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ABSTRACT

We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for
solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations
covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and
approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss,
we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision
of a few percent. This formula provides a simple method for computing the magnetic braking of Sun-like stars due
to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass
loss rate, stellar radius, surface gravity, and spin rate, and which is valid for both slow and fast rotators.
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1. INTRODUCTION

The evolution of the rotational properties of Sun-like stars
exhibits numerous trends that still lack an accepted, quantitative
explanation. For example, during the pre-main-sequence phase,
there is not yet a comprehensive picture that explains the
observed wide range of rotation rates nor the fact that a large
fraction of stars rotate relatively slowly (e.g., Herbst et al. 2007;
Irwin & Bouvier 2009; Matt & Pudritz 2005a, 2005b). During
the main-sequence phase, we are still trying to understand, for
example, the structure and existence of multiple “sequences”
apparent in the rotation-period-versus-mass diagrams of young
star clusters (e.g., Barnes 2003b; Irwin & Bouvier 2009;
Meibom et al. 2011); the apparent “saturation” of angular
momentum loss in fast rotators (MacGregor & Brenner 1991);
the overall, secular spin-down of stars (Kraft 1967; Skumanich
1972; Soderblom 1983); the possibility of using rotational
properties to measure stellar ages (“gyrochronology”; Barnes
2003a, 2010; Mamajek & Hillenbrand 2008; Meibom et al.
2011; Epstein & Pinsonneault 2012); and the correlation of
stellar activity with rotation, as well as the “saturation” of
this activity in fast rotators (e.g., Saar & Brandenburg 1999;
Pizzolato et al. 2003; Reiners et al. 2009; Wright et al. 2011).

We know that magnetized stellar winds are important for
extracting angular momentum from stars during the main
sequence (Parker 1958; Schatzman 1962; Weber & Davis
1967; Mestel 1968) and likely during the pre-main sequence
(Hartmann & MacGregor 1982; Hartmann & Stauffer 1989;
Matt & Pudritz 2005a). Thus, a prescription for calculating the
stellar wind torque as a function of stellar parameters is a crucial
ingredient in models for the rotational evolution of stars (e.g.,
Bouvier et al. 1997; Bouvier 2008; Denissenkov et al. 2010;
Matt et al. 2012).

Reliably computing the stellar wind torque requires knowl-
edge of the wind acceleration profile and the magnetic field
geometry above the surface of the star (e.g., Mestel 1984). Until

a few years ago, the only formulations available for computing
stellar wind torques (e.g., Kawaler 1988) were based upon an-
alytic or semi-analytic calculations that necessarily relied upon
several simplifying assumptions, such as that of spherical sym-
metry and the a priori specification of the magnetic geometry,
flow acceleration profile, or both. However, in real winds, all of
the flow properties are determined by a complex interaction be-
tween the wind driving physics, stellar rotation, and dynamical
interaction between the wind and magnetic field, and these sig-
nificantly deviate from spherical symmetry. Multi-dimensional,
magnetohydrodynamical (MHD) simulations provide a reliable
method for computing dynamically self-consistent wind solu-
tions, but large parameter studies are needed in order to quantify
how the physics scale with various parameters. Thus, although
there exists a large body of literature on the subject, reliably
calculating stellar wind torques for a range of stellar and wind
properties, and in a way that is useful for stellar evolution cal-
culations, remains a challenging problem.

Using simulations of simplified, solar-like winds, Matt &
Pudritz (2008, hereafter MP08) carried out a small parameter
study to determine the dependence of the wind torque on the
strength of the magnetic field and mass outflow rate in the
wind.5 Their formulation for the torque (Equation (15) of MP08)
differed significantly from previous formulations, notably in
the value of the exponent in the power-law dependence of the
torque on stellar properties, such as magnetic field strength,
mass loss rate, and stellar radius. This study adopted many of
the same assumptions as previous analytic work—ideal MHD,
a rotation-axis-aligned dipolar magnetic field, solid body stellar
rotation, and spherically symmetric thermodynamic properties
at the stellar surface—but the simulations did not require any
assumptions about the kinematics of the flow nor how the

5 Although the results were presented in the context of pre-main-sequence
angular momentum loss, the simulations of MP08 are also appropriate for
main-sequence stars.

1

http://dx.doi.org/10.1088/2041-8205/754/2/L26
mailto:sean.matt@cea.fr
mailto:kmac@ucar.edu
mailto:pinsonneault.1@osu.edu
mailto:thomas.p.greene@nasa.gov


The Astrophysical Journal Letters, 754:L26 (5pp), 2012 August 1 Matt et al.

magnetic geometry was modified by the flow. Thus, the MP08
torque is the most dynamically self-consistent formulation for
the torque from Sun-like stars to date, and the implications for
stellar evolution are still being explored.

At the same time, this formulation is derived from simulations
with variations only in the magnetic field strength (relative to the
mass loss rate and surface gravity). It does not fully capture the
effects of different rotation rates, different thermodynamic (or
energetic) properties of the wind, nor more complex magnetic
geometries. Given the importance of computing stellar wind
torques for a range of stellar ages (and thus a range of
rotation rates), the natural next step is to extend the parameter
study of MP08 to include variations in both magnetic field
strength and stellar rotation rate. In this Letter, we present
such a parameter study and, from these results, derive the most
generally applicable stellar wind torque formula to date.

2. SIMULATION METHOD AND PARAMETER STUDY

We use the simulation code and method described in MP08
to compute steady-state wind solutions for Sun-like stars with
a dipole magnetic field. We briefly describe the method here,
and the reader will find further details in MP08 and references
therein. The code solves the equations of ideal MHD under
the assumption of axisymmetry and a polytropic equation of
state (P ∝ ργ ). In each simulation, the numerical grid is
initialized with a spherically symmetric, thermally driven Parker
wind solution (Parker 1958), plus an analytic dipole magnetic
field. Once the simulations begin, the wind solution relaxes to
a steady state resulting from a dynamical balance between the
accelerating wind and rotating magnetic field. The steady-state
solution is entirely determined by the conditions that are present
at the base of the wind (the “surface” of the star).

For a given initial magnetic geometry, unique wind solutions
are determined by dimensionless parameters, which can be given
as three velocity ratios—vA/vesc, cs/vesc, and f specified at the
surface and equator of the star—plus the adiabatic index γ . Here,
vA is the Alfvén speed, vesc is the gravitational escape speed, cs
is the thermal sound speed, and f is the equatorial rotation speed
divided by the breakup speed,

vA/vesc = B∗(4πρ∗)−1/2(2GM∗/R∗)−1/2, (1)

f ≡ Ω∗R3/2
∗ (GM∗)−1/2, (2)

where B∗ is the magnetic field strength at the stellar equator,
ρ∗ is the mass density at the base of the wind, G is Newton’s
gravitational constant, M∗ is the stellar mass, R∗ is the stellar
radius, and Ω∗ is the (solid body) angular rotation rate of the
stellar surface (=2π/P∗, where P∗ is the rotation period).

The torque formulation of MP08 is based on nine simulations
with variations in the parameter vA/vesc. They also presented
five simulations with variations in the other parameters, f,
cs/vesc, or γ , which demonstrated that these parameters affect
the torque in a way that is not captured by their fit formulation.
Motivated by the fact that the study of MP08 is based on a
relatively small number of simulations and by the importance
of precisely determining the torque for a range of stellar rotation
rates, the present work extends the parameter study of MP08 to
include 50 simulations sampling a large range in both vA/vesc
and f. For all simulations presented here, we adopt a dipole
magnetic geometry and fix γ = 1.05 and cs/vesc = 0.222, as in
the “fiducial” case of MP08.

Table 1
Simulation Parameters and Results

Case f vA/vesc ϒ rA/R∗
1 0.0000995 0.0753 27.5 5.15
2 0.0000995 0.301 446 9.42
3 0.0000995 1.51 13500 19.5
4 0.000997 0.0301 4.11 3.31
5 0.000997 0.0753 25.8 5.04
6 0.000997 0.301 437 9.58
7 0.000997 1.51 13000 19.4
8 0.00393 0.0753 25.8 5.03
9a 0.00386 0.209 215 8.36
10 0.00393 0.301 436 9.57
11 0.00386 0.418 837 10.9
12 0.00393 0.953 4900 15.8
13 0.00393 1.51 13000 19.4
14 0.0101 0.0753 25.6 5.01
15 0.0101 0.301 432 9.50
16 0.0101 1.51 12700 19.4
17 0.0202 0.0753 24.9 4.95
18 0.0202 0.301 417 9.31
19 0.0202 1.51 11900 19.2
20 0.0299 0.0753 24.0 4.86
21 0.0299 0.301 395 9.04
22 0.0299 1.51 10900 18.7
23 0.0403 0.0753 22.8 4.74
24 0.0403 0.301 367 8.73
25 0.0403 1.51 9840 18.1
26 0.0493 0.0753 21.6 4.62
27a 0.0493 0.235 212 7.66
28 0.0493 0.301 341 8.44
29 0.0493 1.51 8960 17.5
30 0.0594 0.0753 20.1 4.49
31 0.0594 0.301 312 8.12
32 0.0594 1.51 8020 16.8
33 0.0986 0.0301 2.70 2.82
34 0.0986 0.0753 14.6 3.96
35a 0.0986 0.209 104 5.98
36a 0.0987 0.254 150 6.44
37a 0.0986 0.301 211 6.97
38a 0.0986 0.363 295 7.53
39a 0.0990 0.502 580 8.77
40a 0.0986 0.602 857 9.58
41a 0.0986 0.940 2130 11.8
42a 0.0986 2.10 10400 16.8
43a 0.0986 3.01 20500 19.3
44 0.197 0.0753 5.39 2.83
45 0.197 0.301 75.9 4.93
46a 0.197 0.495 212 6.26
47 0.197 1.51 2120 10.5
48 0.403 0.753 88.0 4.61
49 0.403 1.51 370 6.30
50 0.403 3.01 1470 8.33

Note. a Same case used in the study of MP08.

Table 1 lists the input parameters f and vA/vesc for all 50 cases
of the present study. Twelve of the simulations, as indicated in
the table, are identical to those used in MP08.

3. SIMULATION RESULTS

From the steady-state wind simulations, we compute the total
mass loss rate (Ṁw) and the torque (τw) directly by integrating
the mass and angular momentum flux over a closed surface
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Figure 1. Parameter space explored. Each point represents a single stellar wind
simulation. Symbols are as follows: asterisks represent cases with f � 0.02,
circles are for f ≈ 0.03 and 0.4, triangles are for f ≈ 0.04, pluses are for
f ≈ 0.05, squares are for f ≈ 0.06, diamonds are for f ≈ 0.1, and ×’s are for
f ≈ 0.2.

(A color version of this figure is available in the online journal.)

containing the star. Table 1 lists the value of

ϒ ≡ B2
∗R

2
∗

Ṁwvesc
(3)

for each case. The quantity ϒ is a dimensionless way of
expressing the (inverse) mass loss rate resulting from the
simulations, it is physically related to the simulation parameter
(vA/vesc)2, and it is similar to the “magnetic confinement
parameter” of Ud-Doula & Owocki (2002; Ud-Doula et al. 2008,
2009). In the following analysis, we treat ϒ as an independent
variable of the simulations, even though it is a result of the
simulations. We prefer to work with ϒ, as it contains the more
observable/predictable quantity Ṁw, as opposed to vA/vesc, for
which one must specify the density at the base of the corona ρ∗
(see Equation (1)). Furthermore, for a given value of ρ∗, the mass
loss rate depends sensitively on the values of cs/vesc and γ (see
MP08), as well as the particular choice of boundary conditions,
which we hold fixed in all simulations. Thus, the consideration
of ϒ as a controlling parameter (instead of vA/vesc) significantly
mitigates the influence of cs/vesc, γ , and boundary condition
choices in the resulting torque formulation.

Figure 1 illustrates the range of parameter space, in terms
of f and ϒ, spanned by all 50 simulations. Each symbol in
the plot corresponds to a simulation listed in Table 1, and the
different symbol styles highlight different ranges of spin rates.
The asterisks are for cases in the slow rotator regime, where the
rotation has a negligible influence on the wind dynamics. The
remaining symbols represent cases in which rotation affects
the speed and collimation, and consequently the efficiency
of angular momentum loss, in the flow. For reference, the
appropriate values for the solar wind are f ≈ 0.004 and ϒ within
a possible range of ∼102–103 (e.g., for Ṁw ≈ 2×10−14 M� yr−1

and an equatorial dipole field strength of 1–5 G).
In order to express the resulting torques in a useful and general

way, we consider the following. In a steady-state wind, under
the assumptions of ideal MHD, the specific angular momentum
extracted from the star is equal to Ω∗r2

A (e.g., Weber & Davis
1967), where rA is the “Alfvén radius,” the cylindrical radial
location where the wind velocity equals the local Alfvén speed.
In a three-dimensional flow, the net torque on the star can be

100 101 102 103 104 105

B*
2 R*

2 / ( M
   •  

 w vesc )

1

10

r A
 / 

R
*

Figure 2. Alfvén radius (Equation (5)) vs. ϒ. The symbols have the same
meaning as in Figure 1. Dotted lines show the fit function (Equations (6) and (7))
for f = 0.001, 0.1, 0.2, and 0.4, from top to bottom, which approximately
correspond to a few of the rotation rates used in the parameter study.

(A color version of this figure is available in the online journal.)

written as

τw = ṀwΩ∗r2
A, (4)

where r2
A is an average value (Washimi & Shibata 1993). From

the simulations, we compute τw and Ṁw directly, so we use
Equation (4) to define the dimensionless Alfvén radius as

rA

R∗
≡

(
τw

ṀwΩ∗R2∗

)1/2

, (5)

which thus represents the square root of the dimensionless
torque and is unique for a given set of dimensionless simulation
parameters. Table 1 lists the resulting values of rA/R∗ for each
case.

4. NEW TORQUE FORMULATION

Figure 2 shows the value of the dimensionless Alfvén radius
versus ϒ for the entire parameter study. The study of MP08
found that the dimensionless Alfvén radius was well represented
by a single power law in ϒ, for all cases with the same
spin rate. In other words, nine simulations in MP08 were fit
by rA/R∗ = Kϒm, where K and m were dimensionless fit
parameters. In Figure 2, it is evident that the effect of rotation
is to modify the value of K, but not to significantly affect the
exponent m (represented by the slope in the log–log plot). Thus,
we are able to fit the 50 simulations here, having variations
in both ϒ and f, with only one additional free parameter.
Specifically, we find that all of the data are well fit by the
function

rA

R∗
= K1

[
ϒ(

K2
2 + 0.5f 2

)1/2

]m

, (6)

where K1, K2, and m are dimensionless fit constants. The best-fit
values give

K1 = 1.30, K2 = 0.0506, m = 0.2177. (7)

These values differ only by a few percent from the equivalent
fit parameters of MP08 (m and K) but should be considered to
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Figure 3. Dimensionless Alfvén radius times ϒ−m vs. f. This figure demon-
strates the dependence of the Alfvén radius on the stellar spin rate, for a fixed
value of ϒ. The symbols have the same meaning as Figure 1, and the dotted line
shows the fit function (Equations (6) and (7)).

(A color version of this figure is available in the online journal.)

be more precise here, due to the larger number of simulations
fit. Also, the functional form of Equation (6) simultaneously
quantifies the effect of the wind magnetization (ϒ) and the
spin rate (f) on the effective Alfvén radius. The dotted lines
in Figure 2 show Equation (6) for four different values of f =
0.001, 0.1, 0.2, and 0.4 and using the best-fit values (7). Each
dotted line goes through the symbols that represent simulations
with corresponding spin rates, illustrating how well Equation (6)
fits the simulation results.

One can understand the functional form of Equation (6) as
follows. The most important factor for determining the Alfvén
radius is the strength of the magnetic field compared to the
inertia in the flow, ϒ. The MHD simulations self-consistently
capture how the wind accelerates, how the magnetic field
strength varies with distance from the star, and how much of
the total surface magnetic flux will participate in the wind (the
remaining flux exists as closed magnetic loops). The fit values
of K1 and m quantify how these processes depend upon the value
of ϒ, for a fixed rotation rate.

For different rotation rates, the Alfvén radius may be modified
further because rotation can act as an additional wind driving
component. When the stellar rotation is very slow, the rotation
has a negligible effect on the wind driving. However, for fast
rotation, magnetocentrifugal effects increase the wind velocity.
In order to quantify this effect, one can think of the wind speed
as being proportional to a rotation-modified speed,

v2
mod = K2

2 v2
esc + Ω2

∗R
2
∗ = v2

esc

(
K2

2 + 0.5f 2). (8)

In this sense, Equation (6) is equivalent to the Alfvén radius
being a simple power law in Equation (3), but with the factor
of vesc being replaced by vmod. The dimensionless factor
K2 determines at what spin rate the stellar rotation becomes
dynamically important for the wind.

The effect of the stellar spin rate on the Alfvén radius (for a
fixed value of ϒ) is best illustrated by Figure 3. It is clear that
when the spin rate is below a few percent of the breakup rate,
the Alfvén radius is independent of spin rate. Faster rotation
decreases the Alfvén radius. For the fastest spin rates in the
parameter study (f ≈ 0.4), the Alfvén radius is decreased by
a factor of approximately 30%, relative to the slowly rotating
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Figure 4. Dimensionless Alfvén radius vs. the quantities in square brackets in
Equation (6). This figure demonstrates the dependence of the Alfvén radius on
ϒ, for a fixed stellar spin rate. The symbols have the same meaning as Figure 1,
and the dotted line shows the fit function (Equations (6) and (7)).

(A color version of this figure is available in the online journal.)

regime. This corresponds to a factor of approximately 2 in the
torque (τw ∝ r2

A).
Figure 4 shows the power-law dependence of the Alfvén

radius on ϒ, for a fixed value of f. It is remarkable how well
Equation (6) fits the dimensionless Alfvén radii determined from
all 50 simulations. As can be seen in Figures 2–4, all data points
lie within a few percent (the biggest outlier is off by 4%) of the
fit function. This reflects the precision of the simulation method
in determining the values of rA/R∗ and ϒ.

By combining Equations (2), (3), (5), and (6), the torque on
the star, due to the stellar wind, can be written as

τw = K2
1 B4m

∗ Ṁ1−2m
w R4m+2

∗
Ω∗(

K2
2 v2

esc + Ω2∗R2∗
)m

= K2
1√
2
B4m

∗ Ṁ1−2m
w R4m+1

∗ v1−2m
esc

f(
K2

2 + 0.5f 2
)m

= K2
1

(2G)m
B4m

∗ Ṁ1−2m
w

R5m+2
∗
Mm∗

Ω∗(
K2

2 + 0.5f 2
)m , (9)

where we have listed three different equivalent forms for
convenience. This formula is suitable for studies of the evolution
of stellar angular momentum.

5. DISCUSSION

The torque formulation presented here differs significantly
from analytic prescriptions that have been widely used. Of
particular note, the preferred model of Kawaler (1988) results
in a power-law dependence of the Alfvén radius on ϒ, with a
power-law exponent of 0.5. In the present work, we find this
exponent is approximately 0.22, which results in a significantly
different dependence of the torque on all stellar parameters. A
comparable exponent of between 0.2 and 0.25 was found in
solar-like wind simulations of Washimi & Shibata (1993) and
Pinto et al. (2011), and Ud-Doula et al. (2009) found a similar
exponent of 0.25 in simulations of radiation-driven winds from
massive stars. The reasons and implications for m ≈ 0.2–0.25,
compared to the analytic work, were discussed in MP08.

We have determined the effect of the stellar rotation rate on the
Alfvén radius. As evident in Figure 3, there is a slow magnetic
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rotator regime, where the rotation rate does not influence the
Alfvén radius (Belcher & MacGregor 1976). However, for faster
rotation the increased wind acceleration by magnetocentrifugal
effects acts to decrease the Alfvén radius. This effect and
transition is not captured in previous torque formulations. Note
that our simulation parameter study does not extend fully into
the fast magnetic rotator regime, where the magnetocentrifugal
acceleration completely dominates the thermal driving (Belcher
& MacGregor 1976). Rather, even for the fastest rotation rates
considered here, the thermal wind driving was not negligible, as
appropriate for solar-like winds.

The torque formulation presented here provides the most
physically realistic and precise calculation to date of solar-like
angular momentum loss, and it is suitable for any studies of the
evolution of angular momentum of Sun-like stars. However, it
has a number of limitations, which point the way for future work.
First of all, the formulation is not valid in the limit of very weak
magnetic fields. In particular, when the size of the Alfvén radius
approaches the stellar radius, the angular momentum transport
will begin to be dominated by other (e.g., viscous) effects, which
are not properly included in our simulations. To take such effects
approximately into account, we suggest imposing a minimum
value of rA � R∗, in situations where weak magnetic fields may
be considered.

Second, the present study fixed the physical parameters that
control the thermal driving of the wind, γ and cs/vesc (which are
related to the coronal temperature and heating/cooling physics).
MP08 included a few simulations that had variations in these
wind driving parameters, and we can also compare the torque
formulation presented here with that of Ud-Doula et al. (2009),
derived for radiatively driven winds. Taken together, it is clear
that a reasonable range in possible wind driving physics can
affect the torque on the star by a factor of ∼2. It also stands
to reason that the transition from slow magnetic rotator to the
regime where stellar rotation is dynamically important in the
wind (i.e., the value of K2 in Equation (6)) will depend upon
the wind driving physics. It will be important in future work
to be able to reliably predict how the wind driving physics
systematically affect the torque.

Finally, the present study assumed a rotation-axis-aligned,
dipolar magnetic geometry at the stellar surface. This is justi-
fied by the fact that the largest-scale global field has the most
influence on the torque, but it is not yet clear how more com-
plex (realistic) magnetic configurations will change the scalings.
MP08 presented two simulations with pure quadrupolar mag-
netic fields. For the same surface magnetic field strength B∗,
the torque for the quadrupole case was reduced by an order of
magnitude compared to the dipole case. They also noted that
the power-law dependence of the Alfvén radius on the strength
of the magnetic field may be altered (their two simulations sug-
gested an exponent of 0.15, instead of 0.22 for the dipole).
Similarly, Pinto et al. (2011) simulated solar winds with a range
of magnetic field complexity, noting a decreased Alfvén radius

with increased magnetic complexity and suggesting a different
power-law exponent when the field is significantly non-dipolar.
It will be important in future work to systematically study how
the torque is affected by complex, realistic magnetic geometries.
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