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The stellar luminosity and depth of the convective envelope vary rapidly with mass for G- and K-type main sequence stars.
In order to understand how these properties influence the convective turbulence, differential rotation, and meridional cir-
culation, we have carried out 3D dynamical simulations of the interiors of rotating main sequence stars, using the anelastic
spherical harmonic (ASH) code. The stars in our simulations have masses of 0.5, 0.7, 0.9, and 1.1 M�, corresponding to
spectral types K7 through G0, and rotate at the same angular speed as the sun. We identify several trends of convection
zone properties with stellar mass, exhibited by the simulations. The convective velocities, temperature contrast between
up- and downflows, and meridional circulation velocities all increase with stellar luminosity. As a consequence of the
trend in convective velocity, the Rossby number (at a fixed rotation rate) increases and the convective turnover timescales
decrease significantly with increasing stellar mass. The 3 lowest mass cases exhibit solar-like differential rotation, in a
sense that they show a maximum rotation at the equator and minimum at higher latitudes, but the 1.1 M� case exhibits
anti-solar rotation. At low mass, the meridional circulation is multi-cellular and aligned with the rotation axis; as the mass
increases, the circulation pattern tends toward a unicellular structure covering each hemisphere in the convection zone.

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The sun and sun-like stars with convection zones in their
outer envelopes, have long been known to exhibit emission
line and X-ray activity, associated with hot gas in chro-
mospheres, transition regions, and coronae (e.g., Pizzolato
et al., 2003; Strassmeier et al., 1990; Wright et al., 2011).
Understanding this activity, and understanding how the so-
lar case relates to the activity observed accross the HR dia-
gram is a long-standing puzzle. It is clear that the existence
of hot gas above the photosphere is related to magnetic pro-
cesses associated with the convection zone itself. The mag-
netic field of low-mass main sequence stars is generally be-
lieved to be generated by dynamo processes, which derive
their properties from convective motions, differential rota-
tion, and meridional circulations in the convection zones, as
well as from the interaction between the convection zone
and the radiative interior.

Recent observations, by either spectropolarimetry (e.g.,
Donati et al., 2003), doppler imaging (e.g., Barnes et al.,
2005), or monitoring of various activity indicators (e.g., Bal-
iunas et al., 1995; Donahue et al., 1996; Lovis et al., 2011;
Oláh et al., 2009; Saar & Brandenburg, 1999), show that
solar-like stars possess activity cycles and differential rota-
tion, analogous to the sun. Solar analogues are even starting
to be discovered (Petit et al., 2008).
? Corresponding author: e-mail: sean.matt@cea.fr

In order to gain a better theoretical understanding of
how convective properties depend upon stellar parameters,
we carry out 3D numerical dynamical simulations of con-
vective envelopes of solar-like stars. As a first step, we model
here the convective regions only, neglecting the effects of
the interface region with a radiative envelope, and restrict
ourselves to relatively slow (solar) rotation rates. Specifi-
cally, we simulate the convection dynamics for 4 main se-
quence stars with masses of 0.5, 0.7, 0.9, and 1.1 solar masses,
spanning spectral types G0 to K7. This mass interval ex-
hibits a large range of the physical properties of convective
envelopes (such as the depth, physical size, mass, and den-
sity), as well as in the overall stellar luminosity transported
by convection. These types of stars are also targets for aster-
oseismic studies (e.g., Verner et al., 2011), which have the
potential to give precise measurements of stellar properties
for large numbers of stars. The goal here is to determine how
the convection, differential rotation, and meridional circula-
tion is influenced by stellar mass, and to see if general trends
or scaling laws can be extracted that will guide a deeper un-
derstanding of the inner hydrodynamics of these stars. The
present study lays the groundwork for later studies to con-
sider (e.g.) faster rotation rates, convection-radiation zone
interface dynamics, and the dynamo generation of magnetic
fields in stars in this mass range.

Section 2 contains a description of our simulation method
and presents a comparison of the overall structures of each
star. Section 3 describes the main results of our 3D simula-
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2 Matt et al.: G & K stars

tions, focusing on both the convective turbulence properties,
as well as the differential rotation and meridional circula-
tion flows. A summary and brief discussion is contained in
section 4.

2 Simulation method

We use the anelastic spherical harmonic (ASH) code (Clune
et al., 1999) to compute the 3-dimensional and turbulent
flows in convectively unstable stellar envelopes. This code
has been extensively tested and used for computing several
aspects of the solar interior (e.g., Browning et al., 2006;
Brun et al., 2004; Brun & Toomre, 2002; DeRosa et al.,
2002; Miesch et al., 2006), rapidly rotating young stars (Bal-
lot et al., 2007; Brown, 2009; Brown et al., 2008, 2011), the
convective cores of massive stars (Browning et al., 2004a,b;
Featherstone et al., 2009), fully convective low mass stars
(Browning, 2008), red giant stars (Brun & Palacios, 2009),
and pre-main-sequence stars (Bessolaz & Brun, in this vol-
ume; Bessolaz & Brun, 2011). We briefly describe the ba-
sic aspects of the code here, but the reader can find further
details of the code in those previous works (see especially,
Brun et al., 2004; Clune et al., 1999).

The code solves the fluid equations, under the anelas-
tic approximation, in a computational domain consisting of
a spherical shell and in a rotating reference frame. Under
the anelastic approximation, sound waves are filtered out
and assumed to have a negligible effect on the dynamics,
in order to allow for a larger computational timestep. This
approximation is appropriate (e.g.) in the interiors of stars
because typical motions are highly sub-sonic. The thermo-
dynamic variables are linearized with respect to a spheri-
cally symmetric background state with a density ρ̄, pressure
P̄ , temperature T̄ , and specific entropy S̄ and fluctuations
about the background state of ρ, P , T , and S. The time-
dependent equations describe the conservation of mass, mo-
mentum, and entropy expressed as

∇ · (ρ̄v) = 0, (1)

ρ̄

(
∂v

∂t
+ (v ·∇)v + 2Ωo × v

)
=

−∇P + ρg − [∇P̄ − ρ̄g]−∇ ·D, (2)

ρ̄ T̄
∂S

∂t
+ ρ̄T̄v ·∇(S̄ + S) =

+ ∇ · [κrρ̄cp∇(T̄ + T ) + ρ̄T̄ (κ∇S + κ0∇S̄)]

+ 2ρ̄ν
[
eijeij − 1/3(∇ · v)2

]
, (3)

where v = (vr, vθ, vφ) is the velocity in the rotating frame
in spherical coordinates, Ω0 = Ω0êz is the angular rota-
tion rate of the reference frame, g is the acceleration due to
gravity, κr is the radiative diffusivity, and cp is the specific
heat at constant pressure. The term D is the viscous stress
tensor, with the components

Dij = −2ρ̄ν[eij − 1/3(∇ · v)δij ], (4)

where eij is the strain rate tensor, and ν, κ, and κ0 are effec-
tive eddy diffusivities. The code also uses a linerized equa-
tion of state,

ρ

ρ̄
=
P

P̄
− T

T̄
=

P

γP̄
− S

cp
, (5)

and the ideal gas law,

P̄ = Rρ̄T̄ , (6)

where γ is the ratio of specific heats (we use γ = 5/3), and
R is the gas constant. For all 4 stars in our study, the lumi-
nosity has reached a value of more than 99.9% of the total
stellar luminosity by the base of the convection zone, so we
do not need to include any energy generation by nuclear
burning within our computational domain.

We set up four different models in which the domain
boundaries and stratification coincides with 1D models of
the convection zones of main sequence stars with differ-
ent masses. Section 2.1 describes the global properties of
these stars, and sections 2.2 and 2.3 describe the initial and
boundary conditions used in our ASH models, as well as the
method for evolving the simulations to a fully-convective,
statistical steady-state.

2.1 1D stellar structure

In order to define the background structure for our 3D mod-
els, we use the 1D stellar evolution code CESAM (Morel,
1997). With CESAM, we computed the evolution of four
stars with masses of 0.5, 0.7, 0.9, and 1.1 M� until the age
of 4.6 Gyr. This age is approximately equal to that of the
sun, so our cases can be compared with the many previous
results of solar studies. Also, this age is appropriate for the
slow (solar) rotation rates considered here. For all four stars,
we assumed the same initial metallicity of (X, Y, Z)≈ (0.71,
0.27, 0.02) and a mixing length parameter of 1.77, chosen
to best represent the solar case. Table 1 lists the key global
properties of our four stars, at the age of 4.6 Gyr, which are
also graphically represented in Figures 1–3.

Figure 1 shows the total luminosity (solid line), as well
as the effective temperature (dashed line) as a function of
mass, for stars in the mass range of our models. The “X”
symbols mark the values for the 4 stars modeled here, which
are also listed in table 1. Also indicated on the plot are the
approximate spectral types, corresponding to the effective
temperature. The Figure demonstrates the steep rise in lu-
monosity with mass expected for main sequence stars (the
stars here approximately follow L∗ ∝ M4.6

∗ ), such that the
1.1 M� star is 40 times more luminous than the 0.5 M�
star.

Figure 2 shows the photospheric radius R∗ (upper solid
line) and the radial location of the base of the convection
zone Rcz (lower solid line) as a function of mass. The stel-
lar radius is strong function of stellar mass in the plotted
range, with the 1.1 M� star being 2.8 times bigger than
the 0.5 M� star. The radial extent of the convection zones
for these stars is represented by the region between the two

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Table 1 Global properties of the 4 stars used in our ASH models, computed with the CESAM stellar evolution code and
at an age of 4.6 Gyr. We adopt M� = 1.989× 1033g, R� = 6.9599× 1010 cm, and L� = 3.846× 1033 erg s−1.

Mass Radius L∗ Teff SpT Mcz Rcz T (Rcz) ρ(Rcz)
(M�) (R�) (L�) (K) (M�, M∗) (R�, R∗) (K) (g cm−3)

0.5 0.44 0.046 4030 K7 0.18, 0.36 0.25, 0.56 4.3 × 106 14
0.7 0.64 0.15 4500 K4/K5 0.079, 0.11 0.42, 0.66 3.0 × 106 2.1
0.9 0.85 0.55 5390 G8 0.042, 0.046 0.59, 0.69 2.6 × 106 0.51
1.1 1.23 1.79 6030 G0 0.011, 0.0100 0.92, 0.75 1.6 × 106 0.048
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Fig. 1 Stellar luminosity in solar units (solid line, left
scale) and effective temperature (dashed line, right scale)
as a function of stellar mass, for the mass range spanned
by our models, and as computed using the CESAM stellar
evolution code. The “X” symbols indicate the values for the
4 stars used in our 3D ASH simulations. The approximate
spectral types are also indicated next to each of these.

solid lines, and the region below contains a convectively sta-
ble radiation zone. It is clear that, in the mass range shown,
the thickness of the convection zone increases slightly with
increasing stellar mass. However, since the stellar radius in-
creases more rapidly, the fractional size of the convection
zone decreases with increasing mass. Thus, the convection
zone thickness ranges from 44% to 25% of the stellar radius,
for the 0.5 and 1.1 M� stars, respectively (for the sun, this
value is approximately 30%). The “X” symbols indicate the
upper and lower boundaries of our 3D simulation domains
for the 4 stars simulated (discussed below).

Figure 3 shows the extent of convection zones, expressed
in mass coordinates and normalized to the mass of each star,
as a function of stellar mass. The lines show the total mass
enclosed by the stellar surface (upper line) and enclosed by
the location of the base of the convective envelope (lower
line). The amount of mass contained in the convection zone,
Mcz, is the difference between these two lines and is listed
in Table 1. It is clear that the convection zone mass is a
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Fig. 2 Stellar radius (upper line) and radial location of the
base of the convection zone (lower line) in solar units and
as a function of stellar mass, as computed by the CESAM
stellar evolution code. The convection zone exists between
these two lines, while a convectively stable radiation zone
lies below. The “X” symbols indicate the upper and lower
radial boundaries of the computational domain used in our
ASH simulations, for the 4 cases considered.

strong function of stellar mass in the range considered. Stars
with slightly lower mass will be fully convective, while sig-
nificantly more massive stars will not have convective en-
velopes. The convection zone mass varies from 36% to 1%
of the stellar mass, for the 0.5 and 1.1M� stars, respectively
(the solar value is approximately 3%). The “X” symbols in-
dicate the simulation domain boundaries, expressed in mass
coordinates, for the 4 stars simulated (discussed below).

The last two columns of table 1 show the temperature
and the mass density at the base of the convection zone for
each case. Although it is true that the temperature and den-
sity increases with mass at the stellar center (R = 0), these
quantities decrease with increasing mass at the location of
Rcz. In other words, for increasing stellar mass, the con-
vection zone generally occupies a more tenuous and cooler
outer layer of the star.

www.an-journal.org c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 Matt et al.: G & K stars

Table 2 Simulation parameters for each case. The nuber of radial, latitudinal, and longitudinal gridpoints are Nr, Nθ,
and Nφ. The outermost radius of the simulated spherical shell is Rout, and Hρ(Rout) is the density scale height there. The
radial size of the domain is L = Rout − Rcz. The viscosity at Rout is νtop and it varies in the domain with the inverse
square root of the background density. All stars have a Prandtl number Pr ≡ ν/κ = 0.25 and rotate at the solar rate,
Ω0 = 2.6×10−6 rad/s, corresponding to a rotation period of 2π/Ω0 ≈ 28 days. Also listed are the Rayleigh numberRa ≡
(−∂ρ/∂S)∆SgL3/(ρνκ), the Taylor number Ta ≡ 4Ω2L4/ν2, and the convective Rossby number Roc ≡ (Ra/TaPr)

1/2,
all evaluated at the midlevel of the domain.

Mass Nr, Nθ, Nφ Rout Hρ(Rout) L νtop Ra Ta Roc
(M�) (R�, R∗) (Mm) (Mm) (cm2 s−1)

0.5 257, 256, 512 0.43, 0.97 6.1 120 3.5 × 1011 3.9 × 106 1.5 × 108 0.32
0.7 257, 256, 512 0.63, 0.97 6.3 140 2.0 × 1012 6.0 × 105 8.1 × 106 0.54
0.9 257, 256, 512 0.83, 0.98 7.6 170 5.0 × 1012 1.9 × 105 2.6 × 106 0.54
1.1 257, 256, 512 1.20, 0.98 8.6 200 2.0 × 1013 3.6 × 104 3.2 × 105 0.67
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Fig. 3 Mass contained beneath the stellar surface (upper
line) and location of the base of the convection zone (lower
line) as a function of stellar mass, as computed by the CE-
SAM stellar evolution code. The convection zone exists be-
tween these two lines, while a convectively stable radiation
zone lies below. The “X” symbols indicate the upper and
lower radial boundaries of the computational domain used
in our ASH simulations, for the 4 cases considered.

2.2 Initial and boundary conditions for 3D
simulations

We use the 1D stellar structure models described above for
the spherically symmetric, initial conditions of the the 3D
ASH models. Table 2 lists the key properties of each of the 4
simulations. In the ASH models presented here, the domain
consists of the stellar convection zone only. Thus, the lower
radial boundary of our simulated spherical shells coincides
with the base of the convection zone, Rcz, for each star (see
table 1 and the lower row of “X” symbols in Figs. 2 and
3). We chose the location of the outer boundary such that
the mass density there is a factor of 100 smaller than at the
base of the convection zone. This places the outer boundary

somewhat below the photosphere of the star. The location
of the outer boundary Rout is listed in table 2 and shown as
the upper row of “X” symbols in and Figures 2 and 3.

In each of our 4 cases, the gravity (g) is taken directly
from the corresponding CESAM model, and the entropy
gradient (∂S̄/∂r) is initialized with a constant value equal
the (superadiabatic) entropy gradient in the middle of the
convection zone in the CESAM model. The background
thermodynamic variables (ρ̄, P̄ , T̄ , and S̄) are set accord-
ing to this entropy gradient and to be in hydrostatic bal-
ance with the stellar gravity, while the fluctuating thermody-
namic variables (ρ, P , T , and S) are initially zero. The ini-
tial entropy gradient and choice of diffusivities (see below)
ensures that the initial state is convectively unstable and has
a Rayleigh number near or above the critical Rayleigh num-
ber necessary for convection. The velocity in the rotating
frame (v) is given an initial random perturbation, with negli-
gible kinetic energy, in order to initiate convective motions.

For both the inner and outer boundaries, we use stress-
free and impenetrable boundary conditions on the velocity
and hold the entropy gradient fixed at the initial value. The
radiative diffusivity κr is chosen so that the ASH model has
the same radiative flux at all radii as the corresponding CE-
SAM model. The initial stellar structure and boundary con-
ditions ensure that the energy flux into the domain at the
bottom of the convection zone (given entirely by the radia-
tive flux) is constant in time. At the top of the domain, the
density scale height becomes small (see table 2), and since
this approximately determines the convection cell size scale,
it becomes numerically challenging to resolve the convec-
tive motions there. Furthermore, the impenetrable bound-
ary condition precludes any convective enthalpy flux from
escaping the top of the domain. To address both of these
issues we introduce a diffusive energy flux (the term pro-
portional to κ0 in eq. [3]) that is assumed to represent an
unresolved and spherically symmetric enthalpy flux carried
by small-scale convection near the top of the domain (here-
after “unresolved eddy flux”). In all 4 cases, we chose κ0 so
that this flux is negligible in the bulk of the convection zone,
but increases as a smooth function near the outer boundary,
such that the flux leaving the domain equals the stellar en-
ergy flux and is constant in time.

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 4 Energy flow in 0.5 (left) and 1.1 M� (right) cases as a function of radius in the computational domain. Shown are
the spherically- and time-averaged luminosities, after the simulations have reached a statistical steady-state.

In each case, we chose the viscosity at the outer part of
the domain, νtop, in order to ensure that the resulting con-
vective turbulence has a significant Reynolds number. As
shown in section 3, a higher stellar luminosity leads to larger
convective velocities, and thus a larger viscosity is needed
to keep the Reynolds numbers comparable (explaining the
trend of νtop apparent in table 2). Within the domain, the
viscosity in each case depends only upon radius, and it var-
ries as the inverse square root of the background density.
Scaling the viscosity in this way ensures a significant tur-
bulence level at all radii and is used in most previous ASH
models in the literature. The thermal diffusivity κ equals 4ν
everywhere in the domain, giving a constant Prandtl num-
ber of 0.25 for all cases. The rotation rate of the reference
frame (Ω0), which equals the rotation rate of the star, is set
to the solar rate for all 4 stars.

The Rayleigh numbers (calculated using the steady-state
value of the entropy in the simulations), Taylor numbers,
and convective Rossby numbers for each case are also given
in table 2. The Rayleigh and Taylor numbers, show a strong
decrease with increasing stellar mass, which is primarily
explained by the trend in the diffusivities. If the diffusivi-
ties were constant, these numbers would increase with mass
for these stars. The convective Rossby number generally in-
creases with mass, meaning that for the same rotation rate,
the coriolis force has less influence on the dynamics.

2.3 Reaching a statistical steady-state and energy flux
balance

At the start of the simulation, the star is in a quiescent state.
Thus, there is no significant enthalpy flux, and the system is
not initially in radial energy flux balance. In this situation,
the evolution of the system, according to equations (1)–(3),
ensures that the entropy gradient evolves toward an energy

flux balanced state. Furthermore, since the gas in the com-
putational domain is unstably stratified (∂S̄/∂r < 0), with
a large Rayleigh number (see table 2), significant convec-
tive motions begin rapidly after the start of the simulations.
Once vigorous convection begins, an energy flux balance is
achieved within a few convective turnover times (months,
typically) and maintained for the duration of the simula-
tions. In this state, the net energy transport across the do-
main is constant at all radii, when averaged over several
convective turnover times.

Figure 4 shows the spherically- and time-averaged lu-
minosity, as a function of radius in the whole domain, for
the highest and lowest mass stars in this study. These are
shown after the simulated stars have evolved for several
years from the initial state. The boundary conditions ensure
a fixed radiative energy flux into the domain at the inner
boundary and a fixed unresolved eddy flux out of the do-
main at the outer boundary, both with luminosities equal
to that of the modeled stellar luminosity. Within the do-
main, the radiative energy flux is nonzero, but it decreases
in importance with increasing radius in the convection zone.
The enthalpy flux, associated with convective motions, car-
ries the bulk of the remaining energy flux from the lower
boundary, across the convection zone, to the outer bound-
ary. Due to the asymmetry between broad, slow upflows
and narrow, fast downflows, there is generally a net neg-
ative (downward) flux of kinetic energy in the convection
zone (e.g., as in the right panel of Fig. 4; Cattaneo et al.,
1991; Hurlburt et al., 1986). As a result, the steady-state en-
thalpy luminosity (dash-triple-dotted line) peaks at a value
significantly larger than L∗, in order that the net energy flow
across the convection zone is constant and equal to the stel-
lar luminosity. As demonstrated by the two extreme cases
in Figure 4, the presence of a super-luminal enthalpy flux is
increasingly important with mass, in our 4 simulations. It is

www.an-journal.org c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 5 Integrated kinetic energies in the domain, divided
by the total volume, as a function of time, for the 0.5 M�
case. Shown are the kinetic energies associated with the dif-
ferential rotation (DRKE), meridional circulation (MCKE),
convective motions (CKE), and the total (solid line).

not clear whether this is due to an intrinsic property of the
stars (such as the luminosity), or whether it only depends
upon (e.g.) the viscosity, which is systematically different
in each of our cases (table 2). However, it does seem that
the faster flows found in the more massive stars (discussed
below) yields a larger negative kinetic energy flux, since the
difference between the broad-slow upflows and narrow-fast
downflows is accentuated.

Although the energy flux balance is established rela-
tively rapidly in the convection zone, the statistical prop-
erties of the turbulence can take longer to settle down, as
they evolve in response to (e.g.) Reynolds stresses and the
dissipation of energy on small scales. In addition, these sys-
tems typically exhibit global, axisymmetric flows such as
differential rotation and meridional circulation. These flows
are also influenced by the Reynolds stresses, and the merid-
ional circulation typically has velocities smaller than the
convective velocities. Thus, the global flows settle down on
timescales of the order of 10 times the convective turnover
time. In order to ensure the simulations have time to estab-
lish these global flows and are near their turbulent statistical
steady-state, we have run each model for a timescale com-
parable to the global viscous dissipation timescale (L2/ν).

As an example, Figure 5 shows the globally integrated
kinetic energies in the 0.5 M� case, as a function of time
from the start of the simulation. The evolution during the
first year is characterized by an initially linear (exponen-
tial) growth of the convective instability, followed by a non-
linear saturation phase, then by relaxation oscillations until
it settles down into a statistically steady state. The longer
term evolution exhibits a growth in the differential rotation,

which also reaches a steady state. It is clear from Figure 5
that there is little change during the last 5000 days of evolu-
tion. The results in Figure 4 and presented below are shown
during this mature state of the systems.

3 3D simulations

The ending time of each of the 4 simulations (tf ) is listed in
table 3. In this section, we present the convective properties
and the global flows existing in each case.

3.1 Properties of convection

Figure 6 shows the radial velocity on slices of constant ra-
dius at slightly below the top of the domain and at the mid-
dle of the domain, for the 0.5 (top), 0.7 (middle), and 1.1
(bottom) M� cases. Also shown are the slices of tempera-
ture at the middle of the domain (right panels). The temper-
ature slices generally appear less structured than the radial
velocity slices because the Prandtl number is less than unity
(0.25), so that the thermal difussivity (κ) is larger than the
kinematic viscosity (ν).

The convective patterns and characteristic eddy sizes are
influenced strongly by the density scale height, as well as by
the contrast between horizontal and vertical velocity (see,
e.g., Bessolaz & Brun, 2011). Near the surface, where the
density scale height is smallest, the shell slices exhibit typ-
ical convective patterns characterized by hot, broad/patchy
upflows surrounded by cool, narrow downflow lanes (e.g.,
Cattaneo et al., 1991; Miesch et al., 2008). Deeper in the
convection zone, the downflow lanes often merge and gen-
erally lose their connectivity with respect to the surface pat-
terns, and the convection has a less patchy appearance. The
near-surface shell slices (left panels of Fig. 6) are shown at a
location where the unresolved eddy flux dominates the other
fluxes (see Fig. 4). The unresolved eddy flux is a spherically
symmetric quantity, and it does not affect the shape of the
convective patterns, but it does influence the level of (re-
solved) turbulence, since the unresolved eddy flux reduces
the convective driving. However, at the location of the near-
surface shell slices shown, all cases are still turbulent, with
a significant convective (enthalpy) flux and Reynolds num-
bers in the range of 10− 30.

In all of our cases, the convective patterns evolve on typ-
ical timescales of a few weeks to a few months, with cells
merging, splitting, and disappearing. The evolution of the
convective motions in the 1.1 M� case generally evolve on
timescales of a factor of a few times shorter than in the 0.5
M� case. The convective patterns are partly advected by
the local shear and, depending on whether the flow is pro-
grade of retrograde, are tilted to the right or the left near the
equator. At higher latitude, beyond the tangent cylinder (an
imaginary circle crossing the upper surface with a cylindri-
cal radius of Rcz), the convective cells are less aligned with
the rotation axis and exhibit a more patchy behavior.

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org



Astron. Nachr. / AN (2011) 7

Table 3 Simulation results for each case. The amount of evolution time since the start of the simulation is denoted tf .
Temporal averages of the rms components of velocity ṽr, ṽφ, ṽθ, speed ṽ, and fluctuating velocities ṽ′φ and ṽ′ are evaluated
at the midlevel of the domain and given in units of m s−1. The temporally averaged rms temperature fluctuation at midlevel
is T̃ . Also listed are the rms Reynolds number R̃e ≡ ṽ′L/ν, Rossby number R̃o ≡ ṽ′/(2Ω0L), and Péclet number
P̃e ≡ ṽ′L/κ, evaluated at the midlevel, and the convective turnover timescale τto ≡ L/ṽr. The ∆Ω is the difference in
angular rotation rate at the outer boundary, between latitudes of 0◦ and 60◦. The ∆T is the difference in the temporally
and azimuthally averaged temperature at the base of the convection zone (Rcz), between latitudes of 60◦ and 0◦. Finally,
ṽmc is the rms meridional circulation speed, calculated from temporally and azimuthally averaged poloidal velocity and by
taking the rms of all values at a constant midlevel radius.

Mass tf ṽr ṽθ ṽφ ṽ′φ ṽ ṽ′ T̃ R̃e R̃o P̃e τto ∆Ω/Ω0 ∆T ṽmc

(M�) (years) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s) (K) (days) (%) (K) (m/s)
0.5 30 8.7 9.8 37 9.3 40 16 0.22 309 0.025 77 164 37 0.61 0.29
0.7 28 20 21 74 21 79 36 0.76 139 0.049 35 82 41 2.2 0.64
0.9 22 47 45 95 50 115 82 1.3 151 0.094 38 41 30 3.6 1.5
1.1 8.6 150 134 242 136 314 241 6.1 133 0.24 33 15 −42 −9.9 22

Vr @ r = 0.95 R*
  

9.3 m/s-9.3 0

Vr @ r = 0.77 R*

 

 

17. m/s-17. 0

Temperature @ r = 0.77 R*

 

 

0.076 deg K-0.076 0
Vr @ r = 0.96 R*

  

25. m/s-25. 0

Vr @ r = 0.82 R*

 
 

44. m/s-44. 0

Temperature @ r = 0.82 R*

 
 

0.33 deg K-0.33 0
Vr @ r = 0.97 R*

  

90. m/s-90. 0

Vr @ r = 0.86 R*

 
 

3.3e+02 m/s-3.3e+02 0

Temperature @ r = 0.86 R*

 
 

6.1 deg K-6.1 0

Fig. 6 Slices at constant radius (Mollweide view) for the 0.5 M� case (top), 0.7 M� case (middle), and 1.1 M� case
(bottom), showing the radial velocity near the surface (left panels) and in the midlevel (middle panels) of the domain and the
temperature at midlevel (right panels). In the temperature slices, the azimuthal average has been subtracted, to emphasize
the temperature fluctuations. The dotted line corresponds to the stellar surface and the dashed line to the equator.
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Fig. 7 Azimuthally and temporally averaged Rotation frequency in a meridional slice through the domain (contour/color
plots; rotation axis is vertical) and shown along radial lines at different latitudes (line plots, latitude given in degrees).
Shown are the 0.5 (top left), 0.7 (top right), 0.9 (bottom left), and 1.1 (bottom right) M� cases.

As evident in the Figure, the 0.5 M� case exhibits con-
vective patterns near the equatorial region that are inhomo-
geneous, consisting of vigorous convection over some range
of longitudes and relatively quiescent regions at other lon-
gitudes. Such “active nest” convective patterns have been
discussed by Ballot et al. (2007) and Brown et al. (2008)
and are likely related to our choice of low Prandtl number.
The remaining 3 cases, exhibit vigorous convection within
the entire volume of the convection zone, as seen for the 0.7
and 1.1 M� cases shown in the bottom two rows of Figure
6.

Table 3 lists the rms velocities at the middle of the com-
putational domain for each case. There is a clear trend of in-
creasing convective velocities with increasing stellar mass.
As evident in the right panels of Figure 6 and in the values
of the rms temperature (T̃ ) listed in table 3, there is also a
strong trend of increasing temperature contrast between up-

and downflows, with increasing mass. This trend is steeper
if one considers the temperature fluctuation relative to the
mean temperature, since the mean background temperature
in the 1.1 M� convection zone midlevel is ∼3 times colder
than for the 0.5 M� star (see §2.1). Furthermore, the aver-
age mass density in the convective envelope decreases with
increasing stellar mass (the midlevel density in the 1.1 M�
case is 280 times lower than in the 0.5 M� case), which
decreases the efficiency of convective energy transport. In
spite of the lower density, the convection in higher mass
stars is able to carry a larger luminosity than the lower mass
stars, due to a combination of larger stellar radii, higher con-
vective velocities, and higher temperature contrasts between
up- and downflows.

Table 3 also lists the Reynolds, Rossby, and Péclet num-
bers for each model. The Reynolds (and Péclet) have a range
of a factor of a few, with no trend in mass. These values pri-
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marily reflect our choice of νtop for each case (tab. 2) rather
than any intrinsic property of the stars. For our choices of
νtop, the 0.5 M� case has the highest Reynolds number. On
the other hand, the Rossby numbers do not depend strongly
on our choice of diffusivities, and they show a strong de-
pendence on mass, primarily due to the trend in convective
velocity with mass, at a constant rotation period. Finally, ta-
ble 3 lists a characteristic convective turnover timescale for
each case. This also shows a strong trend with mass, primar-
ily due to the trend in convective velocities.

3.2 Differential rotation and meridional circulation

Figure 7 shows the differential rotation in all 4 cases. The
2D plots in the Figure exhibit isorotation contours that are
nearly aligned on cylinders in all cases. This behavior is
typical for simulations such as these that have no enhanced
latitudinal entropy gradient present at the lower boundary
of the convection zone (Ballot et al., 2007; Miesch et al.,
2006).

The angular rotation rate in the 0.5 M� case has a min-
imum value at mid latitudes, a local maximum in the outer
equatorial region, and a global maximum near the pole. A
similarly “banded” differential rotation pattern is evident in
a number of previously published ASH simulations (e.g.
Bessolaz & Brun, 2011; Browning, 2008). The differential
rotation in the 0.7 and 0.9 M� cases are the most solar-like,
with the fastest angular rotation rate at the equator and slow-
est at higher latitudes. However, the 1.1 M� case exhibits
anti-solar rotation, where the slowest angular velocity is at
the equator. A reversal of the sense of differential rotation
was also observed in the simulations of Bessolaz & Brun
(2011) to be an effect of the thickness of the convection
zone. In that study, the stellar structure and luminosity was
held fixed, while only the thickness of the convection zone
was varried. The thickness of the convection zone in our 1.1
M� case (as a fraction of R∗) is comparable to the models
of Bessolaz & Brun (2011) showing anti-solar rotation. This
would suggest that the switch from solar to anti-solar may
have more to do with convection zone thickness than with
stellar structural properties. At the same time, our choice of
parameters may also have influenced this outcome. In par-
ticular, the 1.1 M� case has the largest Rossby numbers
(see tabs. 2 and 3), which means that the convection is less
influenced by rotation than in the other cases.

Each case exhibits a time-averaged, axisymmetric, lati-
tudinal temperature gradient. For the 3 highest mass cases,
this is characterized by a monotonic change from equator
to pole. The 1.1 M� case has a hotter equator, while the
0.7 and 0.9 M� cases have hotter poles (as in the sun). The
0.5M� case has a more complex temperature pattern with a
maximum at mid latitudes, while the latitudinal entropy gra-
dient in all cases follows a more monotonic behavior from
equator to pole. The second-to-last column of table 3 shows
the temporally and azimuthally averaged temperature differ-
ence between the equator and a latitude of 60◦, at the base
of the convection zone. It is evident that the temperature

Fig. 8 Contours of the stream function of the meridional
flow for the 0.5, 0.7, 0.9, and 1.1 M� cases (left to right),
where the physical sizes of the stars are shown to scale. The
contours follow streamlines in the meridional plane from
temporally and azimuthally averaged data. The colors indi-
cate clockwise (blue) and counter-clockwise (red) circula-
tion, and the stellar rotation axis is vertical.

gradients are steaper for higher mass stars. The more com-
plex temperature structure of the lowest mass case is con-
sistent with the banded differential rotation pattern, and the
reversed polarity of the temperature variation in the highest
mass case is consistent with anti-solar differential rotation.

The fractional differential rotation of each case, mea-
sured at the top of the domain between latitudes 0 and 60
degrees, is listed in the final column of table 3. These val-
ues of ∆Ω/Ω0 in the table, show that the magnitude of the
differential rotation ranges from 30 to 42% for all cases.

Figure 8 shows the meridional circulation for all 4 cases.
The plots are shown to scale, according to the physical size
of each of the stars. For the 2 highest mass stars, the cir-
culation pattern is dominated by a global, unicellular flow
pattern from equator to pole near the surface and from pole
to equator near the base of the convection zone. However,
as evident in the Figure, there is a trend for this flow to
break up into a multi-cellular network of circulation pat-
terns roughly aligned on cylinders, for the lower mass stars.
The tendancy for the meridional flow to breakup in this way
for increasing convection zone depth was also seen in the
simulations of Bessolaz & Brun (2011), suggesting that this
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effect is mostly due to the size of the convection zone, rather
than with other stellar properties.

The last column of table 3 shows the characteristic merid-
ional circulation flow speed evaluated at the midlevel of the
domain for each case. As with the convective velocities,
there is a clear trend of increasing meridional circulation
flow speed with increasing stellar mass. A similar trend is
also seen in 2D models (e.g., Küker & Rüdiger, 2008). Since
the physical size of the circulating patterns (evident in Fig.
8) also increases strongly with mass, this suggests that the
characteristic timescale for these circulations is not strongly
dependent on stellar mass. The values listed in table 3 also
suggest that the ratio of the meridional circulation speed to
the convection speed (e.g., ṽmc/ṽ) range from 2% for the 3
lowest mass stars to 9% for the 1.1 M� case.

4 Summary & discussion

We have presented results from 3D dynamical simulations
of the convection zones of 4 sun-like stars, spanning a mass
range from 0.5 to 1.1 M� and rotating at the solar rate. As
presented in section 2.1, these stars cover a range in lumi-
nosities of a factor of 40 and have convection zone masses
ranging from 18% to 1.1% of a solar mass. The physical
sizes of the convection zones increase slightly with mass
(ranging from 19% to 31% of a solar radius), although the
fractional size decreases with mass (ranging from 44% to
24% of a stellar radius).

We found that the convective velocities and temperature
contrast between up- and downflows is a strong function
of mass. This is due to the strong luminosity dependence
on mass, coupled with the fact that higher mass stars have
less dense convective envelopes and thus require more vig-
orous convection. As a consequence of the trend in convec-
tive velocities, the Rossby number (for a constant Ω0) in-
creases and the convective turnover time decreases signifi-
cantly with increasing mass.

The convective pattern in the 0.5 M� case exhibits “ac-
tive nests” on a finite range of longitudes in the equatorial
region. The presence of these active nests appears to be re-
lated to both the Rossby and Prandtl numbers, in a sense that
they have been seen in simulations with lowRo number and
with Pr = 0.25 (Ballot et al., 2007; Brown et al., 2008) but
not in cases with Pr = 1.0 (Ballot et al., 2007; Bessolaz
& Brun, 2011). This may be due to the relative amplitude
of the local shear, which tends to be stronger for lower Pr.
Stronger shear disrupts convective motions and can locally
inhibit radial motions.

The angular rotation rate has a peak value at the sur-
face and equator for the 0.5, 0.7, and 0.9 M� cases. How-
ever, our simulations exhibit a differential rotation t

¯
hat is

“banded,” with a minimum at mid latitudes and another max-
imum at the poles, for the 0.5M� case. The 0.7 and 0.9M�
cases exhibit the most solar-like differential rotation, with a
maximum at the equator and minimum near the poles, but
the 1.1M� case exhibits anti-solar differential rotation. The

magnitude of the differential rotation is comparable in all
cases.

The 4 simulations presented here exhibit isorotation con-
tours that are nearly aligned on cylinders, approximately
following the Taylor-Proudman constraint. From simulations
of the solar convection zone (e.g., Miesch et al., 2006), we
know that the Taylor-Proudman constraint can be broken by
a thermal wind driven by very small latitudinal gradients
of temperature or entropy, with differences of a few Kelvin
sufficing to move cylindrical profiles to radially-aligned ro-
tation profiles. Such gradients and thermal winds do occur
in the simulations presented here, but the presence of the do-
main boundary at the base of the convection zone somewhat
inhibits this effect. By moving the lower domain bound-
ary deep into the radiation zone, Brun et al. (2011) demon-
strated that the presence of a dynamically self-consistent
tachocline alleviates the effects of the lower boundary on
the convection zone dynamics and results in a stronger ther-
mal wind, isorotation contours more aligned to the radial di-
rection, and more realistic meridional circulations and con-
vective penetration. In future work, similar models will be
developed for the stars in the present study.

The meridional circulation is dominated by a single, global
circulation pattern in each hemisphere for the most massive
cases, but breaks up into smaller scale patterns, aligned with
the cylindrical z-direction, for lower mass stars.

Future work with these models should explore cases that
include, for example, (a) a part of the radiation zone in the
computational domain, in order to determine how the pres-
ence of a tachocline affects the convection zone properties,
(b) the effects of different rotation rates, in particular faster
rotation, to understand how the properties of these stars dif-
fer at younger ages, and (c) magnetic fields, in order to ad-
dress the magnetic dynamo properties of these stars.
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