yellow denotes the negative
radial magnetic field.

(a) (b)

(c) (d)

Fig. 11. Shell slices of the horizontal components of the
magnetic field at r = 0.60R� in the late evolution of our
model. Left figures represent the full fields, while the az-
imuthal mean was substracted in the right figures. Dark
colors denote negative magnetic fields, and bright colors
positive magnetic fields.

generated in the tachocline and at the top of the radiation
zone. In our model, the meridional circulation penetrates
approximately 4% of the solar radius below the base of the
convection zone. The rms strength of the meridional veloc-
ity (shown with a logarithmic colormap) strongly decreases
with depth in the tachocline. For instance, the meridional
velocity loses three orders of magnitude over 0.03 solar
radius by dropping from 18ms−1 to 0.06ms−1 near the
poles at the base of the convective zone (see also Fig. 1(c)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Time evolution of vr and Br for the shell r = 0.96R�. The different times are exactly the same as in Fig. 5. We
subtracted the m = 0 component for Br. Dark colors denote negative velocities and radial magnetic field, and bright
colors positive velocities and radial magnetic field.

Again, because our Peclet number is on the order of 1, this
penetration is likely overestimated.

Fig. 12. Zoom of the time-averaged meridional circulation
pattern before the introduction of the magnetic field in
the tachocline area. The stream function is plotted in iso-
contours, solid lines denoting clockwise circulation profiles,
and dotted lines anti-clockwise. The background color map
corresponds to the rms strength of the meridional circu-
lation flow in ms−1 with a logarithmic scale. Red colors
denote the strongest downflows.

To evaluate the impact of the flow on the magnetic field
evolution in the penetrative layer, we computed the mag-
netic Reynolds number Rm = V rms∆/η, where V rms is
the total rms velocity, ∆ the convective penetration depth
under the convection zone, and η the magnetic diffusivity.
We take ∆ = rbcz − rov ≈ 0.04R� (see Figs. 1(c) and 12).
We obtained a magnetic Reynolds number on the order of
1 to a few in this penetration zone. This means that we
are in a regime where shear and advection are on the or-
der of, or slightly greater than diffusion in the magnetic
field evolution equation. Different definitions of the mag-
netic Reynolds number may lead to different values. Indeed,
if one retains only the radial component of the velocity field
(i.e., in the sense of Garaud & Garaud 2008) or only the
meridional component of the flow, we obtain a magnetic

Reynolds number slightly lower than one. Conversely, if one
uses the total radius of the star (i.e., in the sense of Sule
et al. 2005), we obtain much higher Reynolds number val-
ues. In the end, it is the relative amplitude and the spatial
structure of the various terms in the induction equation
at any given location that actually determine the evolu-
tion of the system. The quantitative analysis of those terms
demonstrates that we are in an advective regime, as will be
seen in Figs. 13-16.

In addition, we also simulated the evolution of the same
magnetic field in a purely diffusive case (i.e., without any
velocity field). The evolution of the magnetic field deep in
the radiation zone, i.e., below rov, is equivalent in the two
simulations and is dominated by diffusion, its amplitude
decreasing with the square root of time. However, the pen-
etration of the magnetic field into the convective zone is
faster in the full MHD case, as will be seen in Fig. 15.

In order to demonstrate the role played by time-
dependent 3D convective motions and nonlinearities in our
simulation, we now turn to a detailed analysis of the evo-
lution of the mean poloidal and toroidal fields. Following
Brown et al. (2010), we first evaluate the different terms
that contribute to the creation and maintenance of the ax-
isymmetric latitudinal magnetic field 〈Bθ〉. It is essentially
amplified by shear, transported by advection, and opposed
by diffusion. Starting from the induction equation, one may
write

∂t〈Bθ〉 = PFS + PMS + PFA + PMA + PC + PMD, (11)

with PMS and PMA representing the production by the
mean shearing and advecting flows, PFS and PFA by fluctu-
ating shear and advection, PC by compression, and PMD by
mean ohmic diffusion. The symbol 〈〉 stands for azimuthal
average. Those six terms are

PFS = 〈(B′ ·∇) v′〉|θ
PMS = (〈B〉 ·∇) 〈v〉|θ
PFA = − 〈(v′ ·∇) B′〉|θ (12)

PMA = − (〈v〉 ·∇) 〈B〉|θ

PC = (〈vr〉 〈Bθ〉+ 〈v′rB′θ〉)
d

dr
ln ρ̄

PMD = −∇× (η∇× 〈B〉)|θ .
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These definitions are then easily transposed to the radial
and azimuthal components of the magnetic field.

We plot in Figs. 13-14 the mean latitudinal field 〈Bθ〉
and the various terms of the right hand side of Eq. (12)
at two instants in the simulation. We first show in Fig. 13
the early phase of evolution of 〈Bθ〉, and a later phase of
evolution in Fig. 14. At radius r = 0.6R� (i.e., deeper
than rov), we initially observe two trends. First, the mean
advective and shear contributions effectively cancel one an-
other, possibly because of our choice of impenetrable and
perfect conductor lower boundary condition (〈Vr〉 = 0 and
〈Bθ〉 = 0 at r = rbot). The same effect is observed for the
〈Br〉 component (not shown here). Second, because those
two terms cancel each other, it is the magnetic diffusion
that dictates the evolution of 〈Bθ〉 in this deep region. This
is not a surprise, considering our diffusivity values and the
lack of strong motions in this deep (inner) part of the model.

Fig. 13. Major terms of production of 〈Bθ〉. The abscissa
spans the northern hemisphere, the ordinate is a zoom in
the tachocline. The left color bar corresponds to instanta-
neous 〈Bθ〉, while the right color bar stands for the nine
other panels. The RHS panel is the sum of the panels e, h,
j, and i, and represents the net evolution of the mean lati-
tudinal magnetic field. Panels c, d, f, g, i, and j correspond
to PMS , PMA, PFS , PFA, PC , and PMD, respectively (see
Eq. (12)). The panels e and h correspond to the sum of
panels c and d, and f and g, respectively. Color levels are
not linear in order to see at the same time the contributions
of the terms in the different regions. Red colors denote the
positive contribution to the magnetic field and blue colors
the negative contributions. The two horizontal lines in each
panel represent rbcz (dash) and rMC (dot-dash), as in Fig.
1(c).

On the other hand, the patterns are much more com-
plicated in the penetration layer (between rov = 0.675R�
and rbcz ∼ 0.72R�). Mean advection and shear are impor-
tant, their sum (panel e) mainly acts at latitudes higher

Fig. 14. Major terms of production of 〈Bθ〉. The panels
represent the same as in Fig. 13, but at a later time.

than 40◦. Diffusion (panel j) acts everywhere in the pen-
etration layer, but its action does not dominate the other
contributions (panel b). The non-axisymmetric contribu-
tions (panels f, g, and h) are very important at latitudes
lower than 60 in the penetration layer. Therefore, 3D mo-
tions are obviously responsible in our model for the fail-
ure of the magnetic field confinement below the convection
zone at low latitude. This result contrasts with previous 2D
studies, where these motions were not taken into account.

During the late evolution of our model (Fig. 14),
the complex balance between axisymmetric motions, non-
axisymmetric motions and diffusion is still operating in the
penetration layer. We observe (panel a) that the magnetic
field has completely pervaded the tachocline and extends
into the convection zone. Again, the relative importance of
the three panels e, h, and j indicates that diffusion is not
the dominant process transporting the field. Indeed, we find
again that the non-axisymmetric components significantly
act at low latitude in this layer. We also note here that the
levels of the color table were modified between figures 13
and 14, making the diffusive term (which is still operating
around r = 0.6R�) harder to be seen in panel j. Finally, we
note that magnetic pumping is proven inefficient to confine
the magnetic field at both times.

In order to estimate the pumping, we plot in Fig. 15
the evolution of the amplitude of the latitudinal magnetic
field at r = 0.86R� (in the convection zone) after its intro-
duction. As previously seen, the amplitude rises. We plot
on the same figure the evolution of the absolute value of
the latitudinal component of the magnetic field both in the
downflows (dot-dash) and in the upflows (triple dot-dash).
We observe that the amplitude rises slower in the down-
flows than in the upflows. In addition, the temporal lag
between the up- and downflow regions increases with time.
This agrees with the action of magnetic pumping by down-
flows. However, it is a minor effect in the global evolution
of the magnetic field.
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Fig. 15. Rms and absolute value of the latitudinal mag-
netic field amplitude evolution at r = 0.86R�. The dotted
and dashed lines correspond to the absolute value of the
latitudinal component of the magnetic field in the down-
flows and in the upflows. We selected the downflows part
by setting the magnetic field to zero at the points corre-
sponding to a positive vr on the r = 0.86 R� spherical
shell. We averaged the remaining values over the shell to
obtain Bθ in downflows, and did the opposite for the up-
flows selection. The diamond line represents the evolution
of the rms latitudinal magnetic field in the purely diffusive
(test) case.

We also plot in Fig. 15 the evolution of the rms lati-
tudinal component of the magnetic field in the convection
zone in both the nonlinear simulation discussed in the paper
(solid line) and in another purely diffusive test case (dia-
monds). Once more, this stresses that the field evolution is
different in our simulation than in the purely diffusive test
case. The larger amplitude of Bθ in our convection simu-
lation clearly demonstrates the role of advection in pulling
the field inside the convection zone. The trends in Fig. 15
are similar between r = rov and rtop, i.e., in the whole
convection zone and even in the penetration layer.

We may now also examine two different processes in
the evolution of the azimuthal magnetic field: the creation
and sustainment of the magnetic layer, and the expansion
of the magnetic field into the convection zone. 〈Bϕ〉 is
firstly created underneath the convection zone through
the interaction between the dipolar magnetic field and the
differential rotation around r = 0.62R�. Diffusion slightly
counterbalances the Ω effect, and advection does not act
much in this layer. In order to illustrate these processes,
we plot in Fig. 16 〈Bϕ〉 and the right hand side terms
from Eq. (12) (as in Fig. 13, but taken in the ϕ direction)
during the early evolution of our model. Diffusion (panel
j) opposes the creation of magnetic field by mean shear
(panel c) in the magnetic layer (around 0.6R�). Although
the magnetic layer seems to remain radially localized,
the magnetic field also exists in the convective zone.
It has a much smaller amplitude than in the magnetic
layer, but it is not negligible. We observe that 〈Bϕ〉 is
preferentially created through the two terms of shear at
latitudes below 40◦. Notice that the non-axisymmetric
velocity and magnetic field (panels f, g, and h) contribute

Fig. 16. Major terms of production of 〈Bϕ〉 in the
tachocline. The various contributions are taken at the same
time as Fig. 13, but using expressions corresponding to
〈Bϕ〉.

equally with the axisymmetric terms to produce some
magnetic field in the penetration layer (between the two
horizontal lines). Diffusion generally tends to oppose the
mean shear contribution PMS at all latitudes at the base of
the convection zone, but does not act much in comparison
with the other contributions in panels e and h. The mean
advection opposes the creation of negative 〈Bϕ〉 above
latitude 40◦, which explains why the significant creation
of coherent mean azimuthal magnetic field is localized at
lower latitudes.

To summarize, we showed that the magnetic field evo-
lution through the tachocline is caused by a complex inter-
play between shear and advection mechanisms. The diffu-
sive process does not dictate the evolution of the magnetic
field at the base of the convection zone, neither at the equa-
tor nor in the polar regions. Magnetic pumping is present,
but inefficient. As a result, the magnetic field penetrates
into the convection zone and does not remain confined. We
stress here that the nonlinear term involving Maxwell and
Reynolds stresses is a key and fundamental feature of our
3D simulation.

4. Balances in the tachocline

In order to understand the global rotation profile realized in
our simulation (see Sect. 3), we study the MHD meridional
force balance and the angular momentum transport equa-
tion in the following subsections. Even if the magnetic field
does not modify the meridional force balance (Sect. 4.1), it
is proven to be responsible for the outward transport of an-
gular momentum in the mid- to high-latitude regions (Sect.
4.2).
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4.1. MHD meridional force balance

Starting from the vorticity equation (Eq. (13)), one can
derive the full meridional force balance in the general mag-
netic case (e.g., Fearn 1998; Brun 2005).

∂tω = −∇× (ωa × v) +
1

ρ̄2
∇ρ̄×∇P −∇×

(
ρg

ρ̄
er

)
+

1

4π
∇×

(
1

ρ̄
(∇×B)×B

)
−∇×

(
1

ρ̄
∇ · D

)
,(13)

with ωa = ∇ × v + 2Ω0 the absolute vorticity and ω =
∇× v the vorticity in the rotating frame. In a statistically
stationary state, equation (13) can be rewritten by taking
the temporal and azimuthal averages of the longitudinal
component:

2Ω0
∂〈vϕ〉
∂z

= −
〈

(ω ·∇)vϕ +
ωϕvr
r

+
ωϕvθ cot θ

r

〉
︸ ︷︷ ︸

stretching

+

〈
(v ·∇)ωϕ +

vϕωr
r

+
vϕωθ cot θ

r

〉
︸ ︷︷ ︸

advection

+ −〈ωϕvr〉
d ln ρ̄

dr︸ ︷︷ ︸
compressibility

+
g

rcp

∂〈S〉
∂θ

+
1

rρ̄cp

dS̄

dr

∂〈P 〉
∂θ︸ ︷︷ ︸

baroclinicity due to latitudinal
entropy and pressure gradients

+
1

r

[
∂

∂r
(r〈Aθ〉)−

∂

∂θ
〈Ar〉

]
︸ ︷︷ ︸

viscous stresses

+

〈
− 1

cρ̄
(B ·∇) jϕ −

jrBϕ
cρ̄r

− jθBϕ cot θ

cρ̄r

〉
︸ ︷︷ ︸

magnetic torque 1

+

〈
1

cρ̄
(j ·∇)Bϕ +

Brjϕ
cρ̄r

+
Bθjϕ cot θ

cρ̄r

〉
︸ ︷︷ ︸

magnetic torque 2

+
〈Brjϕ〉
cρ̄

d

dr
ln ρ̄− 〈Bϕjr〉

cρ̄

d

dr
ln ρ̄︸ ︷︷ ︸

compressibility 2

(14)

where
∂

∂z
= cos θ

∂

∂r
− sin θ

∂

∂θ
and

Ar =
1

ρ̄

[
1

r2

∂(r2Drr)
∂r
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1

r sin θ

∂(sin θDθr)
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r
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1
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+
1
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∂θ

]
+

1

ρ̄

[
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r

]
.

In Eq. (14) we underlined different terms:

– stretching represents the stretching of the vorticity by
velocity gradients;

– advection represents the advection of the vorticity by
the flow;

– compressibility represents the flow compressibility reac-
tion on the vorticity;

– g
rcp

∂〈S〉
∂θ is the baroclinic term, characteristic of non-

aligned density and pressure gradients;

– 1
rρ̄cp

dS̄
dr

∂〈P 〉
∂θ is part of the baroclinic term but arises from

departures from adiabatic stratification;
– viscous stresses represent the diffusion of vorticity

caused by viscous effects;
– magnetic torques 1 and 2 represent the ’shear’ and

’transport’ of the magnetic field by the current;
– compressibility 2 represents the component of the curl

of the magnetic torque owing to compressibility of the
flow.

The meridional force balance equation (14) helps under-
standing which physical effects are responsible for breaking
the Taylor-Proudman constraint of cylindrical differential
rotation in the convection zone (achieved for example with
baroclinic flows, see Miesch et al. 2006; Balbus et al. 2009;
Brun et al. 2010). Indeed, considering a small Rossby num-
ber and neglecting stratification, Reynolds, Maxwell, and
viscous stresses, Eq. (14) reduces to

∂〈vϕ〉
∂z

=
g

2Ω0rcp

∂〈S〉
∂θ

, (15)

which is the original thermal wind equation (e.g. Pedlosky
1987; Durney 1999). The baroclinic term induces motions
that break the cylindrical rotation profile. In the model of
Wood & McIntyre (2011), this balance is considered in the
polar regions. Compositional gradients and magnetic effects
are added to equation (15). This balance is of primary im-
portance in their magnetic confinement layer scaling. We
therefore present below the full meridional force balance of
our model to evaluate the role played by all mechanisms in
the tachocline, except compositional effects.

Fig. 17 displays the main contributing terms from Eq.
(14) in our simulation. The magnetic terms were increased
(by a factor of 500) to make them more visible. Surprisingly,
they are too low to contribute to the meridional force bal-
ance, as such there is no ’magnetic wind’ (see Fearn 1998).
As already noticed in Brun et al. (2011), the baroclinic
term dominates the balance, especially under 0.65R�, i.e.,
below the penetration. At the base of the convection zone
(0.72R�), all terms play a significant role. Stretching, ad-
vection, and viscous stresses compete against each other at
low latitude, letting the baroclinic term dominate again.
Near the pole, the balance is more complex, and viscous
stresses (helped a little by stretching and advection) coun-
teract the positive/negative pattern of the baroclinic term.
The strict thermal wind balance expressed in Eq. (15) is
thus not observed in the polar region. The magnetic terms
are located in the magnetic layer where Bϕ is generated
(see Sect. 3), and are negligible. Indeed, our magnetic field
is far from being force-free, and the Lorentz force is non-
zero in the three components of the momentum equation.
The poloidal velocity is mainly driven by advection of con-
vective motions and by baroclinic terms in the radiation
zone. As a result, the poloidal magnetic field does not act
much on the poloidal velocity. Note that this does not imply
the opposite. We indeed observed (see Sect. 3.2) that the
poloidal magnetic field evolution is dominated by advection
and shear from convective motions. We did not recover the
balance from Wood & McIntyre (2011), although we al-
ready have a sufficiently strong magnetic field to transport
angular momentum, as seen in Sect. 4.2. Gyroscopic pump-
ing is not operating efficiently near the polar region. There
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Fig. 17. Zoom around the tachocline of the different terms
discussed in Eq. (14), averaged over longitude and two solar
rotation periods during the late evolution of the model.
Magnetic terms were increased by a factor 500 to make
their structure more evident.

is a small downwelling, but it is not strong enough to modify
the local dynamics (see Brun et al. 2011 for more details).

4.2. Angular momentum balance

Identifying processes that redistribute angular momentum
in the bulk of the tachocline gives us clues to under-
stand how this layer evolves. Because we choose stress-free
and torque free magnetic boundary conditions, no exter-
nal torque is applied to the system. As a consequence,
the angular momentum is conserved. Following previous
studies (e.g., Brun et al. 2004), we examine the contri-
bution of different terms in the balance of angular mo-
mentum. Averaging the ϕ component of the momentum
equation (4) over ϕ and multiplying it by r sin θ, we obtain
the following equation for the specific angular momentum
L ≡ r sin θ (Ω0r sin θ + 〈vϕ〉):

∂t(ρ̄L) = −∇ ·(FMC + FRS + FV D︸ ︷︷ ︸
hydro

+ FMT + FMS︸ ︷︷ ︸
MHD

), (16)

where the different terms correspond to contributions from
meridional circulation, reynolds stress, viscous diffusion,

maxwell torque and maxwell stress. They are defined by

FMC ≡ ρ̄〈vM 〉L (17)

FRS ≡ r sin θρ̄
(
〈v′rv′ϕ〉er + 〈v′θv′ϕ〉eθ

)
(18)

FV D ≡ −νρ̄r2 sin θ

{
∂r

(
〈vϕ〉
r

)
er

+
sin θ

r2
∂θ

(
〈vϕ〉
sin θ

)
eθ

}
(19)

FMT ≡ −r sin θ

4π
〈Bϕ〉〈BM 〉 (20)

FMS ≡ −r sin θ

4π

(
〈B′rB′ϕ〉er + 〈B′θB′ϕ〉eθ

)
, (21)

where the subscript .M designates the meridional compo-
nent of v and B. In the previous equations, we decomposed
the velocity and the magnetic field into an azimuthally av-
eraged part 〈.〉 and ϕ-dependent part (with a prime). The
different contributions can be separated between radial (Fr
along er) and latitudinal (Fθ along eθ) contributions. We
then compute a radial flux of angular momentum defined
by

Ir(r) =

∫ θ2

θ1

Fr(r, θ)r2 sin θ dθ, (22)

where (θ1, θ2) maybe chosen to study a particular region of
our simulation.

As emphasized in Sect. 3.1, magnetic field lines seem
to be advected and diffused first outward and then pole-
ward. In Fig. 18 we plot the different components of the
radial angular momentum flux in the radiative zone and
the tachocline at different times, summed over the polar
region and at mid latitudes. Initially, the magnetic field
is axisymmetric so Maxwell stresses do not contribute to
the angular momentum balance. Because we chose a purely
meridional magnetic field, there is no large-scale Maxwell
torque. The radial angular momentum flux is then essen-
tially carried by the meridional circulation in the radiative
zone and is very weak (few percents of its value in the
convective zone). Note, however, that internal waves are
present in our simulation and may contribute to the trans-
port of angular momentum (see Brun et al. 2011 for more
details). In the tachocline, meridional circulation, Reynolds
stress and viscous diffusion transport the angular momen-
tum.

While the magnetic field more and more pervades the
domain, a magnetic torque develops in the magnetic layer
(along with Bϕ generation, see Figs. 5-6) at the top of
the radiative zone both at high and mid latitudes. Angular
momentum is then extracted by the Maxwell torque from
the radiative zone (that locally rotates faster) into the
tachocline (that locally rotates slower), slowing down the
radiative interior. This torque tends to align the Ω con-
tours with the poloidal magnetic field lines, thus bringing
the system closer and closer to a state known as Ferraro’s
law of isorotation. We remark in addition that the Maxwell
torque operates initially in a wider part of the radiative
zone in the polar region than at mid latitudes. Because the
magnetic field primarily connects at the poles, it is natural
that the transport of angular momentum by the magnetic
field starts earlier in this region. One may also observe that
this transport is more intense at mid-latitude, acknowledg-
ing that the magnetic field lines involve a magnetic field
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(a)

(b)

Fig. 18. Angular momentum redistribution in the radiative zone and the tachocline region. Panels (a) are summed over
θ1 = 60 and θ2 = 90 (north pole), and panels (b) are summed over θ1 = 30 and θ2 = 60 (mid latitudes). The different
fluxes are averaged approximately over six rotation periods. From left to right, the three plots correspond to the instants
used to make Figs. 6(a), 6(c) and 6(d). Our magnetic field does not initially change the angular momentum balance.

with much higher strength there. We stress again that the
angular momentum is conserved in our simulation, mean-
ing that the angular momentum lost in the radiative zone
is redistributed in the convective zone.

We also observe that the magnetic torque applies essen-
tially in the radiation zone and becomes negligible at the
base of the convection zone. Because we are not yet in iso-
rotation (see Fig. 5(d)), this may only be interpreted by
the fact that Bϕ is weak in this region.

Because the first magnetic field lines that transport an-
gular momentum are localized at mid- and high-latitudes,
we observe here only a slow-down of the radiative interior.
If we had continued this simulation, magnetic field lines
would have connected the radiative zone to the convection
zone near the equator. This would imply a speed-up of the
radiative interior, consistent with the results from Brun &
Zahn (2006). However, we do not show this later evolution
because it does not add any useful information.

Viscosity seems to act substantially in the bulk of the
tachocline, augmenting the angular momentum transport
locally. This viscous transport is caused by the radial shear
and the relatively high viscosity value used to meet numer-
ical requirements. As a result, diffusive processes are over-
evaluated in our simulation. Angular momentum transport
like this would not contribute in the Sun, given the low
viscosity of the solar plasma. In our case, both thermal
and viscous diffusion processes are acting in our simulation
thanks to our choice of Prandtl number (10−3) in the radia-
tive zone. However, BZ06 showed that the simulated viscous

spreading of the tachocline does not make much qualitative
difference with the thermal spreading introduced by Spiegel
& Zahn (1992).

The typical viscous diffusive time scale in our simula-
tion is given by τν = R2/ν ∼ 2.2 1010 s at the top of the
radiative zone. As the magnetic field grows, the Alfvén time
τA = R

√
4πρ̄/B diminishes alike and magnetic effects be-

come more important than diffusion. The angular momen-
tum balance analysis emphasizes two phases in our simu-
lation: a diffusive transport of angular momentum and the
action of large-scale Maxwell torque. This confirms that our
magnetic field does not prevent the spread of the tachocline,
but on the contrary transports angular momentum out-
wards and speeds the process up.

5. Discussion and conclusion

The existence of a magnetic field in the solar radiation
zone has been the subject of a longstanding debate. Such
a field, for example of fossil origin, could easily account
for the uniform rotation of the radiative interior. It could
also prevent the inward spread of the tachocline, through
thermal diffusion, as was proposed by Gough & McIntyre
(1998). However, it has been argued that such a field would
diffuse into the convection zone and imprint the latitude-
dependent rotation of that region on the radiation zone be-
low (which is not observed by helioseismology inversions).

This objection has indeed been confirmed by the cal-
culations of Garaud (2002) and Brun & Zahn (2006).
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However, their simulations treated the top of the radiation
zone as a non-penetrative boundary, which does not allow
for a meridional flow that would originate in the convection
zone and could oppose the diffusion of the magnetic field.

This restriction was lifted in the 2D simulations per-
formed by Sule et al. (2005); Rudiger & Kitchatinov (2007);
Garaud & Garaud (2008), who showed that this merid-
ional circulation could indeed prevent the magnetic field
from diffusing into the convection zone. Very recent work
in 2D (Rogers 2011) has studied the role of a fossil magnetic
field in a simulation coupling a radiative and a convective
zone. It confirms our result that the field is not confined
at the base of the convection zone. However, the author
does not find any magnetic transport of angular momen-
tum, possibly because of a force-free state for the magnetic
field. These 2D simulations assumed large-scale axisymmet-
ric flows, unlike the three-dimensional motions of the real
convection zone. For this reason we decided to treat the
problem using a 3D code, with the best possible represen-
tation of the turbulent convective motions.

We showed by considering time-dependent 3D motions
that the interior magnetic field does not stay confined in
the radiative interior, but expands into the convection zone.
Non-axisymmetric convective motions interact much differ-
ently with a dipolar-type magnetic field, as would a mono-
lithic, single cell large-scale meridional circulation.

That our magnetic field is able to expand from the ra-
diative interior into the convection zone results in an ef-
ficient outward transport of angular momentum through
the tachocline, imposing Ferraro’s law of iso-rotation. It is
likely a direct consequence of the non force-free configura-
tion of our magnetic field that yields this efficient transport
through the large-scale magnetic torque.

We are aware that our simulations are far from repre-
senting the real Sun, because of the enhanced diffusivities
we had to use to meet numerical requirements. The over-
shooting convective motions are overestimated owing to our
enhanced thermal diffusivity κ. The high solar Peclet num-
ber (lower κ) regime would make the flow amplitude drop
even faster at the base of the convection zone, which would
result in an even weaker meridional circulation velocity.
This would not help the confinement of the magnetic field.
Although our enhanced magnetic diffusivity is quite large,
we demonstrated (see Sect. 3) that our choice of param-
eters ensured that we are in the correct regime for mag-
netic field confinement, with advection dominating diffu-
sion. Nevertheless, more efforts will be made in future
work to increase the spatial resolution and to improve the
subgrid-scales representation.
The initial magnetic topology may also be questioned. The
gradient of our primordial dipolar field possesses a maxi-
mum at the equator. Because the field is initialized in the
radiation zone where its evolution is diffusive, the magnetic
field initially evolves faster at its maximum gradient loca-
tion, i.e., at the equator. As a result, it first encounters
the complex motions coming from the convection zone at
the equator. Other simulations conducted with a modified
topology to change the location of the maximum gradient
(and thus the latitude where the magnetic field primar-
ily enters the tachocline) led to similar results as those re-
ported here.

Given the extension of our tachocline, the differential
rotation is already initially present below the base of the
convection zone before we introduce the magnetic field. A

confined magnetic field would naturally erode this angular
velocity gradient, though we do not know much about the
real initial conditions. In our simulation the magnetic field
opens into the convection zone, consequently there is no
chance to obtain a solid rotator in the radiative zone be-
cause there is no confinement. In fact, our magnetic field
lines primarily open at the equator. We point out that this
is a major difficulty with the GM98 scenario: even if mag-
netic pumping can be a way to slow down the penetration
of the magnetic field into the convective zone, it will not
prevent it from connecting the two zones, and/or prevent
the magnetic field lines from opening there. Furthermore,
the meridional circulation is not a laminar uni-cellular flow
in our 3D simulation. It has a complex instantaneous multi-
cellular pattern, which affects the efficiency of a polar con-
finement.

We therefore conclude that a dipolar axisymmetric fos-
sil magnetic field cannot prevent the spread of the solar
tachocline. We intend to explore other mechanisms and dif-
ferent magnetic field topologies. Our 3D model will allow
us to test non-axisymmetric configurations, e.g., an oblique
and confined dipole.
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